Session II – Unit I – Fundamentals

Total Page:16

File Type:pdf, Size:1020Kb

Session II – Unit I – Fundamentals Tutor:- Prof. Avadhoot S. Joshi Subject:- Design & Analysis of Algorithms Session II Unit I - Fundamentals • Algorithm Design – II • Algorithm as a Technology • What kinds of problems are solved by algorithms? • Evolution of Algorithms • Timeline of Algorithms Algorithm Design – II Algorithm Design (Cntd.) Figure briefly shows a sequence of steps one typically goes through in designing and analyzing an algorithm. Figure: Algorithm design and analysis process. Algorithm Design (Cntd.) Understand the problem: Before designing an algorithm is to understand completely the problem given. Read the problem’s description carefully and ask questions if you have any doubts about the problem, do a few small examples by hand, think about special cases, and ask questions again if needed. There are a few types of problems that arise in computing applications quite often. If the problem in question is one of them, you might be able to use a known algorithm for solving it. If you have to choose among several available algorithms, it helps to understand how such an algorithm works and to know its strengths and weaknesses. But often you will not find a readily available algorithm and will have to design your own. An input to an algorithm specifies an instance of the problem the algorithm solves. It is very important to specify exactly the set of instances the algorithm needs to handle. Algorithm Design (Cntd.) Ascertaining the Capabilities of the Computational Device: After understanding the problem you need to ascertain the capabilities of the computational device the algorithm is intended for. The vast majority of algorithms in use today are still destined to be programmed for a computer closely resembling the von Neumann machine—a computer architecture outlined by the prominent Hungarian-American mathematician John von Neumann (1903–1957), in collaboration with A. Burks and H. Goldstine, in 1946. The essence of this architecture is captured by the so- called random-access machine (RAM). Its central assumption is that instructions are executed one after another, one operation at a time. Accordingly, algorithms designed to be executed on such machines are called sequential algorithms. Algorithm Design (Cntd.) Ascertaining the Capabilities of the Computational Device (Cntd.): The central assumption of the RAM model does not hold for some newer computers that can execute operations concurrently, i.e., in parallel. Algorithms that take advantage of this capability are called parallel algorithms. Speed and memory of a computer also play pivotal role depending on area where algorithm is going to be designed. For scientific work researchers do not bother for particular computers speed and memory, but if algorithm is going to be developed as practical tool the answer may depend on a problem you need to solve. In many situations you need not worry about a computer being too slow for the task because, even the “slow” computers of today are almost unimaginably fast. There are important problems, however, that are very complex by their nature, or have to process huge volumes of data, or deal with applications where the time is critical. In such situations, it is imperative to be aware of the speed and memory available on a particular computer system. Algorithm Design (Cntd.) Choosing between Exact and Approximate Problem Solving: The next principal decision is to choose between solving the problem exactly or solving it approximately. In the former case, an algorithm is called an exact algorithm; in the latter case, an algorithm is called an approximation algorithm. Why would one opt for an approximation algorithm? First, there are important problems that simply cannot be solved exactly for most of their instances. Second, available algorithms for solving a problem exactly can be unacceptably slow because of the problem’s intrinsic complexity. Third, an approximation algorithm can be a part of a more sophisticated algorithm that solves a problem exactly. Algorithm Design (Cntd.) Algorithm Design Techniques: An algorithm design technique (or “strategy” or “paradigm”) is a general approach to solving problems algorithmically that is applicable to a variety of problems from different areas of computing. There are basically 5 fundamental techniques which are used to design an algorithm efficiently: Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy Divide & - Divide & conquer technique is a top-down Binary search conquer approach to solve a problem. The algorithm Multiplication of two n-bits which follows divide and conquer technique numbers involves 3 steps: Quick Sort 1. Divide the original problem into a set of sub Heap Sort problems. Merge Sort 2. Conquer (or Solve) every sub-problem individually, recursive. 3. Combine the solutions of these sub problems to get the solution of original problem. Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy Greedy - Greedy technique is used to solve an optimization problem. Knapsack (fractional) Method - An Optimization problem is one in which, we are given a set Problem of input values, which are required to be either maximized or minimized (known as objective function) w. r. t. some Minimum cost Spanning constraints or conditions. tree - Greedy algorithm always makes the choice (greedy criteria) . Kruskal’s algorithm that looks best at the moment, to optimize a given objective function. That is, it makes a locally optimal . Prim’s algorithm choice in the hope that this choice will lead to a overall Single source shortest path globally optimal solution. problem - The greedy algorithm does not always guaranteed the optimal solution but it generally produces solutions that . Dijkstra’s algorithm are very close in value to the optimal. Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy Dynamic - Dynamic programming technique is similar to divide All pair shortest path- programmi and conquer approach. Both solve a problem by Floyed algorithm breaking it down into a several sub problems that can ng Chain matrix multiplication be solved recursively. The difference between the two is that in dynamic programming approach, the results Longest common obtained from solving smaller sub problems are reused subsequence (LCS) (by maintaining a table of results) in the calculation of 0/1 Knapsack Problem larger sub problems. Thus dynamic programming is a Traveling salesmen Bottom-up approach that begins by solving the smaller problem (TSP) sub-problems, saving these partial results, and then reusing them to solve larger sub-problems until the solution to the original problem is obtained. Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy - Reusing the results of sub-problems (by maintaining a table of results) is the major advantage of dynamic programming because it avoids the re-computations (computing results twice or more) of the same problem. Thus Dynamic programming approach takes much less time than naïve or straightforward methods, such as divide-and-conquer approach which solves problems in top-down method and having lots of re-computations. - The dynamic programming approach always gives a guarantee to get a optimal solution. Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy Backtrackin - The term “backtrack” was coined by American N-queen’s problem g mathematician D.H. Lehmer in the 1950s. Sum-of subset - Backtracking can be applied only for problems which admit the concept of a “partial candidate solution” and relatively quick test of whether it can possibly be completed to a valid solution. Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy - Backtrack algorithms try each possibility until they find the right one. It is a depth-first-search of the set of possible solutions. During the search, if an alternative doesn’t work, the search backtracks to the choice point, the place which presented different alternatives, and tries the next alternative. When the alternatives are exhausted, the search returns to the previous choice point and try the next alternative there. If there are no more choice points, the search fails. Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy Branch & - Branch-and-Bound (B&B) is a rather general Assignment problem Bound optimization technique that applies where the greedy Traveling salesmen method and dynamic programming fail. problem (TSP) - B&B design strategy is very similar to backtracking in that a state-space-tree is used to solve a problem. Branch and bound is a systematic method for solving optimization problems. However, it is much slower. Indeed, it often leads to exponential time complexities in the worst case. On the other hand, if applied carefully, it can lead to algorithms that run reasonably fast on average. Algorithm Design (Cntd.) Algorithm Design Techniques (Cntd.): Design Description Problems that follows strategy - The general idea of B&B is a BFS-like search for the optimal solution, but not all nodes get expanded (i.e., their children generated). Rather, a carefully selected criterion determines which node to expand and when, and another criterion tells the algorithm when an optimal solution has been found. - Branch and Bound (B&B)
Recommended publications
  • INSTITUTE for COMPUTATIONAL and BIOLOGICAL LEARNING (ICBL)
    ICBL (HANSON, GLUCK, VAPNIK) 1 August 20th 2003 Governor's Commission on Jobs & Economic Growth INSTITUTE FOR COMPUTATIONAL and BIOLOGICAL LEARNING (ICBL) PRIMARY PARTICIPANTS: Stephen José Hanson, Psych. Rutgers-Newark; Cog. Sci. Rutgers-NB, Info. Sci., NJIT; Advanced Imaging Center, UMDNJ (Principal Investigator and Co-Director) Mark A. Gluck, CMBN Rutgers-Newark (co-Principal Investigator and Co-Director) Vladimir Vapnik, NEC (co-Principal Investigator and Co-Director) We also include participants and contact personnel for other participating institutions including Rutgers NB-Piscataway, Rutgers-Camden, UMDNJ, NJIT, Princeton, NEC, ATT, Siemens Corporate Research, and Merck Pharmaceuticals (See attachments that follow this document.) PRIMARY OBJECTIVE: The Institute for Computational and Biological Learning (ICBL) will be an interdisciplinary center for research and training in the learning sciences, encompassing computational, biological,and psychological studies of systems that adapt, extract patterns from high complexity data and in general improve from experience. Core programs include learning theory, neuroinformatics, computational neuroscience of learning and memory, neural-network models, machine learning, human computer interaction and financial/economic modeling. The learning sciences is an emerging interdisciplinary technology, recently recognized by the National Science Foundation (NSF) as a national priority. The NSF announced this year a major multi-disciplinary initiative which will fund approximately five new national Learning Sciences Centers with budgets of $3M to $5M a year for up to 10 years, for a total commitment of up to $50,000,000 per center. As envisioned by NSF, these centers will be “large-scale, long-term Centers that will extend the frontiers of knowledge on learning and create the intellectual, organizational, and physical infrastructure needed for the long-term advancement of learning research.
    [Show full text]
  • From Al-Khwarizmi to Algorithm (71-74)
    Olympiads in Informatics, 2017, Vol. 11, Special Issue, 71–74 71 © 2017 IOI, Vilnius University DOI: 10.15388/ioi.2017.special.11 From Al-Khwarizmi to Algorithm Bahman MEHRI Sharif University of Technology, Iran e-mail: [email protected] Mohammad ibn Musa al-Khwarizmi (780–850), Latinized as Algoritmi, was a Persian mathematician, astronomer, and geographer during the Abbasid Caliphate, a scholar in the House of Wisdom in Baghdad. In the 12th century, Latin translations of his work on the Indian numerals introduced the decimal number system to the Western world. Al-Khwarizmi’s The Compendious Book on Calculation by Completion and Balancing resented the first systematic solu- tion of linear and quadratic equations in Arabic. He is often considered one of the fathers of algebra. Some words reflect the importance of al-Khwarizmi’s contributions to mathematics. “Algebra” (Fig. 1) is derived from al-jabr, one of the two operations he used to solve quadratic equations. Algorism and algorithm stem from Algoritmi, the Latin form of his name. Fig. 1. A page from al-Khwarizmi “Algebra”. 72 B. Mehri Few details of al-Khwarizmi’s life are known with certainty. He was born in a Per- sian family and Ibn al-Nadim gives his birthplace as Khwarazm in Greater Khorasan. Ibn al-Nadim’s Kitāb al-Fihrist includes a short biography on al-Khwarizmi together with a list of the books he wrote. Al-Khwārizmī accomplished most of his work in the period between 813 and 833 at the House of Wisdom in Baghdad. Al-Khwarizmi contributions to mathematics, geography, astronomy, and cartogra- phy established the basis for innovation in algebra and trigonometry.
    [Show full text]
  • A Priori Knowledge from Non-Examples
    A priori Knowledge from Non-Examples Diplomarbeit im Fach Bioinformatik vorgelegt am 29. März 2007 von Fabian Sinz Fakultät für Kognitions- und Informationswissenschaften Wilhelm-Schickard-Institut für Informatik der Universität Tübingen in Zusammenarbeit mit Max-Planck-Institut für biologische Kybernetik Tübingen Betreuer: Prof. Dr. Bernhard Schölkopf (MPI für biologische Kybernetik) Prof. Dr. Andreas Schilling (WSI für Informatik) Prof. Dr. Hanspeter Mallot (Biologische Fakultät) 1 Erklärung Die folgende Diplomarbeit wurde ausschließlich von mir (Fabian Sinz) erstellt. Es wurden keine weiteren Hilfmittel oder Quellen außer den Angegebenen benutzt. Tübingen, den 29. März 2007, Fabian Sinz Contents 1 Introduction 4 1.1 Foreword . 4 1.2 Notation . 5 1.3 Machine Learning . 7 1.3.1 Machine Learning . 7 1.3.2 Philosophy of Science in a Nutshell - About the Im- possibility to learn without Assumptions . 11 1.3.3 General Assumptions in Bayesian and Frequentist Learning . 14 1.3.4 Implicit prior Knowledge via additional Data . 17 1.4 Mathematical Tools . 18 1.4.1 Reproducing Kernel Hilbert Spaces . 18 1.5 Regularisation . 22 1.5.1 General regularisation . 22 1.5.2 Data-dependent Regularisation . 27 2 The Universum Algorithm 32 2.1 The Universum Idea . 32 2.1.1 VC Theory and Structural Risk Minimisation (SRM) in a Nutshell . 32 2.1.2 The original Universum Idea by Vapnik . 35 2.2 Implementing the Universum into SVMs . 37 2.2.1 Support Vector Machine Implementations of the Uni- versum . 38 2.2.1.1 Hinge Loss Universum . 38 2.2.1.2 Least Squares Universum . 46 2.2.1.3 Multiclass Universum .
    [Show full text]
  • The "Greatest European Mathematician of the Middle Ages"
    Who was Fibonacci? The "greatest European mathematician of the middle ages", his full name was Leonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the city with the famous Leaning Tower, about 1175 AD. Pisa was an important commercial town in its day and had links with many Mediterranean ports. Leonardo's father, Guglielmo Bonacci, was a kind of customs officer in the North African town of Bugia now called Bougie where wax candles were exported to France. They are still called "bougies" in French, but the town is a ruin today says D E Smith (see below). So Leonardo grew up with a North African education under the Moors and later travelled extensively around the Mediterranean coast. He would have met with many merchants and learned of their systems of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over all the others. D E Smith points out that another famous Italian - St Francis of Assisi (a nearby Italian town) - was also alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and died in 1226 (before Fibonacci's death commonly assumed to be around 1250). By the way, don't confuse Leonardo of Pisa with Leonardo da Vinci! Vinci was just a few miles from Pisa on the way to Florence, but Leonardo da Vinci was born in Vinci in 1452, about 200 years after the death of Leonardo of Pisa (Fibonacci). His names Fibonacci Leonardo of Pisa is now known as Fibonacci [pronounced fib-on-arch-ee] short for filius Bonacci.
    [Show full text]
  • 1 Introduction and Contents
    University of Padova - DEI Course “Introduction to Natural Language Processing”, Academic Year 2002-2003 Term paper Fast Matrix Multiplication PhD Student: Carlo Fantozzi, XVI ciclo 1 Introduction and Contents This term paper illustrates some results concerning the fast multiplication of n × n matrices: we use the adjective “fast” as a synonym of “in time asymptotically lower than n3”. This subject is relevant to natural language processing since, in 1975, Valiant showed [27] that Boolean matrix multiplication can be used to parse context-free grammars (or CFGs, for short): as a consequence, a fast boolean matrix multiplication algorithm yields a fast CFG parsing algorithm. Indeed, Valiant’s algorithm parses a string of length n in time proportional to TBOOL(n), i.e. the time required to multiply two n × n boolean matrices. Although impractical because of its high constants, Valiant’s algorithm is the asymptotically fastest CFG parsing solution known to date. A simpler (hence nearer to practicality) version of Valiant’s algorithm has been devised by Rytter [20]. One might hope to find a fast, practical parsing scheme which do not rely on matrix multiplica- tion: however, some results seem to suggest that this is a hard quest. Satta has demonstrated [21] that tree-adjoining grammar (TAG) parsing can be reduced to boolean matrix multiplication. Subsequently, Lee has proved [18] that any CFG parser running in time O gn3−, with g the size of the context-free grammar, can be converted into an O m3−/3 boolean matrix multiplication algorithm∗; the constants involved in the translation process are small. Since canonical parsing schemes exhibit a linear depen- dence on g, it can be reasonably stated that fast, practical CFG parsing algorithms can be translated into fast matrix multiplication algorithms.
    [Show full text]
  • An Evolutionary Approach for Sorting Algorithms
    ORIENTAL JOURNAL OF ISSN: 0974-6471 COMPUTER SCIENCE & TECHNOLOGY December 2014, An International Open Free Access, Peer Reviewed Research Journal Vol. 7, No. (3): Published By: Oriental Scientific Publishing Co., India. Pgs. 369-376 www.computerscijournal.org Root to Fruit (2): An Evolutionary Approach for Sorting Algorithms PRAMOD KADAM AND Sachin KADAM BVDU, IMED, Pune, India. (Received: November 10, 2014; Accepted: December 20, 2014) ABstract This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms (Root to Fruit (1): An Evolutionary Study of Sorting Problem) [1]and concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. Key words: Evolutionary study of sorting, History of sorting Early Sorting algorithms, list of inventors for sorting. IntroDUCTION name and their contribution may skipped from the study. Therefore readers have all the rights to In spite of plentiful literature and research extent this study with the valid proofs. Ultimately in sorting algorithmic domain there is mess our objective behind this research is very much found in documentation as far as credential clear, that to provide strength to the evolutionary concern2. Perhaps this problem found due to lack study of sorting algorithms and shift towards a good of coordination and unavailability of common knowledge base to preserve work of our forebear platform or knowledge base in the same domain. for upcoming generation. Otherwise coming Evolutionary study of sorting algorithm or sorting generation could receive hardly information about problem is foundation of futuristic knowledge sorting problems and syllabi may restrict with some base for sorting problem domain1.
    [Show full text]
  • History of Computer Science from Wikipedia, the Free Encyclopedia
    History of computer science From Wikipedia, the free encyclopedia The history of computer science began long before the modern discipline of computer science that emerged in the 20th century, and hinted at in the centuries prior. The progression, from mechanical inventions and mathematical theories towards the modern concepts and machines, formed a major academic field and the basis of a massive worldwide industry.[1] Contents 1 Early history 1.1 Binary logic 1.2 Birth of computer 2 Emergence of a discipline 2.1 Charles Babbage and Ada Lovelace 2.2 Alan Turing and the Turing Machine 2.3 Shannon and information theory 2.4 Wiener and cybernetics 2.5 John von Neumann and the von Neumann architecture 3 See also 4 Notes 5 Sources 6 Further reading 7 External links Early history The earliest known as tool for use in computation was the abacus, developed in period 2700–2300 BCE in Sumer . The Sumerians' abacus consisted of a table of successive columns which delimited the successive orders of magnitude of their sexagesimal number system.[2] Its original style of usage was by lines drawn in sand with pebbles . Abaci of a more modern design are still used as calculation tools today.[3] The Antikythera mechanism is believed to be the earliest known mechanical analog computer.[4] It was designed to calculate astronomical positions. It was discovered in 1901 in the Antikythera wreck off the Greek island of Antikythera, between Kythera and Crete, and has been dated to c. 100 BCE. Technological artifacts of similar complexity did not reappear until the 14th century, when mechanical astronomical clocks appeared in Europe.[5] Mechanical analog computing devices appeared a thousand years later in the medieval Islamic world.
    [Show full text]
  • Mathematics People
    Mathematics People Srinivas Receives TWAS Prize Strassen Awarded ACM Knuth in Mathematics Prize Vasudevan Srinivas of the Tata Institute of Fundamental Volker Strassen of the University of Konstanz has been Research, Mumbai, has been named the winner of the 2008 awarded the 2008 Knuth Prize of the Association for TWAS Prize in Mathematics, awarded by the Academy of Computing Machinery (ACM) Special Interest Group on Sciences for the Developing World (TWAS). He was hon- Algorithms and Computation Theory (SIGACT). He was ored “for his basic contributions to algebraic geometry honored for his contributions to the theory and practice that have helped deepen our understanding of cycles, of algorithm design. The award carries a cash prize of motives, and K-theory.” Srinivas will receive a cash prize US$5,000. of US$15,000 and will deliver a lecture at the academy’s According to the prize citation, “Strassen’s innovations twentieth general meeting, to be held in South Africa in enabled fast and efficient computer algorithms, the se- September 2009. quence of instructions that tells a computer how to solve a particular problem. His discoveries resulted in some of the —From a TWAS announcement most important algorithms used today on millions if not billions of computers around the world and fundamentally altered the field of cryptography, which uses secret codes Pujals Awarded ICTP/IMU to protect data from theft or alteration.” Ramanujan Prize His algorithms include fast matrix multiplication, inte- ger multiplication, and a test for the primality
    [Show full text]
  • The Fascinating Story Behind Our Mathematics
    The Fascinating Story Behind Our Mathematics Jimmie Lawson Louisiana State University Story of Mathematics – p. 1 Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance. Math was needed in developing branches of knowledge: astronomy, timekeeping, calendars, construction, surveying, navigation Math was interesting: In many ancient cultures (Egypt, Mesopotamia, India, China) mathematics became an independent subject, practiced by scribes and others. Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Story of Mathematics – p. 2 Math was needed in developing branches of knowledge: astronomy, timekeeping, calendars, construction, surveying, navigation Math was interesting: In many ancient cultures (Egypt, Mesopotamia, India, China) mathematics became an independent subject, practiced by scribes and others. Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance. Story of Mathematics – p. 2 Math was interesting: In many ancient cultures (Egypt, Mesopotamia, India, China) mathematics became an independent subject, practiced by scribes and others. Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance. Math was needed in developing branches of knowledge: astronomy, timekeeping, calendars, construction, surveying, navigation Story of Mathematics – p. 2 Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance.
    [Show full text]
  • Rationale of the Chakravala Process of Jayadeva and Bhaskara Ii
    HISTORIA MATHEMATICA 2 (1975) , 167-184 RATIONALE OF THE CHAKRAVALA PROCESS OF JAYADEVA AND BHASKARA II BY CLAS-OLOF SELENIUS UNIVERSITY OF UPPSALA SUMMARIES The old Indian chakravala method for solving the Bhaskara-Pell equation or varga-prakrti x 2- Dy 2 = 1 is investigated and explained in detail. Previous mis- conceptions are corrected, for example that chakravgla, the short cut method bhavana included, corresponds to the quick-method of Fermat. The chakravala process corresponds to a half-regular best approximating algorithm of minimal length which has several deep minimization properties. The periodically appearing quantities (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, etc.) are correctly understood only with the new theory. Den fornindiska metoden cakravala att l~sa Bhaskara- Pell-ekvationen eller varga-prakrti x 2 - Dy 2 = 1 detaljunders~ks och f~rklaras h~r. Tidigare missuppfatt- 0 ningar r~ttas, sasom att cakravala, genv~gsmetoden bhavana inbegripen, motsvarade Fermats snabbmetod. Cakravalaprocessen motsvarar en halvregelbunden b~st- approximerande algoritm av minimal l~ngd med flera djupt liggande minimeringsegenskaper. De periodvis upptr~dande storheterna (jyestha-m~la, kanistha-mula, ksepaka, kuttakara, os~) blir forstaellga0. 0 . f~rst genom den nya teorin. Die alte indische Methode cakrav~la zur Lbsung der Bhaskara-Pell-Gleichung oder varga-prakrti x 2 - Dy 2 = 1 wird hier im einzelnen untersucht und erkl~rt. Fr~here Missverst~ndnisse werden aufgekl~rt, z.B. dass cakrav~la, einschliesslich der Richtwegmethode bhavana, der Fermat- schen Schnellmethode entspreche. Der cakravala-Prozess entspricht einem halbregelm~ssigen bestapproximierenden Algorithmus von minimaler L~nge und mit mehreren tief- liegenden Minimierungseigenschaften. Die periodisch auftretenden Quantit~ten (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, usw.) werden erst durch die neue Theorie verst~ndlich.
    [Show full text]
  • IJR-1, Mathematics for All ... Syed Samsul Alam
    January 31, 2015 [IISRR-International Journal of Research ] MATHEMATICS FOR ALL AND FOREVER Prof. Syed Samsul Alam Former Vice-Chancellor Alaih University, Kolkata, India; Former Professor & Head, Department of Mathematics, IIT Kharagpur; Ch. Md Koya chair Professor, Mahatma Gandhi University, Kottayam, Kerala , Dr. S. N. Alam Assistant Professor, Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela, India This article briefly summarizes the journey of mathematics. The subject is expanding at a fast rate Abstract and it sometimes makes it essential to look back into the history of this marvelous subject. The pillars of this subject and their contributions have been briefly studied here. Since early civilization, mathematics has helped mankind solve very complicated problems. Mathematics has been a common language which has united mankind. Mathematics has been the heart of our education system right from the school level. Creating interest in this subject and making it friendlier to students’ right from early ages is essential. Understanding the subject as well as its history are both equally important. This article briefly discusses the ancient, the medieval, and the present age of mathematics and some notable mathematicians who belonged to these periods. Mathematics is the abstract study of different areas that include, but not limited to, numbers, 1.Introduction quantity, space, structure, and change. In other words, it is the science of structure, order, and relation that has evolved from elemental practices of counting, measuring, and describing the shapes of objects. Mathematicians seek out patterns and formulate new conjectures. They resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity.
    [Show full text]
  • Amortized Circuit Complexity, Formal Complexity Measures, and Catalytic Algorithms
    Electronic Colloquium on Computational Complexity, Report No. 35 (2021) Amortized Circuit Complexity, Formal Complexity Measures, and Catalytic Algorithms Robert Roberey Jeroen Zuiddamy McGill University Courant Institute, NYU [email protected] and U. of Amsterdam [email protected] March 12, 2021 Abstract We study the amortized circuit complexity of boolean functions. Given a circuit model F and a boolean function f : f0; 1gn ! f0; 1g, the F-amortized circuit complexity is defined to be the size of the smallest circuit that outputs m copies of f (evaluated on the same input), divided by m, as m ! 1. We prove a general duality theorem that characterizes the amortized circuit complexity in terms of “formal complexity measures”. More precisely, we prove that the amortized circuit complexity in any circuit model composed out of gates from a finite set is equal to the pointwise maximum of the family of “formal complexity measures” associated with F. Our duality theorem captures many of the formal complexity measures that have been previously studied in the literature for proving lower bounds (such as formula complexity measures, submodular complexity measures, and branching program complexity measures), and thus gives a characterization of formal complexity measures in terms of circuit complexity. We also introduce and investigate a related notion of catalytic circuit complexity, which we show is “intermediate” between amortized circuit complexity and standard circuit complexity, and which we also characterize (now, as the best integer solution to a linear program). Finally, using our new duality theorem as a guide, we strengthen the known upper bounds for non-uniform catalytic space, introduced by Buhrman et.
    [Show full text]