Role of Estrogen Receptor Coregulators in Endocrine Resistant Breast Cancer Kristin A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-Talk Between HER2 and MED1 Regulates Tamoxifen Resistance of Human Breast Cancer Cells
Published OnlineFirst September 10, 2012; DOI: 10.1158/0008-5472.CAN-12-1305 Cancer Tumor and Stem Cell Biology Research Cross-talk between HER2 and MED1 Regulates Tamoxifen Resistance of Human Breast Cancer Cells Jiajun Cui1, Katherine Germer1, Tianying Wu2, Jiang Wang3, Jia Luo5, Shao-chun Wang1, Qianben Wang4, and Xiaoting Zhang1 Abstract Despite the fact that most breast cancer patients have estrogen receptor (ER) a-positive tumors, up to 50% of the patients are or soon develop resistance to endocrine therapy. It is recognized that HER2 activation is one of the major mechanisms contributing to endocrine resistance. In this study, we report that the ER coactivator MED1 is a novel cross-talk point for the HER2 and ERa pathways. Tissue microarray analysis of human breast cancers revealed that MED1 expression positively correlates most strongly with HER2 status of the tumors. MED1 was highly phosphorylated, in a HER2-dependent manner, at the site known to be critical for its activation. Importantly, RNAi-mediated attenuation of MED1 sensitized HER2-overexpressing cells to tamoxifen treatment. MED1 and its phosphorylated form, but not the corepressors N-CoR and SMRT, were recruited to the ERa target gene promoter by tamoxifen in HER2-overexpressing cells. Significantly, MED1 attenuation or mutation of MED1 phosphorylation sites was sufficient to restore the promoter recruitment of N-CoR and SMRT. Notably, we found that MED1 is required for the expression of not only traditional E2-ERa target genes but also the newly described EGF-ERa target genes. Our results additionally indicated that MED1 is recruited to the HER2 gene and required for its expression. -
Key Roles for MED1 Lxxll Motifs in Pubertal Mammary Gland Development and Luminal-Cell Differentiation
Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation Pingping Jianga,b,1, Qiuping Hua,1, Mitsuhiro Itoc,1,3, Sara Meyera, Susan Waltza, Sohaib Khana, Robert G. Roederc,2, and Xiaoting Zhanga,2 aDepartment of Cancer and Cell Biology, College of Medicine, University of Cincinnati, 3125 Eden Avenue, OH 45267; bCollege of Life Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; and cLaboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 Contributed by Robert G. Roeder, February 16, 2010 (sent for review January 18, 2010) Mediator recently has emerged as a central player in the direct (7–9). In general, individual Mediator subunits interact transduction of signals from transcription factors to the general specifically with their corresponding transcription factors and de- transcriptional machinery. In the case of nuclear receptors, in vitro letions of these Mediator subunits often affect expression primar- studies have shown that the transcriptional coactivator function of ily of target genes and pathways controlled by their corresponding the Mediator involves direct ligand-dependent interactions of the transcription factor(s) (9). In the case of nuclear receptors, the MED1 subunit, through its two classical LxxLL motifs, with the re- Mediator interactions are ligand- and AF-2-dependent and ceptor AF2 domain. However, despite the strong in vitro evidence, mediated through the LxxLL motifs in the MED1 (a.k.a. there currently is little information regarding in vivo functions of TRAP220/PBP/DRIP205) subunit (10–13). Importantly, in rela- the LxxLL motifs either in MED1 or in other coactivators. -
November Packet
L Buckman Dire cl Diversion Date: October 22,2018 To: Buckman Direct Diversion Board From: Michael Dozier, BDD Operations Superintendent .AAD Subject: Update on BDD Operations for the Month of October 2018 ITEM: 1. This memorandum is to update the Buckman Direct Diversion Board (BDDB) on BDD operations during the month of October 2018. The BDD diversions and deliveries have averaged, in Million Gallons Per Day (MOD) as follows: a. Raw water diversions: 5.66 MOD b. Drinking water deliveries through Booster Station 4N5A: 5.08 MOD c. Raw water delivery to Las Campanas at BS2A: 0.53 MOD d. Onsite treated and non-treated water storage: 0.05 MOD Average 2. The BDD is providing approximately 81% percent of the water supply to the City and County for the month. 3. The BDD year-to-date diversions are depicted below: Year-To-Date Comparison 350.00 , I ®.' Buckman Direct Diversion • 341 Caja del Rio Rd. • Santa Fe, NM 87506 1 4. Background Diversion tables: Buckman Direct Diversion Monthly SJC and Native Diversions Oct-18 In Acre-Feet Total SD-03418 SP-4842 SP-2847-E SP-2847-N-A All Partners SJC+ RGNative Month RG Native SJCCall SJCCall Conveyance Native LAS SJCCall COUNTY CITY LASCAMPANAS Losses Rights CAMPANAS Total JAN 380.137 77.791 0.000 302.346 302.346 0.000 3.023 FEB 336.287 66.413 0.000 269.874 169.874 0.000 2.699 MAR 362.730 266.898 0.000 95.832 95.832 0.000 0.958 APR 661.333 568.669 0.000 92.664 92.664 0.000 0.927 MAY 933.072 340.260 0.000 592.812 481.647 111.165 5.928 JUN 873.384 44.160 0.000 829.224 693.960 135.264 8.292 JUL 807.939 -
Anti-Obesity Therapy: from Rainbow Pills to Polyagonists
1521-0081/70/4/712–746$35.00 https://doi.org/10.1124/pr.117.014803 PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:712–746, October 2018 Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. ASSOCIATE EDITOR: BIRGITTE HOLST Anti-Obesity Therapy: from Rainbow Pills to Polyagonists T. D. Müller, C. Clemmensen, B. Finan, R. D. DiMarchi, and M. H. Tschöp Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.) Abstract ....................................................................................713 I. Introduction . ..............................................................................713 II. Bariatric Surgery: A Benchmark for Efficacy ................................................714 III. The Chronology of Modern Weight-Loss Pharmacology . .....................................715 A. Thyroid Hormones ......................................................................716 B. 2,4-Dinitrophenol .......................................................................716 C. Amphetamines. ........................................................................717 Downloaded from 1. Methamphetamine -
PPM1G Promotes the Progression of Hepatocellular Carcinoma Via
www.nature.com/cddis ARTICLE OPEN PPM1G promotes the progression of hepatocellular carcinoma via phosphorylation regulation of alternative splicing protein SRSF3 ✉ ✉ Dawei Chen1, Zhenguo Zhao1, Lu Chen1, Qinghua Li1, Jixue Zou 2 and Shuanghai Liu 1 © The Author(s) 2021 Emerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation. Cell Death and Disease (2021) 12:722 ; https://doi.org/10.1038/s41419-021-04013-y INTRODUCTION The AR-V7 is specifically highly expressed in patients with relapse Hepatocellular carcinoma (HCC) is one of the most aggressive and drug resistance after targeted therapy. -
Ectopic Protein Interactions Within BRD4–Chromatin Complexes Drive Oncogenic Megadomain Formation in NUT Midline Carcinoma
Ectopic protein interactions within BRD4–chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma Artyom A. Alekseyenkoa,b,1, Erica M. Walshc,1, Barry M. Zeea,b, Tibor Pakozdid, Peter Hsic, Madeleine E. Lemieuxe, Paola Dal Cinc, Tan A. Incef,g,h,i, Peter V. Kharchenkod,j, Mitzi I. Kurodaa,b,2, and Christopher A. Frenchc,2 aDivision of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; bDepartment of Genetics, Harvard Medical School, Boston, MA 02115; cDepartment of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; dDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA 02115; eBioinfo, Plantagenet, ON, Canada K0B 1L0; fDepartment of Pathology, University of Miami Miller School of Medicine, Miami, FL 33136; gBraman Family Breast Cancer Institute, University of Miami Miller School of Medicine, Miami, FL 33136; hInterdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136; iSylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; and jHarvard Stem Cell Institute, Cambridge, MA 02138 Contributed by Mitzi I. Kuroda, April 6, 2017 (sent for review February 7, 2017; reviewed by Sharon Y. R. Dent and Jerry L. Workman) To investigate the mechanism that drives dramatic mistargeting of and, in the case of MYC, leads to differentiation in culture (2, 3). active chromatin in NUT midline carcinoma (NMC), we have Similarly, small-molecule BET inhibitors such as JQ1, which identified protein interactions unique to the BRD4–NUT fusion disengage BRD4–NUT from chromatin, diminish megadomain- oncoprotein compared with wild-type BRD4. -
Downloaded from Bioscientifica.Com at 09/25/2021 05:16:42PM Via Free Access
28 2 Endocrine-Related E B Blatt et al. Overcoming oncogene 28:2 R31–R46 Cancer addiction in BCa and PCa REVIEW Overcoming oncogene addiction in breast and prostate cancers: a comparative mechanistic overview Eliot B Blatt1, Noa Kopplin1, Shourya Kumar1, Ping Mu2, Suzanne D Conzen3 and Ganesh V Raj1,4 1Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 2Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 3Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA 4Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA Correspondence should be addressed to G V Raj: [email protected] Abstract Prostate cancer (PCa) and breast cancer (BCa) are both hormone-dependent cancers Key Words that require the androgen receptor (AR) and estrogen receptor (ER, ESR1) for growth and f endocrine therapy proliferation, respectively. Endocrine therapies that target these nuclear receptors (NRs) resistance provide significant clinical benefit for metastatic patients. However, these therapeutic f androgen receptor strategies are seldom curative and therapy resistance is prevalent. Because the vast f estrogen receptor majority of therapy-resistant PCa and BCa remain dependent on the augmented activity f oncogene of their primary NR driver, common mechanisms of resistance involve enhanced NR signaling through overexpression, mutation, or alternative splicing of the receptor, coregulator alterations, and increased intracrine hormonal synthesis. In addition, a significant subset of endocrine therapy-resistant tumors become independent of their primary NR and switch to alternative NR or transcriptional drivers. While these hormone-dependent cancers generally employ similar mechanisms of endocrine therapy resistance, distinct differences between the two tumor types have been observed. -
Gene Network Analysis of PPAR-Γ: a Bioinformatics Approach Using STRING
World Academy of Science, Engineering and Technology International Journal of Bioengineering and Life Sciences Vol:1, No:1, 2007 Gene Network Analysis of PPAR-γ: A Bioinformatics Approach Using STRING S. Bag, S. Ramaiah, P. Anitha, K. M. Kumar, P. Lavanya, V. Sivasakhthi, A. Anbarasu receptors (NRs) that are ligand-dependent transcription factors Abstract—Gene networks present a graphical view at the level and are important regulators of lipid storage and metabolism of gene activities and genetic functions and help us to understand [6]. PPAR-γ has been implicated in diseases associated with complex interactions in a meaningful manner. In the present study, dysregulation of lipid levels, such as obesity, cardiovascular we have analyzed the gene interaction of PPAR-γ (peroxisome disease, and type 2 diabetes [6]. It has many pleiotropic proliferator-activated receptor gamma) by search tool for retrieval of interacting genes. We find PPAR-γ is highly networked by genetic functions; it plays a crucial role in the expression of key genes interactions with 10 genes: RXRA (retinoid X receptor, alpha), involved in adipogenesis [7], carbohydrates metabolism [7], PPARGC1A (peroxisome proliferator-activated receptor gamma, inflammation [7], and cancer [7] and hence can form a coactivator 1 alpha), NCOA1 (nuclear receptor coactivator 1), complex network with different disease causing genes. Even NR0B2 (nuclear receptor subfamily 0, group B, member 2), HDAC3 though there are many reports [7] on the association of PPAR- (histone deacetylase 3), MED1 (mediator complex subunit 1), INS γ with other disorders, there are no reports on the gene (insulin), NCOR2 (nuclear receptor co-repressor 2), PAX8 (paired box 8), ADIPOQ (adiponectin) and it augurs well for the fact that network analysis of PPAR-γ using bioinformatics tools. -
PRDM16 Binds MED1 and Controls Chromatin Architecture to Determine a Brown Fat Transcriptional Program
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program Matthew J. Harms,1,2,4 Hee-Woong Lim,1,3,4 Yugong Ho,3 Suzanne N. Shapira,1,2 Jeff Ishibashi,1,2 Sona Rajakumari,1,2 David J. Steger,1 Mitchell A. Lazar,1 Kyoung-Jae Won,1,3 and Patrick Seale1,2 1Institute for Diabetes, Obesity, and Metabolism, 2Department of Cell and Developmental Biology, 3Genetics Department, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA PR (PRD1–BF1–RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT. [Keywords: PRDM16; PRDM3; MED1; Mediator; brown adipose tissue; UCP1] Supplemental material is available for this article. Received September 17, 2014; revised version accepted December 10, 2014. Obesity is a leading cause of preventable death in the United required for beige fat differentiation and the maintenance of States due to its link to many diseases, including type 2 brown adipose tissue (BAT) fate in adult mice (Cohen diabetes, cardiovascular disease, stroke, and certain cancers et al. -
Transcriptional and Epigenetic Control of Brown and Beige Adipose Cell Fate and Function
REVIEWS Transcriptional and epigenetic control of brown and beige adipose cell fate and function Takeshi Inagaki1,2, Juro Sakai1,2 and Shingo Kajimura3 Abstract | White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. Interscapular BAT Adipose tissue has a central role in whole-body energy subjects who had previously lacked detectable BAT Brown adipose tissue (BAT) is a homeostasis. White adipose tissue (WAT) is the major depots before cold exposure, presumably owing to the specialized organ that adipose organ in mammals. It represents 10% or more emergence of new thermogenic adipocytes. This, then, produces heat. BAT is localized of the body weight of healthy adult humans and is leads to an increase in non-shivering thermogenesis in the interscapular and 6–9 perirenal regions of rodents specialized for the storage of excess energy. Humans and/or an improvement in insulin sensitivity . These and infants. -
Antibodies for Epigenetics and Gene Regulation Enabling Epigenetics Research
antibodies for epigenetics and gene regulation Enabling Epigenetics Research 3 Chromatin Modifiers DNA Methylation Histones Transcription Regulation Highly Characterized Antibodies for Epigenetics and Gene Regulation At Active Motif, we are committed to providing the highest- polyclonal and AbFlex® recombinant antibodies are quality antibodies for studying epigenetics in the context validated for the applications you need – chromatin of histone and DNA modifications. Our antibodies are immunoprecipitation (ChIP), ChIP-Seq, Western blot, and manufactured in-house, and undergo rigorous development Immunofluorescence. and validation procedures to ensure their quality and To browse our complete list of antibodies and application performance. Our extensive, novel portfolio of monoclonal, data, please visit www.activemotif.com/abs. AbFlex® Recombinant Antibodies uniquely designed for multiple labeling methods AbFlex® antibodies are recombinant antibodies (rAbs) purification systems, and that have been generated using defined DNA sequences an avidin tag sequence to produce highly specific, reproducible antibodies. The for enzymatic biotin unique advantages of the AbFlex® antibody are its flexible conjugation using the biotin labeling and purification options. Each AbFlex® antibody ligase, BirA. contains a Sortase recognition motif (LPXTG) to covalently add fluorophores, enzymatic substrates (e.g., HRP), AbFlex is available for a peptides, DNA, drugs, or other labels to the antibody in range of Histone Markers, a directed and reproducible manner. -
Transcriptional Regulation of Autophagy Genes Via Stage
Version October 4, 2019 submitted to Cells S1 of S23 Supplementary Materials: Transcriptional regulation of autophagy genes via stage-specific activation of CEBPB and PPARG during adipogenesis: a systematic study using public gene expression and transcription factor binding datasets Mahmoud Ahmed , Trang Huyen Lai , Jin Seok Hwang , Sahib Zada , Trang Minh Pham and Deok Ryong Kim *, 1 List of Tables 2 S1 Percent of gene expression variance explained by the stage of differentiation.......2 3 S2 Differential expression of gene markers............................3 4 S3 Autophagy and lipid metabolism gene ontology terms enrichment in differentiating 5 adipocytes.............................................4 6 S4 Significant peaks of adipogenic factors on autophagy genes.................5 7 S5 Significant peaks of adipogenic factors on autophagy transcription factor genes.....6 8 S6 Autophagy and lipid metabolism gene ontology terms enrichment in Cebpb and 9 Pparg-knockdown differentiating adipocytes.........................7 10 S7 Peaks of adipogenic factors on adipogenic transcription factor genes...........8 11 S8 Datasets of RNA and ChIP Seq.................................9 12 S9 ChIP antibodies for transcription factors, co-factors and histone markers.......... 10 13 S10 Datasets of ChIP Seq in different tissues............................ 11 14 S11 Datasets of RNA Seq and microarrays of adipocytes with Cebpb or Pparg-knockdown.. 12 15 List of Figures 16 S1 Differential gene expression in early and late differentiating adipocytes.......... 13 17 S2 Differential peak binding of adipogenic transcription factors on autophagy genes.... 14 18 S3 Gene markers of differentiation, lipogenesis and autophagy................. 15 19 S4 Co-expression of adipogenic transcription factors genes with autophagy genes..... 16 20 S5 Tissue specific binding of adipogenic transcription factors................