bioRxiv preprint doi: https://doi.org/10.1101/177469; this version posted October 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. CDX4 regulates the progression of neural differentiation in the spinal cord Piyush Joshi1, 2, Andrew J. Darr3, and Isaac Skromne1,4* 1Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States 2Current Address: Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, 501 6th Ave S, St. Petersburg, FL 33701 3Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605 4Current Address: Department of Biology, University of Richmond, 28 Westhampton Way B322, Richmond, Virginia, 23173, United States *Corresponding author: (I.S.) Tel.: +1-804-829-8235; Fax: +1-804-289-8871; E-mail:
[email protected] Keywords: CDX, neurogenesis, spinal cord, gene regulatory network Running title: CDX in spinal cord neurogenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/177469; this version posted October 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract The progressive maturation of cells down differentiation lineages is controlled by collaborative interactions between networks of extracellular signals and intracellular transcription factors.