<<

Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

An introduction to the biotas of and its Arctic territories

BENJAMIN P. KEAR1*, JOHAN LINDGREN2, JØRN H. HURUM3,4, JESPER MILA` N5,6 & VIVI VAJDA2,7 1Museum of Evolution, Uppsala University, Norbyva¨gen 16, 752 36 Uppsala, 2Department of Geology, Lund University, So¨lvegatan 12, 223 62 Lund, Sweden 3Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway 4The University Centre in Svalbard, UNIS, Postboks 156, 9171 Longyearbyen, Norway 5Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-3640 Faxe, Denmark 6Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark 7Department of Palaeobiology, Swedish Museum of Natural History, Postboks 50007, SE-104 05 Stockholm, Sweden *Corresponding author (e-mail: [email protected])

Abstract: The Mesozoic biotas of Scandinavia have been studied for nearly two centuries. How- ever, the last 15 have witnessed an explosive advance in research, most notably on the richly fossiliferous (Olenekian–Carnian) and () Lagersta¨tten of the Norwe- gian Arctic Svalbard archipelago, Late () Basin and Vomb Trough of Ska˚ne in southern Sweden, and the UNESCO heritage site at Stevns Klint in Denmark – the latter constituting one of the most complete Cretaceous–Palaeogene (–Danian) boundary sections known globally. Other internationally significant deposits include earliest (Induan) and latest Triassic (Norian–Rhaetian) strata from the Danish autonomous territory of Greenland, and the (Sinemurian–Pliensbachian) to () rocks of southern Sweden and the Danish Baltic island of Bornholm, respectively. Marine palaeo- communities are especially well documented, and comprise prolific benthic macroinvertebrates, together with pelagic , chondrichthyans, actinopterygians and aquatic amniotes (ich- thyopterygians, sauropterygians and mosasauroids). Terrestrial plant remains (lycophytes, spheno- phytes, , pteridosperms, cycadophytes, bennettitaleans and ginkgoes), including exceptionally well-preserved carbonized flowers, are also world famous, and are occasionally associated with faunal traces such as temnospondyl bones and dinosaurian footprints. While this collec- tive documented record is substantial, much still awaits discovery. Thus, Scandinavia and its Arctic territories represent some of the most exciting prospects for future insights into the spectacular his- tory of Mesozoic life and environments.

Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.

The Mesozoic record of Scandinavia and its of palaeontological research in Europe (Rudwick Arctic territories of Greenland and Svalbard span 2008; Evans 2010), and yet many key biotas and the dawn of the Triassic some 252 myr ago (Wordie bioevents from this continent remain comparatively Creek Formation, East Greenland: Nielsen 1935; underexplored. Scandinavia and its Arctic territories Bendix-Almgreen 1976; Looy et al. 2001; Stem- are therefore extremely important because they merik et al. 2001; Bjerager et al. 2006) through to encompass not only a Boreal mid–high palaeolati- the terminal Cretaceous–Palaeogene boundary tude setting (Surlyk 1990; Ditchfield 1997), but 66 myr ago (Møns Klint Formation, Denmark: have also witnessed a burgeoning of novel discover- Damholt & Surlyk 2012; Surlyk et al. 2013; Adolfs- ies that reveal significant insights into the global sen & Ward 2014; Hansen & Surlyk 2014). This spectrum of Mesozoic organisms, ecosystems and interval is marked by the nascence of modern environments. faunal and floral biodiversity, and culminated in This Special Publication aims to encapsulate one of the most cataclysmic extinction events in these latest palaeontological advances, and aug- Earth history. Much of our knowledge about the ments them with topical synopses from leading spe- Mesozoic world has derived from the long tradition cialists in the field. Our introduction is intended to

From:Kear, B. P., Lindgren, J., Hurum, J. H., Mila`n,J.&Vajda, V. (eds) 2016. Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434, 1–14. First published online April 20, 2016, http://doi.org/10.1144/SP434.18 # 2016 The Author(s). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

2 B. P. KEAR ET AL. provide additional contextual background, and, in 2015 and references therein), and coincide with particular, emphasizes the broad trends in floral lush vegetation comprising ginkgoes, cycads and successions and the distribution of faunal finds. bennettites, lycophytes, sphenophytes, and ferns Together, these highlight Scandinavia and its Arctic (Vajda et al. 2013). Fossilized fungi and bacterial territories as a regional centre for Mesozoic biotic traces have also been reported from Hopen Island radiations, and a spectacular area for future field in the Svalbard archipelago (McLoughlin & exploration with landmark research potential. Strullu-Derrien 2015). A bone fragment of a sauropodomorph was also recovered from Institutional abbreviations a drill core in the North Sea 2256 m below the seabed (Hurum et al. 2006a). LO, Department of Geology, Lund University, Earliest Triassic (Induan–Olenekian) marine Lund, Sweden; MGUH, Natural History Museum ecosystems are recognized from the Vardebukta of Denmark, Copenhagen, Denmark; OESM, Østs- Formation on Svalbard (Vigran et al. 2014), and jællands Museum, Store Heddinge, Denmark; most prolifically from the world-famous Wordie PMO, University of Oslo Natural History Museum Creek Formation in East Greenland (Fig. 1a–e). (Palaeontological Collection), Oslo, Norway; PMU, These deposits incorporate bivalves, gastropods Palaeontology Collection, Museum of Evolution, and ammonoids, as well as actinopterygian and coe- Uppsala University, Uppsala, Sweden. lacanth fishes (Spath 1932; Nielsen 1942, 1949; Donovan 1964) that span the –Triassic boundary (Twitchett et al. 2001; Bjerager et al. A synthesis of Scandinavian Mesozoic biotas 2006). Potentially anadromous Early Triassic tem- The Triassic nospondyls (primarily tematosaurids, rhytidostians and capitosaurians) have also been described, with The long history of Scandinavia’s terrestrial biotas approximately equivalent occurrences found on is charted through the palynological record, which Spitsbergen and other islands in Svalbard (Sa¨ve- manifests liverworts as the seminal colonizers of So¨derbergh 1936; Cox & Smith 1973; reviewed by continental ecosystems in the early Palaeozoic Kear et al. 2015): these are associated with actino- (Late ) of southern Sweden (Badawy pterygian fishes (Fig. 1f) and hybodontiform et al. 2014). Increasing abundance and diversity of (Stensio¨ 1921, 1925; Blazejowski et al. 2013). bryophytes and vascular plants occurred throughout Globally renowned Triassic marine amniote the and in Ska˚ne (Mehlqvist et al. were recovered from Spitsbergen during 2015) and Gotland (Hagstro¨m 1997), with the gene- the Nordenskio¨ld expeditions of 1864 and 1868 sis of characteristic Mesozoic floras around the (Hulke 1873). More complete material was subse- Permian–Triassic boundary in Greenland, Svalbard quently collected by Swedish scientists in 1908 and the Oslo Rift: these collectively indicate turn- and 1909 (Wiman 1910, 1916a, b, 1928, 1933), over of regional biomes coincident with increasing and constitutes a diverse assemblage of ichthyop- aridity (Bercovici et al. 2015). The Permian–Trias- terygians (Fig. 1g), including the phylogenetically sic extinction event is otherwise expressed by the important basal taxon Grippia longirostris (Max- disappearance of dominant hygrophilous Cordaites well & Kear 2013). Isolated pistosaurid saurop- (which equate to gigantopterids in Cathaysia and terygian remains have also been discovered (Kear glossopterids in Gondwana) and their replacement & Maxwell 2013), and Hurum et al. (2014) docu- by emergent seed plants (Anderson et al. 1999; mented Triassic ichthyosaurian material from McLoughlin 2011). Edgeøya (Vigran et al. 2014). The classic The coeval chronicle of Triassic terrestrial successions of Wiman (1910) are, however, still faunas is not well represented until the Norian– used to subdivide the horizons on Spitsbergen Rhaetian of the Fleming Fjord Formation in Jame- (see Maxwell & Kear 2013): the lithostratigraphi- son Land, East Greenland (Klein et al. 2015; cal work of Mørk et al. (1999), equating the Mila`n et al. 2015). Here, body fossils and foot- actinopterygian-andtemnospondyl-dominated‘Fish prints evidence various dinosaurian taxa, especially Niveau’ to the lower Olenekian Lusitaniadalen sauropodomorphs, together with plagiosaurid and Member of the Vikinghøgda Formation; the ‘Grip- capitosaurian temnospondyl , rare rham- pia Niveau’ and ‘Lower Saurian Niveau’ – both phorhynchoid pterosaurians, and early mammali- representing sequential components of the Late forms (e.g. Bendix-Almgreen 1976; Jenkins et al. Olenekian–Anisian Vendomdalen Member of the 1994; Mila`n et al. 2012a; Sulej et al. 2014; Clem- Vikinghøgda Formation; and derived mixosaurid mensen et al. 2015; Hansen et al. 2015; Klein and shastasaurid ichthyosaurians from the ‘Upper et al. 2015). Fragmentary Late Triassic (Carnian– Saurian Niveau’ characterizing the Landinian Blan- Rhaetian) temnospondyls are likewise known from knuten Member of the upper Botneheia Formation both Svalbard and southern Sweden (Kear et al. and the Carnian Tschermakfjellet Formation. Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION 3

Fig. 1. Scandinavian Triassic localities and fossils. (a) Earliest Triassic (Induan–Olenekian) strata of the Wordie Creek Formation at Kap Stosch in East Greenland (photograph: Benjamin Kear); (b) actinopterygian fishes Bobastrania groenlandica (PMU 29041) and (c) Australosomus kochi (PMU 29036); (d) pectinoid bivalve Claraia (PMU 29004); and (e) ceratitid ammonoid Ophiceras (PMU 29145). Middle Triassic (Anisian–Landinian) vertebrate remains from Spitsbergen: (f) skull of the actinopterygian Saurichthys elongatus (PMU 24010a); and (g) skull of the early ichthyopterygian Phalarodon (PMU 24577). Scale bars are 20 mm in (c) and (e), and 30 mm in (b), (d), (f) and (g).

The Jurassic Ricciisporites-producing plants) by the Hettangian ‘Thaumatopteris flora’ (Harris 1931), which was The Triassic–Jurassic transition is marked by dominated by ferns, Cheirolepidaceae, Pinaceae and extinctions coincident with emissions from the new groups of cycadophytes (Vajda et al. 2013). Central Atlantic Magmatic Province (Sha et al. Compatible earliest Jurassic strata are exposed in 2015). In the Scandinavian territories, this is evi- southern Sweden and on the Danish Baltic island denced by successions from East Greenland of Bornholm (Vajda & Wigforss-Lange 2009). (Klein et al. 2015). These reveal an abrupt replace- Ornithopod and potential thyreophoran footprints ment of the Rhaetian ‘Lepidopteris flora’ (typified (Gierlin´ski & Ahlberg 1994; Mila`n & Gierlin´ski by seed ferns, Taxodiaceae and the enigmatic 2004), together with isolated dinosaurian vertebrae Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

4 B. P. KEAR ET AL.

(Bo¨lau 1954), have been described from the Rhae- University of Oslo (2004–12) has correlated this tian–Hettangian Ho¨gana¨s Formation of the Ho¨ga- material with the late Tithonian Slottsmøya na¨s Basin in southern Sweden. Member of the uppermost Agardhfjellet Formation Intense Jurassic volcanism, today revealed by (Hurum et al. 2012) (Fig. 2c). Since then, numerous volcanic necks in southern Sweden (Bergelin 2009), plesiosauroid and large pliosaurid taxa, as well as created lahar deposits that preserve plant remains ophthalmosaurid ichthyosaurians (Fig. 2d), have in exceptional detail, even including visible cell been identified (Knutsen et al. 2012a, b, c, d; Druc- nuclei (Bomfleur et al. 2014). More recent excava- kenmiller et al. 2012; Roberts et al. 2014). Rich tions in similar sediments overlying the Sinemur- ammonite assemblages (Wierzbowski et al. 2011) ian–Pliensbachian Ho¨o¨r have produced (Fig. 2e) and methane seep horizons have further wood with growth increments, permitting revealed a diverse ecosystem of bivalves and echi- reconstruction of palaeoclimate, and pollen assem- noderms (Hryniewicz et al. 2014 and references blages that evince the vegetative community (Vajda therein). Delsett et al. (2015) reviewed this cur- et al. 2016). rent record in the context of its preservation and The Early– outcrops on Born- geological setting. holm are situated within a complex fault block of the NW–SE-trending Sorgenfrei–Tornquist Zone The Cretaceous (Gravesen 2009). The stratigraphically oldest finds occur in the Hettangian Sose Bugt Member of the The terrestrial Jurassic–Cretaceous transition is dis- Rønne Formation, and comprise deformation struc- tinguished at Eriksdal in Ska˚ne, southern Sweden tures interpreted as dinosaurian tracks (Clemmensen (Vajda & Wigforss-Lange 2006). This time frame et al. 2014). Associated organic-rich beds and abun- marks the nascence of angiosperms, the oldest Scan- dant plant material otherwise infer a warm and dinavian pollen records of which occur in the humid palaeoenvironment (Petersen et al. 2003). Hauterivian Nytorp Sand (Vajda 2001; Vajda & The Pliensbachian marginal marine Hasle Wigforss-Lange 2006). Latest Jurassic–earliest Formation on Bornholm (Fig. 2a) has produced Cretaceous plant fossils, bivalves, ammonites and macroinvertebrates, as well as hybodontiform and an ophthalmosaurid ichthyosaurian skeleton are neosleachian remains, together with rhoma- known from Andøya island in northern Norway leosaurid and plesiosauroid plesiosaurians (Surlyk (Norborg & Wulff-Pedersen 1997; Norborg et al. & Noe-Nygaard 1986; Rees 1998; Mila`n & Bonde 1997). Early Cretaceous strata are also exposed on 2001; Bonde 2004, 2012; Donovan & Surlyk 2003; Bornholm, where the Berriasian Rabekke, Robbe- Smith 2008). Recently, a small theropod footprint dale and Jydegaard formations represent an was also found in horizons subject to periodic interlinked barrier spit and lagoonal complex subaerial exposure (Mila`n & Surlyk 2015). In addi- (Noe-Nygaard & Surlyk 1988). These rocks crop tion, enigmatic Pliensbachian marine amniotes out along the coastal cliffs east of Arnager have been reported from East Greenland (Bendix- (Gravesen 2009), with the Rabekke Formation Almgreen 1976), and Toarcian marine amniote having produced a prolific bone-bed assemblage of and dinosaurian bones and teeth were recognized atoposaurid, bernissartiid and goniopholidid cro- from Scandinavian erratics transported to northern codyliforms (Schwarz-Wings et al. 2009), actino- Germany during Pleistocene glaciations (Sachs pterygian fishes, urodelan and anuran amphibians, et al. 2016). indeterminate and lepidosaurians, dromaeo- The Bajocian–Bathonian Baga˚ Formation saurid and possible avian theropods, and a single exposed in an abandoned clay pit on the Bornholm of the multituberculate mammal Sunnyodon coast between Hasle and Rønne has yielded sauro- (Lindgren et al. 2004, 2008; Rees et al. 2005). A pod, thyreophoran and theropod footprints (Mila`n trample ground with abundant large dinosaurian & Bromley 2005; Mila`n 2011) (Fig. 2b). These tracks (up to 700 mm in length) and possible lung- occur in conjunction with well-preserved , coni- fish aestivation burrows is also evident in overlying fer and ginkgo fossils (Bartholin 1892; Gry 1969; beds (Surlyk et al. 2008). Koppelhus & Nielsen 1994; Mehlqvist et al. 2009). The uppermost horizons of the Jydegaard (Kimmeridgian) plesiosaurians Formation likewise hosts a diverse range of hybo- have been found on Milne Land in Greenland dontiform sharks and bony fish, including the lepi- (Bendix-Almgreen 1976; Smith 2007), as well as sosteiform Lepidotes, amioids, pycnodonts and on Spitsbergen, where both plesiosaurian vertebrae stem : these occur in conjunction with (Wiman 1914) and articulated skeletons (Kear & unidentified turtles, the neosuchian crocodylomorph Maxwell 2013) were recovered with ichthyosaurian Pholidosaurus and a scincomorph (Bonde remains that have not yet been formally described. 2004, 2012). Finally, isolated teeth of a dromaeo- Subsequent systematic exploration of the Spitsber- saurid and possible juvenile sauropod (Bonde & gen Jurassic outcrops by field teams from the Christiansen 2003; Christiansen & Bonde 2003), Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION 5

Fig. 2. Scandinavian Jurassic localities and fossils. (a) Early Jurassic (Pliensbachian) Hasle Formation outcrops on the Danish Baltic island of Bornholm (photograph: Jesper Mila`n). (b) Theropod footprint (MGUH 29290) on a sandstone slab from the Middle Jurassic (Bajocian–Bathonian) Baga˚ Formation of Bornholm (photograph: Jesper Mila`n). (c) Late Jurassic (late Tithonian) Slottsmøya Member of the uppermost Agardhfjellet Formation on Spistbergen in the Svalbard archipelago (photograph: Jørn Hurum). (d) Articulated skeleton of the ophthalmosaurid ichthyosaurian Cryopterygius kristiansenae (PMO 214.578) as displayed at the University of Oslo Natural History Museum. (e) The ammonite Dorsoplanites exposed in rocks of the Slottsmøya Member on Spistbergen (photograph: Hans Arne Nakrem). The scale bar is 500 mm. vertebrate coprolites (Mila`n et al. 2012a, b), and to elucidate Boreal high-latitude dinosaurian as- mass accumulations of non-marine bivalves and semblage composition in Fennoscandia during the gastropods have been reported (Noe-Nygaard Early Cretaceous (Gangloff 2012; Hurum et al. et al. 1987; Noe-Nygaard & Surlyk 1988). 2016a). –Aptian ornithopod tracks are known A potential avian femur was recently reported from the Festningen Sandstone Member of the from the Albian of Spitsbergen (Hurum et al. Helvetiafjellet Formation on Spitsbergen (Hurum 2016b), and abundant plant fossils are recognized et al. 2006b). These were first published in the from the Nuusuaq Basin in central-west Greenland 1960s (Lapparent 1960, 1962), and have been used (Heer 1883; Koch 1964; Pedersen 1968; Boyd Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

6 B. P. KEAR ET AL.

1992). This region further exposes a substantial et al. 2010; Sachs et al. 2015), the dyrosaurid croc- marine section (Dam et al. 2009) with diverse odylian Aigialosuchus villandensis (Persson 1959), Albian–Maastrichtian faunas comprising bivalves and aquatic hesperornithiform (Rees & (including one of the world’s largest inoceramids Lindgren 2005). Terrestrial non-avian dinosaurians, measuring 1.78 m), gastropods, decapod crusta- represented by neoceratopsians, ornithopods and a ceans, , bryozoans, , sponges possible theropod (Lindgren et al. 2007; Poropat (Floris 1967, 1972; Collins & Wienberg Rasmussen et al. 2015), inhabited island archipelagos (Surlyk 1992), abundant pelagic belemnites, ammonites and & Christensen 1974), along with a mixed flora low- actinopterygian fish (Birkelund 1956, 1965; Bendix- land of angiosperms (Debeya) and indi- Almgreen 1969; Kennedy et al. 1999). The Wendel cated by leaves and pollen from coeval sediments Hav Basin in NE Greenland (Stemmerik et al. in the Vomb Trough (Halamski et al. 2016). 1998; Alsen 2007) similarly produces occasional Lindgren (2004) recorded mosasaurid teeth and Cretaceous ammonites and plesiosaurian remains bones from late Campanian and earliest Maastrich- (Bruhn 1999; Mila`n 2009). tian marine strata in Ska˚ne, together with a virtually The Cenomanian marine Arnager Greensand intact gavialoid crocodilian skull (Fig. 3c) with Formation on the west coast of Bornholm represents associated postcranial elements of Thoracosaurus the earliest part of the Scandinavian Late Creta- scanicus (Troedsson 1924; reassigned to the Creta- ceous. The representative fauna comprises ammon- ceous–Palaeogene species T. macrorhyncus by ites, belemnites, bivalves, gastropods, brachiopods Brochu 2004) from the marine lower Paleocene and foraminferans, together with abundant inver- (late–middle Danian) of Annetorp near Malmo¨ in tebrate burrow traces and isolated shark teeth SW Sweden (Mila`n et al. 2010). Latest Cretaceous (Kennedy et al. 1981; Larsson et al. 2000). The fluvial and marine successions are also known overlying Conacian Arnager Formation from the Kangerlussuaq Basin of SE Greenland also preserves sponges, ammonites, belemnites (Larsen et al. 2001). These are, as yet, incompletely and large numbers of bivalves, including pectinids documented but manifest ammonites, belemnites and inoceramids (Ravn 1916, 1925; Noe-Nygaard and bivalves, invertebrate trace fossils, and wood & Surlyk 1985; Kennedy & Christensen 1991; Tro¨- and leaf imprints (Larsen et al. 1999, 2001). Palyno- ger & Christensen 1991). The Bavneodde Green- logical studies have also been undertaken on sand Formation, which constitutes the youngest latest Maastrichtian units in Greenland (Nøhr- Mesozoic unit on Bornholm, contains abundant bel- Hansen 2012) and the North Sea (Rasmussen & emnites, bivalves, gastropods and brachiopods (Sur- Sheldon 2015). lyk 2006). Undoubtedly, the most famous Scandinavian lat- Charcoalified flowers from late and/ est Maastrichtian–Danian boundary section is or early Campanian fluvio-lacustrine argillaceous exposed along the coastal cliffs at the Stevns Klint clays in the Kristianstad Basin of Ska˚ne in southern UNESCO World Heritage site in eastern Denmark Sweden are world renowned for their assemblage (Fig. 3d). Extensive exposures of Maastrictian completeness and remarkable preservation (Skarby chalk also occur on the adjacent islands of Møn 1968; Friis et al. 2011). However, it is the highly and Falster. Collectively, these outcrops form the fossiliferous early Campanian marine succession Møns Klint Formation, which has yielded a profuse (Fig. 3a), especially within the restricted Belemnel- marine fauna of approximately 450 invertebrate locamax mammillatus belemnite zone (Christensen species (Damholt & Surlyk 2012; Hansen & Surlyk 1975), that initiated Mesozoic research in Sweden 2014) (Fig. 3e, f), in addition to an abundant during the nineteenth (e.g. Nilsson 1827, 1836, ichnofauna (Bromley & Ekdale 1984; Ekdale & 1857; Hisinger 1837; Schro¨der 1885; Lundgren Bromley 1984), coprolites (Mila`n et al. 2015), and 1888) and twentieth centuries (Wiman 1916c; vertebrate body remains representing 31 identifia- Troedsson 1954; Persson 1959, 1962, 1963, 1967). ble chondrichthyan species (Adolfssen & Ward The Kristianstad Basin Campanian fauna (see Sør- 2014) actinopterygians (Bonde et al. 2008) and ensen et al. 2013 for the list) represents a distinctive marine amniotes, including mosasaurids (Lindgren rocky shore benthic invertebrate community (Surlyk & Jagt 2005), chelonioid sea turtles (Karl & Lindow & Sørensen 2010; Einarsson et al. 2016), coexist- 2009) and gavialoid crocodylians (Gravesen & ing with actinopterygian fish, sharks, rays and Jakobsen 2012). chimaeroids (Siverson 1992; Bazzi et al. 2015; Siversson et al. 2015), chelonioid and trionychid turtles (Persson 1959; Scheyer et al. 2012) (Fig. Future directions for research 3b), various mosasaurid (e.g. Persson 1959; Lindgren & Siverson 2002, 2004; Lindgren 2004), Mesozoic research has a long history in Scandinavia elasmosaurid and polycotylid plesiosaurians (e.g. that has contributed to the development of palaeon- Persson 1959, 1962, 1963, 1967, 1990; Einarsson tology as a modern science (Ebbestad 2016). This Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION 7

Fig. 3. Scandinavian Cretaceous localities and fossils. (a) (early Campanian) deposits at Ullstorp in the Kristianstad Basin of southern Sweden (photograph: Vivi Vajda). (b) Chelonioid sea carapace (LO 3834t) from Maltesholm. (c) Computed tomography (CT) rendering of the skull and mandible of the Cretaceous–Danian gavialoid Thoracosaurus macrorhyncus (image: Johan Lindgren and Jesper Mila`n). (d) Cretaceous–Palaeogene boundary (Maastrichtian–Danian) sequence of the Møns Klint and Rødvig formations, together with the Bryozoan Limestone of the Stevns Klint Formation at Stevns Klint in Denmark (photograph: Jesper Mila`n). (e) Echinoid Tylocidaris baltica (OESM 10047-1027). (f) Siliceous sponges (OESM 10047-0973 and OESM 10047-072). Scale bars are 50 mm in (b), 200 mm in (c), and 30 mm in (e) and (f). proud tradition continues to this day, with dynamic more novel data than ever before. Aspects of this international collaborations and cutting-edge infra- rapidly expanding work are highlighted in this Spe- structure facilitating innovative approaches and cial Publications volume, which we hope will intensive exploration of its unique fossil resources. inspire new lines of inquiry. Indeed, a number of In particular, work undertaken in the remote Arctic key areas are already attracting attention, such as regions of Svalbard and Greenland has garnered the Triassic of Greenland, Svalbard and southern popular appeal, yet continued investigations into Sweden, and the Cretaceous–Palaeogene transi- the well-documented localities of southern Sweden tion in Denmark. The rapid progress of these stud- and Denmark have, over the last 15 years, generated ies bodes exciting potential for the future, with Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

8 B. P. KEAR ET AL.

Scandinavia and its Arctic territories likely to reveal Bjerager, M., Seidler, L., Stemmerik,L.&Surlyk,F. further significant discoveries that will have a major 2006. Ammonoid stratigraphy and sedimentary evolu- impact on the global perspective of Mesozoic biotas tion across the Permian–Triassic boundary in East Greenland. Geological Magazine, 143, 635–656. and bioevents. Blazejowski Duffin et al Many have contributed to the successful com- , B., , C.J. . 2013. Saurichthys (Pisces, ) teeth from the Lower Triassic pletion of this work. However, foremost are the of Spitsbergen, with comments on their stable isotope authors of the constituent papers, all of whom gen- composition (13C and 180) and X-ray microtomogra- erously gave of their knowledge, time and support. phy). Polish Polar Research, 34, 23–38. The Geological Society of London Publishing Bo¨lau, E. 1954. The first finds of dinosaurian skeletal House also skilfully handled production of the vol- remains in the Rhaetic–Liassic of N.W. . ume and ensured its timely completion. We extend GFF, 76, 501–503. our deepest thanks to all. Bomfleur, B., McLoughlin,S.&Vajda, V. 2014. Fos- silized nuclei and chromosomes reveal 180 million years of genomic stasis in Royal Ferns. Science, 343, References 1376–1377. Bonde, N. 2004. An Early Cretaceous (Ryazanian) fauna Adolfssen, J.S. & Ward, D.J. 2014. Crossing the boun- of ‘Purbeck–Wealden’ type at Robbedale, Bornholm, dary: an elasmobranch fauna from Stevns Klint, Den- Denmark. In: Arratia,G.&Tintori, A. (eds) mark. Palaeontology, 57, 591–629. Mesozoic Fishes 3 – Systematics, Palaeoenvironments Alsen, P. 2007. The Early Cretaceous (Late Ryazanian– and Biodiversity. Dr. Friedrich Pfeil, Munich, Early Hauterivian) ammonite fauna of North-East 507–528. Greenland: taxonomy, biostratigraphy, and biogeogra- Bonde, N. 2012. Danish : a review. In: Gode- phy. Fossils and Strata, 53, 1–229. froit, P. (ed.) Bernissart Dinosaurs and Early Creta- Anderson, J.M., Anderson, H.M. et al. 1999. Patterns ceous Terrestrial Ecosystems. Indiana University of Gondwana plant colonisation and diversification. Press, Bloomington, IN, 434–451. Journal of African Earth Sciences, 28, 145–167. Bonde,N.&Christiansen, P. 2003. New dinosaurs from Badawy, A.S., Mehlqvist, K., Vajda, V., Ahlberg,P.& Denmark. Comptes Rendus Palevol, 2, 13–26. Calner, M. 2014. Late Ordovician (Katian) spores in Bonde, N., Andersen, S., Hald,N.&Jakobsen, S.L. Sweden – oldest land plant remains from Baltica. 2008. Danekræ – Danmarks bedste fossiler. Gylden- GFF, 136, 16–21. dal, Copenhagen. Bartholin, C.T. 1892. Nogle i den bornholmske jurafor- Boyd, A. 1992. Revision of the Late Cretaceous Pautuˆt mation forekommende planteforsteninger. Botanisk Flora from West Greenland: Gymnospermopsida Tidsskrift, 18, 12–28. (Cycadales, Cycadeoidales, Caytoniales, Ginkgoales, Bazzi, M., Einarsson,E.&Kear, B.P. 2015. Late Coniferales). Palaeontographica B, 225, 105–172. Cretaceous (Campanian) actinopterygian fishes from Brochu, C.A. 2004. A new Late Cretaceous gavialoid the Kristianstad Basin of southern Sweden. In: crocodylian from eastern North America and the phy- Kear, B.P., Lindgren, J., Hurum, J.H., Mila`n,J. logenetic relationships of thoracosaurs. Journal of Ver- & Vajda, V. (eds) Mesozoic Biotas of Scandinavia tebrate Paleontology, 24, 610–633. and Its Arctic Territories. Geological Society, Bromley, R.G. & Ekdale, A.A. 1984. pres- London, Special Publications, 434. First published ervation in flint in the European Chalk. Journal of online December 21, 2015, http://doi.org/10.1144/ Paleontology, 58, 298–311. SP434.5 Bruhn, R. 1999. Plesiosaurer og andet godtfolk pa˚ Nord- Bendix-Almgreen, S.E. 1969. Notes on the Upper Creta- grønland. Varv, 1999, 109–112. ceous and Lower Tertiary fish faunas of northern West Christensen, W.K. 1975. Upper Cretaceous belemnites Greenland. Meddelelser fra Dansk Geologisk Foren- from the Kristianstad area in Scania. Fossils and ing, 19, 204–217. Strata, 7, 1–69. Bendix-Almgreen, S.E. 1976. Palaeovertebrate faunas of Christiansen,P.&Bonde, N. 2003. The first Greenland. In: Escher,A.&Watt, W.S. (eds) Geol- from Denmark. Neues Jahrbuch fu¨r Geologie und Pal- ogy of Greenland. Geological Survey of Greenland, a¨ontologie Abhandlungen, 227, 287–299. Copenhagen, 536–573. Clemmensen, L.B., Mila`n, J., Pedersen, G.K., Johan- Bercovici, Cui, Y., Forel, M.-B., Yu,J.&Vajda,V. nesen, A.B. & Larsen, C. 2014. Dinosaur tracks in 2015. Terrestrial paleoenvironment characterization Lower Jurassic coastal plain sediments (Sose Bugt across he Permian–Triassic boundary in South Member, Rønne Formation) on Bornholm, Denmark. China. Journal of Asian Earth Sciences, 98, 225–246. Lethaia, 47, 485–493. Bergelin , I. 2009. Jurassic volcanism in Ska˚ne, southern Clemmensen, L.B., Mila`n,J.et al. 2015. The Sweden, and its relation to coeval regional and global vertebrate-bearing Late Triassic Fleming Fjord For- events. GFF, 131, 165–175. mation of central East Greenland revisited: stratigra- Birkelund, T. 1956. Upper Cretaceous belemnites from phy, palaeoclimate and new palaeontological data. West Greenland. Meddelelser om Grønland, 137, In: Kear, B.P., Lindgren, J., Hurum, J.H., Mila`n, 1–28. J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia Birkelund, T. 1965. Ammonites from the Upper Creta- and its Arctic Territories. Geological Society, London, ceous of West Greenland. Meddelelser om Grønland, Special Publications, 434. First published online 179, 1–192. December 16, 2015, http://doi.org/10.1144/SP434.3 Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION 9

Collins, J.S.H. & Wienberg Rasmussen, H. 1992. Ekdale, A.A. & Bromley, R.G. 1984. Upper Cretaceous–lower Tertiary decapod crusta- and ichnology of the Cretaceous–Tertiary boundary ceans from West Greenland. Meddelelser om Grøn- in Denmark; implications for the causes of the termi- land, 162, 1–46. nal Cretaceous extinction. Journal of Sedimentary Cox, C.B. & Smith, D.G. 1973. A review of the Triassic Research, 54, 681–703. vertebrate faunas of Svalbard. Geological Magazine, Evans, M. 2010. The roles played by museums, collections 110, 405–418. and collectors in the early history of reptile palaeontol- Dam, G., Pedersen, G.K., Sønderholm, M., Mid- ogy. In: Moody, R.T.J., Buffetaut, E., Naisch,D.& tgaard, H.H., Larsen, L.M., Nøhr-Hansen,H.& Martill, D.M. (eds) Dinosaurs and Other Extinct Pedersen, A.K. 2009. Lithostratigraphy of the Creta- Saurians: A Historical Perspective. Geological Soci- ceous–Paleocene Nuussuaq Group, Nuussuaq Basin, ety, London, Special Publications, 343, 5–29, http:// West Greenland. Geological Survey of Denmark and doi.org/10.1144/SP343.2 Greenland Bulletin, 19. Floris, S. 1967. West Greenland scleractinian corals Damholt,T.&Surlyk, F. 2012. Nomination of Stevns from Upper Cretaceous and Lower Tertiary. Klint for Inclusion in the World Heritage List. Østsjæl- Meddelelser fra Dansk Geologisk Forening, 17, lands Museum, St Heddinge. 192–193. Delsett, L.L., Novis, L.K., Roberts, A.J., Koevoets, Floris, S. 1972. Scleractinian corals from the Upper M.J., Hammer, Ø., Druckenmiller, P.S. & Hurum, Cretaceous and Lower Tertiary of Nuˆgssuaq, West J.H. 2015. The Slottsmøya Lagersta¨tte: Greenland. Meddelelser om Grønland, 100, 1–132. depositional environments, taphonomy and diagenesis. Friis, E.M., Crane, P.R. & Pedersen, R.K. 2011. Early In: Kear, B.P., Lindgren, J., Hurum, J.H., Mila`n, Flowers and Angiosperm Evolution. Cambridge J. & Vajda, V. (eds) Mesozoic Biotas of Scandinavia University Press, New York. and its Arctic Territories. Geological Society, London, Gangloff, R.A. 2012. Dinosaurs Under the Aurora. Indi- Special Publications, 434. First published online ana University Press, Bloomington, IN. December 16, 2015, updated version published online Gierlin´ ski,G.&Ahlberg, A. 1994. Late Triassic December 17, 2015, http://doi.org/10.1144/SP434.2 and Early Jurassic dinosaur footprints in the Ditchfield, P.W. 1997. High northern palaeolatitude Ho¨gana¨s Formation of southern Sweden. Ichnos, 3, Jurassic–Cretaceous palaeotemperature variation: 99–105. new data from Kong Karls Land, Svalbard. Palaeo- Gravesen, O. 2009. Structural analysis of superposed geography, Palaeoclimatology, Palaeoecology, 130, fault systems of the Bornholm horst block, Tornquist 163–175. Zone, Denmark. Bulletin of the Geological Society of Donovan, D.T. 1964. Stratigraphy and ammonite fauna of Denmark, 57, 25–49. the Volgian and Berriasian rocks of East Greenland. Gravesen,P.&Jakobsen, S.L. 2012. Skrivekridtets Fos- Meddelelser om Grønland, 154, 1–34. siler. Gyldendal, Copenhagen. Donovan, D.T. & Surlyk, F. 2003. Lower Jurassic Gry, H. 1969. Megaspores from the Jurassic of the island (Pliensbachian) ammonites from Bornholm, Baltic of Bornholm, Denmark. Meddelelser fra Dansk Geolo- Sea, Denmark. In: Ineson, J.R. & Surlyk, F. (eds) gisk Forening, 19, 69–89. The Jurassic of Denmark and Greenland. Geologi- Hagstro¨m, J. 1997. Land-derived palynomorphs from cal Survey of Denmark and Greenland Bulletin, 1, the Silurian of Gotland, Sweden. GFF, 119, 301–316. 555–583. Halamski, A.T., Kvacˇek,J.&Vajda, V. 2016. Late Druckenmiller, P.S., Hurum, J.H., Knutsen, E.M. Cretaceous (Campanian) leaf and palynoflora from & Nakrem, H.A. 2012. Two new ichthyosaurs (Ich- southern Ska˚ne, Sweden. In: Kear, B.P., Lindgren, thyosauria: Ophthalmosauridae) from the Agardhfjel- J., Hurum, J.H., Mila`n,J.&Vajda, V. (eds) Meso- let Formation (Upper Jurassic: Volgian), Svalbard, zoic Biotas of Scandinavia and its Arctic Territories. Norway. Norwegian Journal of Geology, 92, 311–339. Geological Society, London, Special Publications, Ebbestad, J.O.R. 2016. and the foundation of 434. First published online April 19, 2016, http:// Mesozoic vertebrate palaeontology in Sweden. In: doi.org/10.1144/SP434.16 Kear, B.P., Lindgren, J., Hurum, J.H., Mila`n,J. Hansen, B.B., Mila`n,J.et al. 2015. Coprolites from the & Vajda, V. (eds) Mesozoic Biotas of Scandinavia Late Triassic Kap Stewart Formation, Jameson Land, and its Arctic Territories. Geological Society, London, East Greenland: morphology, classification and prey Special Publications, 434. First published online inclusions. In: Kear, B.P., Lindgren, J., Hurum, March 1, 2016, http://doi.org/10.1144/SP434.15 J.H., Mila`n,J.&Vajda, V. (eds) Mesozoic Biotas Einarsson, E., Lindgren, J., Kear, B.P. & Siverson,M. of Scandinavia and its Arctic Territories. Geological 2010. bite marks on a plesiosaur propodial Society, London, Special Publications, 434. First pub- from the Campanian (Late Cretaceous) of southern lished online December 17, 2015, http://doi.org/10. Sweden. GFF, 132, 123–128. 1144/SP434.12 Einarsson, E., Praszkier,A.&Vajda, V. 2016. First Hansen,T.&Surlyk, F. 2014. Marine macrofossil com- evidence of the Cretaceous decapod Proto- munities in the uppermost Maastrichtian chalk of from Sweden. In: Kear, B.P., Lindgren, Stevns Klint, Denmark. Palaeogeography, Palaeocli- J., Hurum, J.H., Mila`n,J.&Vajda, V. (eds) Meso- matology, Palaeoecology, 399, 323–344. zoic Biotas of Scandinavia and its Arctic Territories. Harris, T.M. 1931. Rhaetic floras. Biological Reviews, 6, Geological Society, London, Special Publications, 133–162. 434. First published online January 29, 2016, http:// Heer, O. 1883. Oversigt over Grønlands fossile flora. doi.org/10.1144/SP434.6 Meddelelser om Grønland, 5, 79–202. Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

10 B. P. KEAR ET AL.

Hisinger, W. 1837. Lethaea Svecica seu Petrificata Kennedy, W.J. & Christensen, W.K. 1991. Coniacian Sveciae, iconibus et characteribus illustrata.P.A. and Santonian ammonites from Bornholm, Denmark. Norstedt et Filii, Stockholm. Bulletin of the Geological Society of Denmark, 38, Hryniewicz, K., Nakrem, H.A., Hammer, Ø., Little, 203–226. C.T.S., Kaim, A., Sandy, M.R. & Hurum, J. 2014. Kennedy, W.J., Hancock, J.M. & Christensen, W.K. The palaeoecology of the latest Jurassic–earliest 1981. Albian and Cenomanian ammonites from the Cretaceous hydrocarbon seep carbonates from Spits- island of Bornholm (Denmark). Bulletin of the Geolog- bergen, Svalbard. Lethaia, 48, 353–374. ical Society of Denmark, 29, 203–244. Hulke, J.W. 1873. Memorandum on some fossil verte- Kennedy, W.J., Nøhr-Hansen,H.&Dam, G. 1999. The brate remains collected by the Swedish expedition to youngest Maastrichtian ammonite faunas from Nuus- Spitzbergen in 1864 and 1868. Bihang till Kungliga suaq, West Greenland. Geology of Greenland Survey Svenska Vetenskapsakademiens Handlinger, 1, 1–11. Bulletin, 184, 13–17. Hurum, J.H., Bergan, M., Mu¨ ller, R., Nystuen, J.P. & Klein, H., Mila. `n,J et al. 2015. Archosaur footprints Klein, N. 2006a. A Late Triassic dinosaur bone, off- (cf. Brachychirotherium) with unusual morphology shore Norway. Norwegian Journal of Geology, 86, from the Upper Triassic Fleming Fjord Formation 93–99. (Norian–Rhaetian) of East Greenland. In: Kear, Hurum, J.H., Mila`n, J., Hammer, O., Midtkandal,I., B.P., Lindgren, J., Hurum, J.H., Mila`n,J.& Amundsen,H.&Sæther, B. 2006b. Tracking polar Vajda, V. (eds) Mesozoic Biotas of Scandinavia and dinosaurs – new finds from the Lower Cretaceous of its Arctic Territories. Geological Society, London, Svalbard. Norwegian Journal of Geology, 86, 397–402. Special Publications, 434. First published online Hurum, J.H., Nakrem, H.A., Hammer, Ø., Knutsen, December 16, 2015, http://doi.org/10.1144/SP434.1 E.M., Druckenmiller, P.S., Hryniewicz,K.& Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. Novis, L.K. 2012. An Arctic Lagersta¨tte – the Slotts- 2012a. Redescription and taxonomic clarification of møya Member of the Aghardfjellet Formation (Upper ‘Tricleidus’ svalbardensis based on new material Jurassic–Lower Cretaceous) of Spitsbergen. Norwe- from the Agardhfjellet Formation (Middle Volgian), gian Journal of Geology, 92, 55–64. central Spitsbergen, Norway. Norwegian Journal of Hurum, J.H., Roberts, A.J., Nakrem, H.A., Stenløkk, Geology, 92, 175–186. J.A. & Mørk, A. 2014. The first recovered ichthyosaur Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. from the Middle Triassic of Edgeøya, Svalbard. Nor- 2012b. Two species of long-necked plesiosaurians wegian Petroleum Directorate Bulletin, 11, 97–110. (Reptilia: Sauropterygia) from the Upper Jurassic Hurum, J.H., Druckenmiller, P.S., Hammer, Ø., Nak- (Middle Volgian) Agardhfjellet Formation of central rem, H.A. & Olaussen, S. 2016a. The theropod Spitsbergen, Norway. Norwegian Journal of Geology, that wasn’t: an ornithopod tracksite from the Helvetia- 92, 187–212. fjellet Formation (Lower Cretaceous) of Boltodden, Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. Svalbard. In: Kear, B.P., Lindgren, J., Hurum, 2012c. A new plesiosauroid (Reptilia: Sauropterygia) J.H., Mila`n,J.&Vajda, V. (eds) Mesozoic Biotas from the Agardhfjellet Formation (Middle Volgian) of Scandinavia and its Arctic Territories. Geological of central Spitsbergen, Norway. Norwegian Journal Society, London, Special Publications, 434. First pub- of Geology, 92, 213–234. lished online January 6, 2016, http://doi.org/10.1144/ Knutsen, E.M., Druckenmiller, P.S. & Hurum, J.H. SP434.10 2012d. A new species of Pliosaurus (Sauropterygia: Hurum, J.H., Roberts, A.J. et al. 2016b. or mani- ) from the Middle Volgian, central Spits- raptoran dinosaur? A femur from the Albian strata bergen, Norway. Norwegian Journal of Geology, 92, of Spitsbergen, Arctic Norway. Acta Palaeontologica 235–258. Polonica, 67, 137–147. Koch, B.E. 1964. Review of fossil floras and nonmarine Jenkins, F.A., JR, Shubin, N.H. et al. 1994. Late Triassic deposits of West Greenland. Geological Society of continental and depositional environments America Bulletin, 75, 535–548. of the Fleming Fjord Formation, Jameson Land, East Koppelhus, E.B. & Nielsen, L.H. 1994. Palynostratigra- Greenland. Meddelelser om Grønland, 32, 1–25. phy and palaeoenvironments of the Lower to Middle Karl, H.-V. & Lindow, B.E.K. 2009. First evidence of a Jurassic Baga˚ Formation of Bornholm, Denmark. Late Cretaceous marine turtle (Testudines: Chelonioi- Palynology, 18, 139–194. dea) from Denmark. Studia Geologica Salmanticensia, Lapparent, A.F. DE. 1960. Decouverte de traces de pas de 45, 175–180. dinosauriens dans le Cre´tace´ de Spitsberg. Comptes Kear, B.P. & Maxwell, E.E. 2013. Wiman’s forgot- rendus de l’Academie des Sciences, 251, 1399–1400. ten plesiosaurs: the earliest recorded sauropterygian Lapparent, A.F. DE. 1962. Footprints of dinosaur in the fossils from the High Arctic. GFF, 135, 95–103. Lower Cretaceous of Vestspitsbergen – Svalbard. Kear, B.P., Poropat, S.F. & Bazzi, M. 2015. Late Norsk Polarinstitutt A˚ rbok, 1960, 14–21. Triassic capitosaurian remains from Svalbard and Larsen, M., Hamberg, L., Olaussen, S., Preuss,T.& the palaeobiogeographical context of Scandinavian Stemmerik, L. 1999. Sandstone wedges of the Creta- Arctic temnospondyls. In: Kear, B.P., Lindgren, J., ceous–Lower Tertiary Kangerlussuaq Basin, East Hurum, J.H., Mila`n,J.&Vajda, V. (eds) Mesozoic Greenland – outcrop analogues to the offshore North Biotas of Scandinavia and its Arctic Territories. Geo- Atlantic. In: Fleet, A.J. & Boldy, S.A.R. (eds) Petro- logical Society, London, Special Publications, 434. leum Geology of Northwest Europe: Proceedings of First published online December 17, 2015, http:// the 5th Conference. Geological Society, London, doi.org/10.1144/SP434.11 337– 348, http://doi.org/10.1144/0050337 Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION 11

Larsen, M., Bjerager, M., Nedkvitne, T., Olaussen,S. Mehlqvist, K., Steemans,P.&Vajda, V. 2015. First & Preuss, T. 2001. Pre-basaltic sediments (Aptian– evidence of Devonian strata in Sweden – A palynolog- Paleocene) of the Kangerlussuaq Basin, southern East ical investigation of O¨ vedskloster drillcores 1 and 2, Greenland. Geology of Greenland Survey Bulletin, Ska˚ne, Sweden. Review of Palaeobotany and Palynol- 189, 99–106. ogy, 221, 144–159. Larsson, K., Solakius,N.&Vajda, V. 2000. Foraminif- Mila`n, J. 2009. Pa˚ svaneøglejagt 818 nord–gensyn med et era and palynomorphs from the greensand–limestone 155 millioner a˚r gammelt fossil. Geologisk Nyt, 2009, sequences (Aptian–Coniacian) in southwestern Swe- 10–15. den. Geologische Jahrbuch fur Geologie und Pala¨on- Mila`n, J. 2011. New theropod, thyreophoran, and small tologie, 216, 277–312. sauropod tracks from the Middle Jurassic Baga˚ Forma- Lindgren, J. 2004. Stratigraphic distribution of Campa- tion, Bornholm, Denmark. Bulletin of the Geological nian and Maastrichtian in Sweden – evi- Society of Denmark, 59, 51–59. dence of an intercontinental marine extinction event? Mila`n,J.&Bonde, N. 2001. Svaneøgler, nye fund fra GFF, 126, 221–229. Bornholm. Varv, 2001,3–8. Lindgren,J.&Jagt, J.W.M. 2005. Danish mosasaurs. Mila`n,J.&Bromley, R.G. 2005. Dinosaur footprints Netherlands Journal of Geoscience, 84, 315–320. from the Middle Jurassic Baga˚ Formation, Bornholm, Lindgren,J.&Siverson, M. 2002. ivoensis:a Denmark. Bulletin of the Geological Society of Den- giant mosasaur from the early Campanian of Sweden. mark, 52, 7–15. Transactions of the Royal Society of Edinburgh, Mila`n,J.&Gierlin´ ski, G. 2004. A probable thyreo- Earth Sciences, 93, 73–93. phoran (Dinosauria, Ornithischia) footprint from the Lindgren,J.&Siverson, M. 2004. The first record of the Upper Triassic of southern Sweden. Bulletin of the mosasaur from Europe and its palaeogeo- Geological Society of Denmark, 51, 71–75. graphical implications. Acta Palaeontologica Polon- Mila`n.&,J Surlyk, F. 2015. An enigmatic, diminutive ica, 49, 219–234. theropod footprint in the shallow marine Pliensbachian Lindgren, J., Rees, J., Siverson,M.&Cuny, G. 2004. Hasle Formation, Bornholm, Denmark. Lethaia, 48, The first Mesozoic mammal from Scandinavia. GFF, 429–435. 126, 325–330. Mila`n, J., Lindgren,J.&Sloth, C. 2010. Hjernekig i Lindgren, J., Currie, P.J., Siverson, M., Rees, J., fortidskrokodille – CT-scanning af et Thoracosaurus- Cederstro¨m,P.&Lindgren, F. 2007. The first neo- kranium. Geologisk Nyt, 2010, 12–16. ceratopsian dinosaur remains from Europe. Palaeon- Mila`n, J., Clemmensen, L.B. et al. 2012a. A prelimi- tology , 50, 929–937. nary report on coprolites from the Late Jurassic part Lindgren, J., Currie, P.J., Rees, J., Siverson, M., of the Kap Steward Formation, Jameson Land, East Lindstro¨m,S.&Alwmark, C. 2008. Theropod dino- Greenland. New Mexico Museum of Natural History saur teeth from the lowermost Cretaceous Rabekke and Science Bulletin, 57, 203–205. Formation on Bornholm, Denmark. Geobios, 41, Mila`n, J., Rasmussen, B.W. & Bonde, N. 2012b. Copro- 253–262. lites with prey remains and traces from coprophagous Looy, C.V., Twitchett, R.J., Dilcher, D.L., Van organisms from the Lower Cretaceous (Late Berria- Konijnenburg-Van Cittert, J.H. & Visscher,H. sian) Jydegaard Formation of Bornholm, Denmark. 2001. Life in the end-Permian dead zone. Proceedings New Mexico Museum of Natural History and Science of the National Academy of Sciences of the United Bulletin, 57, 235–240. States of America, 98, 7879–7883. Mila`n, J., Hunt, A.P., Adolfssen, J.S., Rasmussen, Lundgren, B. 1888. List of the Fossil Faunas of Sweden. B.W. & Bjergager, M. 2015. First record of a verte- III. Mesozoic. P. A. Norstedt & So¨ner, Stockholm. brate coprolite from the Upper Cretaceous (Maastrich- Maxwell, E.E. & Kear, B.P. 2013. Triassic ichthyop- tian) chalk of Stevns Klint, Denmark. New Mexico terygian assemblages of the Svalbard archipelago: Museum of Natural History and Science Bulletin, 67, a reassessment of taxonomy and distribution. GFF, 227–229. 135, 85–94. Mørk, A., Dallmann, W.K. et al. 1999. Mesozoic litho- McLoughlin, S. 2011. Glossopteris – insights into the stratigraphy. In: Dallmann, W.K. (ed.) Lithostrati- architecture and relationships of an iconic Permian graphic Lexicon of Svalbard: Upper Paleozoic to Gondwanan plant. Journal of the Botanical Society of Quaternary Bedrock. Review and Recommendations Bengal, 65, 93–106. for Nomenclatural Use. Norsk Polarinstitut, Tromsø, McLoughlin,S.&Strullu-Derrien, C. 2015. Biota 127–214. and palaeoenvironment of a high middle-latitude Nielsen, E. 1935. The Permian and Eotriassic vertebrate- Late Triassic peat-forming ecosystem from Hopen, bearing Beds at Godthaab Gulf (East Greenland). Med- Svalbard archipelago. In: Kear, B.P., Lindgren, J., delelser om Grønland, 98, 1–111. Hurum, J.H., Mila`n,J.&Vajda, V. (eds) Mesozoic Nielsen, E. 1942. Studies on Triassic Fishes I. Glaucole- Biotas of Scandinavia and its Arctic Territories. pis and Boreosomus. Meddelelser om Grønland, 138, Geological Society, London, Special Publications, 1–394. 434. First published online December 23, 2015, Nielsen, E. 1949. Studies on Triassic Fishes from Green- http://doi.org/10.1144/SP434.4 land II. Australosomus and Birgeria. Meddelelser om Mehlqvist, K., Vajda,V.&Larsson, L. 2009. An Grønland, 1949, 1–309. assemblage of a Middle Jurassic flora from Bornholm, Nilsson, S. 1827. Petrificata Suecana formationis Creta- Denmark – a study of a historic collection at Lund ceae, descripta et iconibus illustrata. Pars prior. Ver- University, Sweden. GFF, 131, 137–146. tebrata et sistens. Londini Gothorum, Lund. Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

12 B. P. KEAR ET AL.

Nilsson, S. 1836. Fossila amphibier, funna i Ska˚ne southern Sweden. In: Kear, B.P., Lindgren, J., och beskrifna af S. Nilsson. Kongliga Vetenskaps- Hurum, J.H., Mila`n,J.&Vajda, V. (eds) Mesozoic Academiens Handlingar, 1835, 131–141. Biotas of Scandinavia and its Arctic Territories. Geo- Nilsson, S. 1857. Om fossila saurier och fiskar, funna i logical Society, London, Special Publications, 434. Ska˚nes kritformation. O¨ fversigt af Kongliga Veten- First published online December 16, 2015, http:// skaps-Akademiens Fo¨rhandlingar, 13, 47–49. doi.org/10.1144/SP434.8 Noe-Nygaard,N.&Surlyk, R. 1985. Mound bedding in Rasmussen, J.A. & Sheldon, E. 2015. Late Maastrichtian a sponge-rich Coniacian chalk, Bornholm, Denmark. foraminiferal response to sea-level change and organic Bulletin of the Geological Society of Denmark, 34, flux, Central Graben area, Danish North Sea. In: Kear, 237–249. B.P., Lindgren, J., Hurum, J.H., Mila`n,J.&Vajda, Noe-Nygaard,N.&Surlyk, F. 1988. Washover fan and V. (eds) Mesozoic Biotas of Scandinavia and its Arctic brackish bay sedimentation in the Berriasian–Valangi- Territories. Geological Society, London, Special Pub- nian of Bornholm, Denmark. Sedimentology, 35, lications, 434. First published online December 17, 197–217. 2015, http://doi.org/10.1144/SP434.13 Noe-Nygaard, N., Surlyk,F.&Piasecki, S. 1987. Ravn, J.P.J. 1916. Kridtaflejringerne paa Bornholms Bivalve mass mortality caused by toxic dinoflagellate Sydvestkyst og deres Fauna. 1. Danmarks Geologiske blooms in a Berriasian–Valanginian lagoon, Born- Undersøgelser, serie 2, 30, 1–40. holm, Denmark. Palaios, 2, 263–273. Ravn, J.P.J. 1925. Det cenomane Basalkonglomerat Nøhr-Hansen, H. 2012. Palynostratigraphy of the Creta- paa Bornholm. Danmarks Geologiske Undersøgelser, ceous–lower Palaeogene sedimentary succession in Serie 2, 42, 1–64. the Kangerlussuaq Basin, southern East Greenland. Rees, J. 1998. Early Jurassic selachians from the Hasle Review of Palaeobotany and Palynology, 178, 59–90. Formation on Bornholm, Denmark. Acta Palaeonto- Norborg, A.K. & Wulff-Pedersen, E. 1997. Andøyas logica Polonica, 43, 439–452. mesozoiske bergarter og fossiler. Naturen, 1, 40–45. Rees,J.&Lindgren, J. 2005. Aquatic birds from the Norborg, A.K., Dalland, A., Heintz,N.&Nakrem, Upper Cretaceous (Lower Campanian) of Sweden H.A. 1997. Catalogue of Jurassic/Cretaceous Fossils and the biology and distribution of hesperornithiforms. And Sedimentary Rocks from Andøya, Northern Nor- Palaeontology, 48, 1321–1329. way. Collections in the Paleontological Museum, Rees, J., Lindgren,J.&Evans, S.E. 2005. Amphibians Oslo, the Bergen Museum, the Tromsø Museum, and and small reptiles from the Berriasian Rabekke Forma- the Swedish Museum of Natural History, Stockholm. tion on Bornholm, Denmark. GFF, 127, 233–238. Contributions from the Paleontological Museum, Uni- Roberts, A.J., Druckenmiller, P.S., Sætre, G.P. & versity of Oslo, 406. Hurum, J.H. 2014. A new Upper Jurassic ophthalmo- Pedersen, K.R. 1968. Angiospermous leaves from the saurid ichthyosaur from the Slottsmøya Member, Lower Cretaceous Kome Formation of northern West Agardhfjellet Formation of central Spitsbergen. PloS Greenland. Rapport Grønlands Geologiske Undersø- one, 9, e103152. gelse, 15, 17–18. Rudwick, M.J. 2008. The Meaning of Fossils. Episodes in Persson, P.O. 1959. Reptiles from the Senonian (U. Cret.) the History of Palaeontology. University of Chicago of Scania (S. Sweden). Arkiv fo¨r Mineralogi och Geo- Press, Chicago, IL. logi, 2, 431–478. Sachs, S., Lindgren,J.&Siversson, M. 2015. A partial Persson, P.O. 1962. Notes on some reptile finds from the plesiosaurian braincase from the Upper Cretaceous of Mesozoic of Scania. Geologiska Fo¨reningens Fo¨r- Sweden. In: Kear, B.P., Lindgren, J., Hurum, J.H., handlingar, 84, 144–150. Mila`n,J.&Vajda, V. (eds) Mesozoic Biotas of Scan- Persson, P.O. 1963. Studies on Mesozoic Marine Reptile dinavia and its Arctic Territories. Geological Society, Faunas with Particular Regard to the Plesiosauria. London, Special Publications, 434. First published Publications from the Institutes of Mineralogy, Paleon- online December 16, 2015, http://doi.org/10.1144/ tology, and Quaternary Geology, University of Lund, SP434.7 Sweden, 118. Sachs, S., Hornung, J.J., Lierl, H.-J. & Kear, B.P. 2016. Persson, P.O. 1967. New finds of plesiosaurian remains Plesiosaurian fossils from Baltic glacial erratics: evi- from the Cretaceous of Scania. Geologiska Fo¨renin- dence of Early Jurassic marine amniotes from the gens i Stockholm Fo¨rhandlingar, 89, 67–73. southwestern margin of Fennoscandia. In: Kear, Persson, P.O. 1990. A plesiosaurian bone from a Cre- B.P., Lindgren, J., Hurum, J.H., Mila`n,J.& taceous fissure-filling in NE Scania, Sweden. Geo- Vajda, V. (eds) Mesozoic Biotas of Scandinavia and logiska Fo¨reningens i Stockholm Fo¨rhandlingar, 112, its Arctic Territories. Geological Society, London, 141–142. Special Publications, 434. First published online Janu- Petersen, H.I., Nielsen, L.H., Koppelhus, E.B. & Sør- ary 22, 2016, http://doi.org/10.1144/SP434.14 ensen, H.S. 2003. Early and Middle Jurassic mires of Sa¨ve-So¨derbergh, G. 1936. On the morphology of Trias- Bornholm and the Fennoscandian Border Zone: a com- sic stegocephalians from Spitsbergen, and the interpre- parison of depositional environments and vegetation. tation of the endocranium in the labyrinthodontia. In: Ineson, J.R. & Surlyk, F. (eds) The Jurassic of Kungliga Svenska Vetenskapsakademiens Handlingar, Denmark and Greenland. Geological Survey of Den- Series 16, 3, 1–181. mark and Greenland Bulletin, 1, 631–656. Scheyer, T.M., Mo¨rs,T.&Einarsson, E. 2012. First Poropat, S.F., Einarsson, E., Lindgren, J., Bazzi, M., record of soft-shelled turtles (Cryptodira, Trionychi- Lagerstam,C.&Kear, B.P. 2015. Late Cretaceous dae) from the Late Cretaceous of Europe. Journal of dinosaurian remains from the Kristianstad Basin of Vertebrate Paleontology, 32, 1027–1032. Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

MESOZOIC BIOTAS OF SCANDINAVIA: INTRODUCTION 13

Schro¨der, H. 1885. Saurierreste aus der baltischen Obe- and Gas Reserves. Geological Society, London, Spe- ren Kreide. Jahrbuch der Ko¨niglich Preussischen Geo- cial Publications, 55, 107–125, http://doi.org/10. logischen Landesanstalt und Bergakademie zu Berlin, 1144/GSL.SP.1990.055.01.05 1884, 293–333. Surlyk, F. 2006. Fra Ørkener til varme have. In: Jensen, Schwarz-Wings, D., Rees,J.&Lindgren, J. 2009. K.S. (ed.) Naturen i Danmark, Geologien. Gyldendal, Lower Cretaceous Mesoeucrocodylians from Scandi- Copenhagen, 139–180. navia (Denmark and Sweden). Cretaceous Research, Surlyk,F.&Christensen, W.K. 1974. Epifaunal zona- 30, 1345–1355. tion on an Upper Cretaceous rocky coast. Geology, 2, Sha, J., Olsen, P.E. et al. 2015. Triassic–Jurassic cli- 529–534. mate in continental high-latitude Asia was dominated Surlyk,F.&Noe-Nygaard, N. 1986. Hummocky cross- by obliquity-paced variations (Junggar Basin, U¨ ru¨mqi, stratification from the Lower Jurassic Hasle Formation China). Proceedings of the National Academy of Sci- of Bornholm, Denmark. Sedimentary Geology, 46, ences of the United States of America, 112, 259–273. 3624–3629. Surlyk,F.&Sørensen, A.M. 2010. An early Campanian Siverson, M. 1992. Biology, dental morphology and tax- rocky shore at Ivo¨ Klack, southern Sweden. Creta- onomy of lamniform sharks from the Campanian of the ceous Research, 31, 567–576. Kristianstad Basin, Sweden. Palaeontology, 35, Surlyk, F., Mila`n,J.&Noe-Nygaard, N. 2008. Dino- 519–554. saur tracks and possible lungfish aestivation burrows Siversson, M., Cook, T.D., Cederstro¨m,P.&Ryan, in a shallow coastal lake; lowermost Cretaceous, Born- H.E. 2015. Early Campanian (Late Cretaceous) holm, Denmark. Palaeogeography, Palaeoclimatol- squatiniform and synechodontiform selachians from ogy, Palaeoecology, 231, 253–264. the A˚ sen locality, Kristianstad Basin, Sweden. Surlyk, F., Rasmussen, S.L. et al. 2013. Upper In: Kear, B.P., Lindgren, J., Hurum, J.H., Mila`n, Campanian–Maastrichtian holostratigraphy of the J. & Vajda, V. (eds) Mesozoic Biotas of Scandi- eastern Danish Basin. Cretaceous Research, 46, navia and its Arctic Territories. Geological Society, 232–256. London, Special Publications, 434. First published Sørensen, A.M., Surlyk,F.&Lindgren, J. 2013. Food online December 16, 2015, http://doi.org/10.1144/ resources and habitat selection of a diverse vertebrate SP434.9 fauna from the upper lower Campanian of the Kristian- Skarby, A. 1968. Extratriporopollenites (Pflug) emend. stad Basin, southern Sweden. Cretaceous Research, From the Upper Cretaceous of Scania, Sweden. Stock- 42, 85–92. holm Contributions in Geology, 16, 1–60. Troedsson, G.T. 1924. On crocodilian remains from the Smith, A.S. 2007. The back-to-front plesiosaur Cryptocli- Danian of Sweden. Lunds Universitets A˚ rsskrift, 20, dus (Apractocleidus) aldingeri from the Kimmeridgian 1–75. of Milne Land, Greenland. Bulletin of the Geological Troedsson, G.T. 1954. Va¨stra Go¨inge ha¨rads geologi. Society of Denmark, 55,1–7. Va¨stra Go¨inge Hembygdsfo¨renings Skriftserie, 2, Smith, A.S. 2008. Plesiosaurs from the Pliensbachien 63–157. (Lower Jurassic) of Bornholm, Denmark. Journal of Tro¨ger, K.A. & Christensen, W.K. 1991. Upper Vertebrate Paleontology, 28, 1213–1217. Cretaceous (Cenomanian–Santonian) inoceramid Spath, L.F. 1932. The invertebrate faunas of the Batho- bivalve faunas from the island of Bornholm, Denmark. nian–Callovian deposits of Jameson Land (East Danmarks Geologiske Undersøgelser, Serie A, 28, Greenland). Meddelelser om Grønland, 87 , 1–158. 1–28. Stemmerik, L., Dalhoff, F., Larsen, B.D., Lyck, J., Twitchett, R.J., Looy, C.V., Morante, R., Visscher,H. Mathiesen,A.&Nilsson, I. 1998. Wandel Sea Basin, & Wignall, P.B. 2001. Rapid and synchronous eastern North Greenland. Geology of Greenland Sur- collapse of marine and terrestrial ecosystems vey Bulletin, 180, 55–62. during the end-Permian biotic crisis. Geology, 29, Stemmerik, L., Bendix-Almgreen, S.E. & Piasecki,S. 351–354. 2001. The Permian–Triassic boundary in central East Vajda, V. 2001. Aalenian to Cenomanian palynofloras of Greenland: past and present views. Bulletin of the Geo- SW Scania, Sweden. Acta Paleontologica Polonica, logical Society of Denmark, 48, 159–167. 46, 403–426. Stensio¨, E.A. 1921. Triassic fishes from Spitzbergen. Part Vajda,V.&Wigforss-Lange, J. 2006. The Jurassic– I. Holzhauzern, Vienna. Cretaceous transition of Southern Sweden – palyno- Stensio¨, E.A. 1925. Triassic fishes from Spitzbergen. Part logical and sedimentological interpretation. Progress II. Kungliga Svenska Vetenskapsakademiens Handlin- in Natural Science, 16, 1–38. , Serie 3, 2, 1–261. Vajda,V.&Wigforss-Lange, J. 2009. Onshore Jurassic Sulej, T., Wolniewicz, A., Bonde, N., Blazejowski, of Scandinavia and related areas. GFF, 131, 5–23. B., Niedzwiedzki,G.&Talanda, M. 2014. New Vajda, V., Calner,M.&Ahlberg, A. 2013. Palynostra- perspectives on the Late Triassic vertebrates of East tigraphy of dinosaur footprint-bearing deposits from Greenland: preliminary results of a Polish–Danish the Triassic–Jurassic boundary interval of Sweden. palaeontological expedition. Polish Polar Research, GFF, 135, 120–130. 35, 541–552. Vajda, V., Linderson,H.&McLoughlin, S. 2016. Surlyk, F. 1990. Timing, style and sedimentary evolution Disrupted vegetation as a response to Jurassic volca- of Late Palaeozoic–Mesozoic extensional basins of nism in southern Sweden. In: Kear, B.P., Lindgren, East Greenland. In: Hardman, R.F.P. & Brooks,J. J., Hurum, J.H., Mila`n,J.&Vajda, V. (eds) Meso- (eds) Tectonic Events Responsible for Britain’s Oil zoic Biotas of Scandinavia and its Arctic Territories. Downloaded from http://sp.lyellcollection.org/ at Uppsala Universitetsbibliotek on August 1, 2016

14 B. P. KEAR ET AL.

Geological Society, London, Special Publications, Wiman, C. 1914. Ein Plesiosaurierwirbel aus dem ju¨ngeren 434. First published online April 7, 2016, http://doi. Mesozoicum Spitzbergens. Bulletin Uppsala Universi- org/10.1144/SP434.17 tet, Mineralogisk–Geologiska Institut, 12, 201–204. Vigran, J.O., Mangerud, G., Mørk, A., Worsley,D.& Wiman, C. 1916a. Ein Plesiosaurierwirbel aus der Trias Hochuli, P.A. 2014. Palynology and Geology of Spitzbergens. Bulletin of the Geological Institute of the Triassic Succession of Svalbard and the Barents the University of Uppsala, 13, 223–226. Sea. Geological Survey of Norway, Special Publica- Wiman, C. 1916b. Notes on the marine Triassic reptile tions, 14. fauna of Spitsbergen. University of California Publi- Wierzbowski, A., Hryniewicz, K., Hammer, Ø., Nak- cations, Bulletin of the Department of Geology, 10, rem, H.A. & Little, C.T.S. 2011. Ammonites from 63–73. hydrocarbon seep carbonate bodies from the Upper- Wiman, C. 1916c. Blocktransport genom saurier. Geo- most Jurassic – Lowermost Cretaceous of Spitsbergen logiska Fo¨reningens Fo¨rhandlingar, 38, 369–380. and their biostratigraphical importance. Neues Jahr- Wiman, C. 1928. Eine neue marine Reptilien-Ordnung buch fu¨r Geologie und Pala¨ontologie Abhandlungen, aus der Trias Spitzbergens. Bulletin of the Geological 262, 267–288. Institute of the University of Uppsala, 22, 183–196. Wiman, C. 1910. Ichthyosaurier aus der Trias Spitzber- Wiman, C. 1933. U¨ ber Grippia longirostris. Nova Acta gens. Bulletin of the Geological Institute of the Univer- Regiae Societas Scientarum Upsaliensis Serie IV, 9, sity of Uppsala, 10, 124–148. 1–19.