Theory and Algorithms for Modern Problems in Machine Learning and an Analysis of Markets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Typical Stability
Typical Stability Raef Bassily∗ Yoav Freundy Abstract In this paper, we introduce a notion of algorithmic stability called typical stability. When our goal is to release real-valued queries (statistics) computed over a dataset, this notion does not require the queries to be of bounded sensitivity – a condition that is generally assumed under differential privacy [DMNS06, Dwo06] when used as a notion of algorithmic stability [DFH+15b, DFH+15c, BNS+16] – nor does it require the samples in the dataset to be independent – a condition that is usually assumed when generalization-error guarantees are sought. Instead, typical stability requires the output of the query, when computed on a dataset drawn from the underlying distribution, to be concentrated around its expected value with respect to that distribution. Typical stability can also be motivated as an alternative definition for database privacy. Like differential privacy, this notion enjoys several important properties including robustness to post-processing and adaptive composition. However, privacy is guaranteed only for a given family of distributions over the dataset. We also discuss the implications of typical stability on the generalization error (i.e., the difference between the value of the query computed on the dataset and the expected value of the query with respect to the true data distribution). We show that typical stability can control generalization error in adaptive data analysis even when the samples in the dataset are not necessarily independent and when queries to be computed are not necessarily of bounded- sensitivity as long as the results of the queries over the dataset (i.e., the computed statistics) follow a distribution with a “light” tail. -
An Efficient Boosting Algorithm for Combining Preferences Raj
An Efficient Boosting Algorithm for Combining Preferences by Raj Dharmarajan Iyer Jr. Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1999 © Massachusetts Institute of Technology 1999. All rights reserved. A uth or .............. ..... ..... .................................. Department of E'ectrical ngineering and Computer Science August 24, 1999 C ertified by .. ................. ...... .. .............. David R. Karger Associate Professor Thesis Supervisor Accepted by............... ........ Arthur C. Smith Chairman, Departmental Committe Graduate Students MACHU OF TEC Lo NOV LIBRARIES An Efficient Boosting Algorithm for Combining Preferences by Raj Dharmarajan Iyer Jr. Submitted to the Department of Electrical Engineering and Computer Science on August 24, 1999, in partial fulfillment of the requirements for the degree of Master of Science Abstract The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting algorithm for combining preferences called RankBoost. We also describe an efficient implementation of the algorithm for certain natural cases. We discuss two experiments we carried out to assess the performance of RankBoost. In the first experi- ment, we used the algorithm to combine different WWW search strategies, each of which is a query expansion for a given domain. For this task, we compare the performance of Rank- Boost to the individual search strategies. The second experiment is a collaborative-filtering task for making movie recommendations. -
LNAI 4264, Pp
Lecture Notes in Artificial Intelligence 4264 Edited by J. G. Carbonell and J. Siekmann Subseries of Lecture Notes in Computer Science José L. Balcázar Philip M. Long Frank Stephan (Eds.) Algorithmic Learning Theory 17th International Conference, ALT 2006 Barcelona, Spain, October 7-10, 2006 Proceedings 1 3 Series Editors Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA Jörg Siekmann, University of Saarland, Saarbrücken, Germany Volume Editors José L. Balcázar Universitat Politecnica de Catalunya, Dept. Llenguatges i Sistemes Informatics c/ Jordi Girona, 1-3, 08034 Barcelona, Spain E-mail: [email protected] Philip M. Long Google 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA E-mail: [email protected] Frank Stephan National University of Singapore, Depts. of Mathematics and Computer Science 2 Science Drive 2, Singapore 117543, Singapore E-mail: [email protected] Library of Congress Control Number: 2006933733 CR Subject Classification (1998): I.2.6, I.2.3, F.1, F.2, F.4, I.7 LNCS Sublibrary: SL 7 – Artificial Intelligence ISSN 0302-9743 ISBN-10 3-540-46649-5 Springer Berlin Heidelberg New York ISBN-13 978-3-540-46649-9 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. -
MMLS 2017 Booklet
MMLS 2017 Booklet Monday, June 19 9:30 - 11:15 TTIC Continental breakfast. (TTIC Colloquium: 10:00-11:00.) 11:15 - 11:30 GPAH Opening remarks: Po-Ling Loh. 11:30 - 12:20 GPAH Plenary speaker: Devavrat Shah . (Chair: Po-Ling Loh .) Latent Variable Model Estimation via Collaborative Filtering. 12:20 - 2:50 GPAH Lunch, posters. 2:50 - 3:30 GPAH Invited talks (chair: Mesrob Ohannessian ). 2:50: Rina Foygel Projected Gradient Descent with Nonconvex Constraints. 3:10: Maxim Raginsky Non-Convex Learning via Stochastic Gradient Langevin Dynamics. 3:30 - 4:00 GPAH Coffee Break. 4:00 - 4:50 GPAH Plenary speaker: Rayid Ghani . (Chair: Nati Srebro .) Machine Learning for Public Policy: Opportunities and Challenges 4:50 - 5:30 GPAH Invited talks (chair: Laura Balzano ). 4:50: Dimitris Papailiopoulos Gradient Diversity Empowers Distributed Learning. 5:10: Alan Ritter Large-Scale Learning for Information Extraction. 5:45 - 7:00 TTIC Reception, with remarks by Sadaoki Furui (TTIC President). Tuesday, June 20 8:30 - 9:50 GPAH Continental breakfast. 9:00 - 9:50 GPAH Bonus speaker: Larry Wasserman . (Chair: Mladen Kolar .) Locally Optimal Testing. [ Cancelled. ] 9:50 - 10:50 GPAH Invited talks (chair: Misha Belkin ). 9:50: Srinadh Bhojanapalli Effectiveness of Local Search for Low Rank Recovery 10:10: Niao He Learning From Conditional Distributions. 10:30: Clayton Scott Nonparametric Preference Completion. 10:50 - 11:20 GPAH Coffee break. 11:20 - 12:20 GPAH Invited talks (chair: Jason Lee ). 11:20: Lev Reyzin On the Complexity of Learning from Label Proportions. 11:40: Ambuj Tewari Random Perturbations in Online Learning. 12:00: Risi Kondor Multiresolution Matrix Factorization. -
Nil Ib N O Ir Ali Mi S Na El Oo B Ilp Itl
ecneicS retupmoC retupmoC ecneicS ecneicS - o t- o l t aA l aA DD DD 9 9 / / OOnn BBiilliinneeaarr TTeecchhnniiqquueess ffoorr 0202 0202 a p pa p r p a r K a K ii t t t aM t aM SSiimmiillaarriittyy SSeeaarrcchh aanndd BBoooolleeaann MMaattrriixx M ultiplication Multiplication MMaatttit iK Kaarprpppaa noi taci lpi t luM xi r taM naelooB dna hcraeS yt i ral imiS rof seuqinhceT raeni l iB nO noi taci lpi t luM xi r taM naelooB dna hcraeS yt i ral imiS rof seuqinhceT raeni l iB nO BBUUSSININESESS + + ECECOONNOOMMY Y NSI I NBS NBS 879 - 879 - 259 - 259 - 06 - 06 - 5198 - 5198 7 - 7 ( p ( r p i n r t i n t de ) de ) AARRT T+ + NSI I NBS NBS 879 - 879 - 259 - 259 - 06 - 06 - 6198 - 6198 4 - 4 ( ( dp f dp ) f ) DDESESIGIGNN + + NSI I NSS NSS 9971 - 9971 - 4394 4394 ( p ( r p i n r t i n t de ) de ) AARRCCHHITIETCECTUTURRE E NSI I NSS NSS 9971 - 9971 - 2494 2494 ( ( dp f dp ) f ) SSCCIEINENCCE E+ + TETCECHHNNOOLOLOGGY Y tirvn tlaA ot laA ot isrevinU yt isrevinU yt CCRROOSSSOOVEVRE R ceic fo o oohcS f l cS o oohcS i f l cS i ecne ecne DDOOCCTOTORRAAL L ecneicS retupmoC retupmoC ecneicS ecneicS DDISISSERERTATTAITOIONNS S DDOOCCTOTORRAAL L +hfbjia*GMFTSH9 +hfbjia*GMFTSH9 fi.otlaa.www . www a . a a l a t o l t . o fi . fi DDISISSERERTATTAITOIONNS S ot laA ytot laA isrevinU yt isrevinU 0202 0202 Aalto University publication series DOCTORAL DISSERTATIONS 9/2020 On Bilinear Techniques for Similarity Search and Boolean Matrix Multiplication Matti Karppa A doctoral dissertation completed for the degree of Doctor of Science (Technology) to be defended, with the permission of the Aalto University School of Science, at a public examination held at the lecture hall T2 of the school on 24 January 2020 at 12. -
Download This PDF File
T G¨ P 2012 C N Deadline: December 31, 2011 The Gödel Prize for outstanding papers in the area of theoretical computer sci- ence is sponsored jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery, Special Inter- est Group on Algorithms and Computation Theory (ACM-SIGACT). The award is presented annually, with the presentation taking place alternately at the Inter- national Colloquium on Automata, Languages, and Programming (ICALP) and the ACM Symposium on Theory of Computing (STOC). The 20th prize will be awarded at the 39th International Colloquium on Automata, Languages, and Pro- gramming to be held at the University of Warwick, UK, in July 2012. The Prize is named in honor of Kurt Gödel in recognition of his major contribu- tions to mathematical logic and of his interest, discovered in a letter he wrote to John von Neumann shortly before von Neumann’s death, in what has become the famous P versus NP question. The Prize includes an award of USD 5000. AWARD COMMITTEE: The winner of the Prize is selected by a committee of six members. The EATCS President and the SIGACT Chair each appoint three members to the committee, to serve staggered three-year terms. The committee is chaired alternately by representatives of EATCS and SIGACT. The 2012 Award Committee consists of Sanjeev Arora (Princeton University), Josep Díaz (Uni- versitat Politècnica de Catalunya), Giuseppe Italiano (Università a˘ di Roma Tor Vergata), Mogens Nielsen (University of Aarhus), Daniel Spielman (Yale Univer- sity), and Eli Upfal (Brown University). ELIGIBILITY: The rule for the 2011 Prize is given below and supersedes any di fferent interpretation of the parametric rule to be found on websites on both SIGACT and EATCS. -
40Th ACM Symposium on Theory of Computing (STOC 2008) Saturday
40th ACM Symposium on Theory of Computing (STOC 2008) Saturday, May 17, 2008 7:00pm – 10:00pm Registration (Conference Centre) 8:00pm – 10:00pm Reception (Palm Court) Sunday, May 18, 2008 8:00am – 5:00pm Registration (Conference Centre) 8:10am – 8:35am Breakfast (Conference Centre) Session 1A Session 1B (Theatre) (Saanich Room) Chair: Venkat Guruswami Chair: David Shmoys (Cornell (University of Washington and University) Institute for Advanced Study) 8:35am - 8:55am Parallel Repetition in Projection The Complexity of Temporal Games and a Concentration Bound Constraint Satisfaction Problems Anup Rao Manuel Bodirsky, Jan Kara 9:00am - 9:20am SDP Gaps and UGC Hardness for An Effective Ergodic Theorem Multiway Cut, 0-Extension and and Some Applications Metric Labeling Satyadev Nandakumar Rajeskar Manokaran, Joseph (Seffi) Naor, Prasad Raghavendra, Roy Schwartz 9:25am – 9:45am Unique Games on Expanding Algorithms for Subset Selection Constraint Graphs are Easy in Linear Regression Sanjeev Arora, Subhash A. Khot, Abhimanyu Das, David Kempe Alexandra Kolla, David Steurer, Madhur Tulsiani, Nisheeth Vishnoi 9:45am - 10:10am Break Session 2 (Theatre) Chair: Joan Feigenbaum (Yale University) 10:10am - 11:10am Rethinking Internet Routing Invited talk by Jennifer Rexford (Princeton University) 11:10am - 11:20am Break Session 3A Session 3B (Theatre) (Saanich Room) Chair: Xiaotie Deng (City Chair: Anupam Gupta (Carnegie University of Hong Kong) Mellon University) The Pattern Matrix Method for 11:20am – 11:40am Interdomain Routing and Games Lower Bounds on Quantum Hagay Levin, Michael Schapira, Communication Aviv Zohar Alexander A. Sherstov 11:45am – 12:05pm Optimal approximation for the Classical Interaction Cannot Submodular Welfare Problem in Replace a Quantum Message the value oracle model Dmitry Gavinsky Jan Vondrak 12:10pm – 12:30pm Optimal Mechanism Design and Span-program-based quantum Money Burning algorithm for evaluating formulas Jason Hartline, Tim Ben W. -
Session II – Unit I – Fundamentals
Tutor:- Prof. Avadhoot S. Joshi Subject:- Design & Analysis of Algorithms Session II Unit I - Fundamentals • Algorithm Design – II • Algorithm as a Technology • What kinds of problems are solved by algorithms? • Evolution of Algorithms • Timeline of Algorithms Algorithm Design – II Algorithm Design (Cntd.) Figure briefly shows a sequence of steps one typically goes through in designing and analyzing an algorithm. Figure: Algorithm design and analysis process. Algorithm Design (Cntd.) Understand the problem: Before designing an algorithm is to understand completely the problem given. Read the problem’s description carefully and ask questions if you have any doubts about the problem, do a few small examples by hand, think about special cases, and ask questions again if needed. There are a few types of problems that arise in computing applications quite often. If the problem in question is one of them, you might be able to use a known algorithm for solving it. If you have to choose among several available algorithms, it helps to understand how such an algorithm works and to know its strengths and weaknesses. But often you will not find a readily available algorithm and will have to design your own. An input to an algorithm specifies an instance of the problem the algorithm solves. It is very important to specify exactly the set of instances the algorithm needs to handle. Algorithm Design (Cntd.) Ascertaining the Capabilities of the Computational Device: After understanding the problem you need to ascertain the capabilities of the computational device the algorithm is intended for. The vast majority of algorithms in use today are still destined to be programmed for a computer closely resembling the von Neumann machine—a computer architecture outlined by the prominent Hungarian-American mathematician John von Neumann (1903–1957), in collaboration with A. -
Game Theory, Alive Anna R
Game Theory, Alive Anna R. Karlin Yuval Peres 10.1090/mbk/101 Game Theory, Alive Game Theory, Alive Anna R. Karlin Yuval Peres AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 91A10, 91A12, 91A18, 91B12, 91A24, 91A43, 91A26, 91A28, 91A46, 91B26. For additional information and updates on this book, visit www.ams.org/bookpages/mbk-101 Library of Congress Cataloging-in-Publication Data Names: Karlin, Anna R. | Peres, Y. (Yuval) Title: Game theory, alive / Anna Karlin, Yuval Peres. Description: Providence, Rhode Island : American Mathematical Society, [2016] | Includes bibliographical references and index. Identifiers: LCCN 2016038151 | ISBN 9781470419820 (alk. paper) Subjects: LCSH: Game theory. | AMS: Game theory, economics, social and behavioral sciences – Game theory – Noncooperative games. msc | Game theory, economics, social and behavioral sciences – Game theory – Cooperative games. msc | Game theory, economics, social and behavioral sciences – Game theory – Games in extensive form. msc | Game theory, economics, social and behavioral sciences – Mathematical economics – Voting theory. msc | Game theory, economics, social and behavioral sciences – Game theory – Positional games (pursuit and evasion, etc.). msc | Game theory, economics, social and behavioral sciences – Game theory – Games involving graphs. msc | Game theory, economics, social and behavioral sciences – Game theory – Rationality, learning. msc | Game theory, economics, social and behavioral sciences – Game theory – Signaling, -
Online Rank Aggregation
JMLR: Workshop and Conference Proceedings 25:539{553, 2012 Asian Conference on Machine Learning Online Rank Aggregation Shota Yasutake [email protected] Panasonic System Networks Co., Ltd Kohei Hatano [email protected] Eiji Takimoto [email protected] Masayuki Takeda [email protected] Kyushu University Editor: Steven C.H. Hoi and Wray Buntine Abstract We consider an online learning framework where the task is to predict a permutation which represents a ranking of n fixed objects. At each trial, the learner incurs a loss defined as Kendall tau distance between the predicted permutation and the true permutation given by the adversary. This setting is quite natural in many situations such as information retrieval and recommendation tasks. We prove a lower bound of the cumulative loss and hardness results. Then, we propose an algorithm for this problem and prove its relative loss bound which shows our algorithm is close to optimal. Keywords: online learning, ranking, rank aggregation, permutation 1. Introduction The rank aggregation problem have gained much attention due to developments of infor- mation retrieval on the Internet, online shopping stores, recommendation systems and so on. The problem is, given m permutations of n fixed elements, to find a permutation that minimizes the sum of \distances" between itself and each given permutation. Here, each permutation represents a ranking over n elements. So, in other words, the ranking aggre- gation problem is to find an \average" ranking which reflects the characteristics of given rankings. In particular, the optimal ranking is called Kemeny optimal (Kemeny, 1959; Kemeny and Snell, 1962) when the distance is defined as Kendall tau distance (which we will define later). -
The Boosting Apporach to Machine Learning
Nonlinear Estimation and Classification, Springer, 2003. The Boosting Approach to Machine Learning An Overview Robert E. Schapire AT&T Labs Research Shannon Laboratory 180 Park Avenue, Room A203 Florham Park, NJ 07932 USA www.research.att.com/ schapire December 19, 2001 Abstract Boosting is a general method for improving the accuracy of any given learning algorithm. Focusing primarily on the AdaBoost algorithm, this chapter overviews some of the recent work on boosting including analyses of AdaBoost’s training error and generalization error; boosting’s connection to game theory and linear programming; the relationship between boosting and logistic regression; extensions of AdaBoost for multiclass classification problems; methods of incorporating human knowledge into boosting; and experimental and applied work using boosting. 1 Introduction Machine learning studies automatic techniques for learning to make accurate pre- dictions based on past observations. For example, suppose that we would like to build an email filter that can distinguish spam (junk) email from non-spam. The machine-learning approach to this problem would be the following: Start by gath- ering as many examples as posible of both spam and non-spam emails. Next, feed these examples, together with labels indicating if they are spam or not, to your favorite machine-learning algorithm which will automatically produce a classifi- cation or prediction rule. Given a new, unlabeled email, such a rule attempts to predict if it is spam or not. The goal, of course, is to generate a rule that makes the most accurate predictions possible on new test examples. 1 Building a highly accurate prediction rule is certainly a difficult task. -
Doctor of Philosophy
RICE UNIVERSITY By Randall Balestriero A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE Richard Baraniuk (Apr 28, 2021 06:57 ADT) Ankit B Patel (Apr 28, 2021 02:34 CDT) Ankit Patel Richard Baraniuk Behnam Azhang Behnam Azhang (Apr 26, 2021 18:34 CDT) Behnaam Aazhang Stephane Mallat Moshe Vardi Moshe Vardi (Apr 26, 2021 20:04 CDT) Albert Cohen (Apr 27, 2021 16:36 GMT+2) Moshe Vardi Albert Cohen HOUSTON, TEXAS April 2021 ABSTRACT Max-Affine Splines Insights Into Deep Learning by Randall Balestriero We build a rigorous bridge between deep networks (DNs) and approximation the- ory via spline functions and operators. Our key result is that a large class of DNs can be written as a composition of max-affine spline operators (MASOs), which provide a powerful portal through which to view and analyze their inner workings. For instance, conditioned on the spline partition region containing the input signal, the output of a MASO DN can be written as a simple affine transformation of the input. Studying the geometry of those regions allows to obtain novel insights into different regular- ization techniques, different layer configurations or different initialization schemes. Going further, this spline viewpoint allows to obtain precise geometric insights in various domains such as the characterization of the Deep Generative Networks's gen- erated manifold, the understanding of Deep Network pruning as a mean to simplify the DN input space partition or the relationship between different nonlinearities e.g. ReLU-Sigmoid Gated Linear Unit as simply corresponding to different MASO region membership inference algorithms.