Dinosaur Tracks in Lower Jurassic Coastal Plain Sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaur Tracks in Lower Jurassic Coastal Plain Sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark Dinosaur tracks in Lower Jurassic coastal plain sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark LARS B. CLEMMENSEN, JESPER MILAN, GUNVER K. PEDERSEN, ANNE B. JOHANNESEN AND CONNIE LARSEN Clemmensen, L.B., Milan, J., Pedersen, G.K., Johannesen, A.B. & Larsen, C. 2014: Dinosaur tracks in Lower Jurassic coastal plain sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark. Lethaia,Vol. 47, pp. 485–493. Fluvial palaeochannels of coastal plain sediments of the Lower Jurassic Sose Bugt Member of the Rønne Formation exposed in the coastal cliffs at Sose Bugt, Bornholm, contain abundant dinosaur or other large vertebrate tracks in the form of deformation structures exposed in vertical section. The tracks are represented by steep-walled, flat- to-concave-bottomed depressions, with a raised ridge at each side. The tracks are filled with laminated sediments, draping the contours of the bottom of the depression. Un- derprints, stacked concave deformations beneath the prints, are present beneath each track. Contemporary Upper Triassic – Lower Jurassic strata from southern Sweden and Poland contain a diverse track fauna, supporting our interpretation. This is the earliest evidence of dinosaur activity in Denmark. □ Bornholm, coastal plain, dinosaur tracks, lake sediments, Lower Jurassic. Lars B. Clemmensen [[email protected]], Jesper Milan [[email protected]], Anne B. Joh- annesen [[email protected]], and Connie Larsen [[email protected]], Depart- ment for Geosciences and Natural Resource Managements, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; Jesper Milan [[email protected]], Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-4640 Faxe, Denmark; Gunver K. Pedersen [[email protected]], GEUS Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; manuscript received on 12/04/2013; manuscript accepted on 04/12/2013. Outcrops of terrestrial Mesozoic sediments in Den- and jawbone fragments of actinopterygians, post- mark are restricted to a few scattered exposures cranial remains of amphibians and primitive lizards, along the southwest coast of the Baltic Island of small dromaeosaurid dinosaurs and perhaps bird Bornholm (Fig. 1). Despite the very limited extent teeth, and a single tooth of a multi-tuberculate mam- of the exposures, an increased interest and intensive mal (Lindgren et al. 2004, 2008; Rees et al. 2005; field studies during the last decade have yielded evi- Schwarz-Wings et al. 2009). In contrast to the dimin- dence of a relatively diverse fauna of terrestrial verte- utive body fossils, a trample ground with abundant brates, from Middle Jurassic and Early Cretaceous cross-sections through large dinosaur tracks (up to deposits (Fig. 2). 70 cm in length), and possible lungfish aestivation To date, the earliest evidence of dinosaur activity burrows have been described from an adjacent expo- comes from the Middle Jurassic Baga Formation sure in the coastal cliff (Surlyk et al. 2008). (Gravesen et al. 1982) (Fig. 2), exposed in the aban- The overlying Jydegaard Formation (Fig. 2), doned Hasle Klinker Factory clay pit at Baga, at the known from inland quarries, has yielded dromaeo- coast between Hasle and Rønne. This pit has yielded saurian teeth, Dromaeosaurides bornholmensis and a a diverse dinosaur ichnofauna comprising large and possible tooth crown from a juvenile sauropod small tracks of sauropods, thyreophoreans and (Bonde & Christiansen 2003; Christiansen & Bonde theropods but no body fossils (Milan & Bromley 2003), as well as fragments from carapaces of turtles, 2005; Milan 2011). teeth of the crocodile Pholidosaurus, and abundant The lowermost Cretaceous Rabekke Formation, teeth and scales of the holostean fish Lepidotes and exposed in a coastal cliff east of Arnager (Gravesen the freshwater shark Hybodus and some pycnodont et al. 1982) (Fig. 2), has recently yielded remains of a jaws, small stem-teleosteans and coprolites (Noe- rich fauna of micro-vertebrates including abundant Nygaard et al. 1987; Noe-Nygaard & Surlyk 1988; crocodile teeth (Bernissartia sp., Theriosuchessp.,and Rees 2001; Bonde 2004; Milan et al. 2012). For a Goniopholis sp.), fragments of turtle carapaces, scales complete review of the Mesozoic vertebrate faunas, DOI 10.1111/let.12073 © 2014 Lethaia Foundation. Published by John Wiley & Sons Ltd 486 Clemmensen et al. LETHAIA 47 (2014) A B C Fig. 1. A, geological map of Bornholm (map modified from Graversen 2009). Localities with dinosaur tracks are indicated with dots; the locality at Sose Bugt with newly recognized dinosaur tracks is described in the article. B, detailed geological map of the Sose Bugt area. C, location of Bornholm in a broader geographical context. including the marine fauna of Bornholm, see Bonde found in the Late Cretaceous Asen locality in the (2012). Kristianstad Basin (Lindgren et al. 2007) (Fig. 2). In Early Jurassic environments similar to those on addition to the ichnofauna, a few dinosaurian verte- Bornholm are known to have supported a rich dino- brae have been found in the same level as the tracks saur fauna in nearby Scania, southern Sweden, from Billesholm coal mine (Bolau€ 1954). which was connected to Bornholm during most of During a recent field course, deformation struc- the Mesozoic (Surlyk et al.1995; Michelsen et al. tures were observed in the Lower Jurassic Sose Bugt 2003). The Late Triassic – Early Jurassic Hogan€ €as Member of the Rønne Formation (Gravesen et al. Formation has yielded tracks and trackways of the- 1982; Surlyk et al. 1995) at the type section in Sose ropod and possible thyreophorean dinosaurs as well Bugt on the south coast of Bornholm (Fig. 1). The as a few indeterminate skeletal remains (Bolau€ 1952, deformation structures showed many of the charac- 1954; Pleijel 1975; Ahlberg & Siverson 1991; Gierlin- teristics known from vertebrate tracks emplaced in ski & Ahlberg 1994; Milan & Gierlinski 2004), and soft sediment and exposed in cross-section (e.g. remains of neoceratopsian dinosaurs have been Loope 1986; Allen 1997; Milan & Bromley 2006, LETHAIA 47 (2014) Dinosaur tracks in Denmark 487 System Fennoscandian Border Zone Material and methods Stage Series NWSkåne SE Bornholm U Jydegård Formation Six detailed sedimentological sections were mea- Valanginian L sured along a c. 50-m-long coastal cliff at Sose Vita- Robbe- Lower U bäck dale Formation Bugt. Within these sections, we recognize eight sed- Ryazanian Cretaceous Clay L Rabekke Formation imentary units and correlate them across the profile U Annero (Fig. 3). Continued coastal erosion ensures the Volgian M Fm Nytorp availability of good exposures, and the deformation Sand L structures described here were seen after a year with r e U p Kimmeridgian p particularly severe erosion. However, landslides may Annero Fm Annero U L Fyle- dalen frequently cover large parts of the formation, mak- U Clay Oxfordian M ing it difficult to measure complete sedimentologi- L cal logs. The deformation structures occur in four U main levels; we here focus on deformation struc- Callovian Fortuna M Marl – L tures 1 8 in the uppermost two levels (Fig. 3). ? ? U Glass These structures were cleaned with hand-held m Bathonian M F Sand l scrapers and photographed. Based on photographs Vilhelmsfält a Mb L d e Fm i r and field notes, simplified, interpretive sketches of a Middle Jurassic U Bagå Formation Bajocian M the deformation structures were produced. A few of L Fug- lunda the structures were dug out to reveal the plan- Mb Aalenian U surface geometry. L ?? U Toarcian M Ryde- bäck Sorthat Formation Geological setting L Mb U Pliensbachian In the Early Jurassic, Bornholm and Scania in south- L Fm Rya Katslösa Hasle Formation – Mb ern Sweden formed part of the NW SE trending Galge- – Lower U Pankarp Mb Sorgenfrei Tornquist Zone, which separates the Sinemurian løkke Mb L Döshult Danish Basin from the Baltic Shield (Michelsen et al. Mb Sose Bugt Mb Helsingborg 2003). The uppermost Triassic and lowermost Juras- Hettangian ? Mb Munkerup Mb sic in Bornholm and Scania (Fig. 3) include non- Rønne Formation Bjuv Mb marine, coastal and shallow marine deposits referred Rhaetian Höganäs Fm Sst. € € Vallåkra Mb Höör to the Rønne, Hoganas and Rya Formations (Surlyk et al. 1995; Nielsen 2003; Lindstrom€ & Erlstrom€ Upper Triassic Norian Kågeröd Risebæk Mb Fm Fm 2006). On Bornholm, the Lower Jurassic Rønne For- Kågeröd mation comprises lacustrine, floodplain or coastal Marine mudstones and siltstones Unconformity plain, tidal and marine shoreface deposits of Hettan- Shallow marine sandstones and Dinosaur skeleton remains gian to Sinemurian age (Gravesen et al. 1982; Surlyk siltstones Paralic and non-marine sandstones, Dinosaur tracks et al. 1995). These paralic deposits contain organic- siltstones, mudstones and coals rich beds and plant material testifying to a warm Hiatus and humid climate (Petersen et al. 2003). € € Fig. 2. Stratigraphical scheme of Mesozoic units on Bornholm The sediments of the Hoganas Formation are and southern Scania (Skane), with indications of vertebrate ich- interpreted to have been deposited in lagoons, no and body fossils. Stratigraphical scheme modified from swamps, lakes and floodplains. The formation con- Michelsen et al. 2003. tains two extensive coal beds, and numerous hori- 2008; Milan et al. 2006). This is the first record of zons enriched in comminuted plant debris. The dinosaurs from the Lower Jurassic in Denmark. The spore–pollen flora in Scania includes bryophytes and aim of this study is to describe the newly observed Equisetites, which usually thrive under wet and deformation structures from the Lower Jurassic Sose humid conditions, and Taxodiacean, conifer pollen Bugt Member of the Rønne Formation, to discuss the and fern spores are abundant. A majority of the ferns possibility that they are dinosaur tracks and to put grew under moist and preferably rather warm condi- them into context with the other Scandinavian finds tions (Lindstrom€ & Erlstrom€ 2006). of Lower Jurassic dinosaur tracks. We also describe The Lower Jurassic Sose Bugt Member of the related sediments and interpret the depositional envi- Rønne Formation (Gravesen et al.
Recommended publications
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe).
    [Show full text]
  • New Theropod, Thyreophoran, and Small Sauropod Tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark
    New theropod, thyreophoran, and small sauropod tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark JESPER MILÀN Milàn, J. 2011. New theropod, thyreophoran, and small sauropod tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark © 2011 by Bulletin of the Geological Society of Denmark, Vol. 59, pp. 51–59. ISSN 0011–6297. (www.2dgf.dk/publikationer/bulletin) https://doi.org/10.37570/bgsd-2011-59-06 Three new dinosaur tracks are described from the Middle Jurassic Bagå Formation of Bornholm, Denmark. The tracks are all preserved as natural casts on the underside of fluvial sandstone blocks originating from the old Hasle Klinkefabrik’s clay pit, now called Pyritsøen. The new tracks are from a medium-sized theropod, a thyreophoran, and a small sauropod. Together with a thyreophoran track and large sauropod tracks described in 2005, the Middle Jurassic dinosaur fauna of Bornholm now comprises theropods, two sizes of sauropods and at least one type of thyreophoran dinosaur. This is important additional data for the very scarce Middle Jurassic dinosaurian skeletal record of Europe. Received 22 November 2010 Accepted in revised form Key words: Dinosaur fauna, trace fossils, Middle Jurassic, theropod, thyreophoran, sauropod. 21 September 2011 Published online Jesper Milàn [[email protected]], GeomuseumFaxe, Østsjællands Museum, Østervej 2, DK-4640 Faxe, 30 September 2011 Denmark. Also Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. Remains of Mesozoic terrestrial vertebrates are scarce Dinosaur remains are more commonly encountered in Denmark and have so far only been found in the in the southern part of Sweden, where numerous di- few Mesozoic outcrops along the west and southwest nosaur tracks and trackways of theropod dinosaurs, a coast of the Baltic island of Bornholm (Fig.
    [Show full text]
  • Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
    J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Tennant Et Al AAM.Pdf
    Zoological Journal of the Linnean Society Evolutionary relations hips and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia Journal:For Zoological Review Journal of the Linnean Only Society Manuscript ID ZOJ-08-2015-2274.R1 Manuscript Type: Original Article Bayesian, Crocodiles, Crocodyliformes < Taxa, Implied Weighting, Laurasia Keywords: < Palaeontology, Mesozoic < Palaeontology, phylogeny < Phylogenetics Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. S1 Atoposaurid character matrix.nex Page 1 of 167 Zoological Journal of the Linnean Society 1 2 3 1 Abstract 4 5 2 Atoposaurids are a group of small-bodied, extinct crocodyliforms, regarded as an important 6 3 component of Jurassic and Cretaceous Laurasian semi-aquatic ecosystems. Despite the group being 7 8 4 known for over 150 years, the taxonomic composition of Atoposauridae and its position within 9 5 Crocodyliformes are unresolved. Uncertainty revolves around their placement within Neosuchia, in 10 11 6 which they have been found to occupy a range of positions from the most basal neosuchian clade to 12 13 7 more crownward eusuchians. This problem stems from a lack of adequate taxonomic treatment of 14 8 specimens assigned to Atoposauridae, and key taxa such as Theriosuchus have become taxonomic 15 16 9 ‘waste baskets’. Here, we incorporate all putative atoposaurid species into a new phylogenetic data 17 10 matrix comprising 24 taxa scored for 329 characters. Many of our characters are heavily revised or 18 For Review Only 19 11 novel to this study, and several ingroup taxa have never previously been included in a phylogenetic 20 21 12 analysis.
    [Show full text]
  • Palaeoecology and Depositional Environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 19-44 10.11.2002 Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania) Martin Aberhan ', Robert Bussert2, Wolf-Dieter Heinrich', Eckhart Schrank2, Stephan Schultkal, Benjamin Sames3, Jiirgen =wet4 & Saidi Kapilima5 With 6 figures, 2 tables, and 2 plates Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German- Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinverte- brates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere.
    [Show full text]
  • Palynostratigraphy and Palaeoenvironment of the Middle Jurassic Sortehat Formation (Neill Klinter Group), Jameson Land, East Greenland
    Palynostratigraphy and palaeoenvironment of the Middle Jurassic Sortehat Formation (Neill Klinter Group), Jameson Land, East Greenland Eva B. Koppelhus and Carina F.Hansen The grey–black mudstones of the Sortehat Formation form part of the Middle Jurassic fill of the Jameson Land Basin in East Greenland. The formation is exposed in the southernmost part of the north–south-trending, Mesozoic rift system in East Greenland that was part of the epeiric sea- way between East Greenland and Norway. Sedimentological observations of the Sortehat Formation indicate deposition in an offshore marine setting that was typically low energy and periodically oxygen-deficient but was influenced by storm currents on occasion. Detailed palynological stud- ies of the Sortehat Formation have resulted in the definition of three palynological assemblage zones recognised at four localities, namely Enhjørningen Dal and Pelion (north Jameson Land), the type section at Sortehat (central Jameson Land) and Albuen at Neill Klinter along Hurry Inlet (south-east Jameson Land). In stratigraphic order, these zones are termed the Botryococcus Assemblage Zone, the Nannoceratopsis gracilis – Nannoceratopsis senex Assemblage Zone, and the Sentusidinium pelionense Assemblage Zone. They are recognised on the basis of the iden- tification of approximately 110 species of palynomorphs, including 45 species of spores, 30 of pollen, 22 of dinoflagellate cysts, 10 acritarch species, two species of algae, and some fungal spores. An Aalenian – ?Early Bajocian age is suggested for the Sortehat Formation on the basis of the palynoflora. Interpretation of the palynomorph assemblages suggests that the formation accumulated in a shallow, brackish marine environment. A significant terrestrial input, including the freshwater green alga Botryococcus, is recorded in the lower part of the formation and interpreted as an allochtho- nous accumulation in an offshore marine environment related to transgression of a low-lying coastal plain.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]
  • Weathering Profiles and Clay Mineralogical Developments, Bornholm, Denmark
    Weathering profiles and clay mineralogical developments, Bornholm, Denmark Pingchuan Tan1, 2, Nikolas Oberhardt1, Henning Dypvik1,2, Lars Riber1, Ray E. Ferrell Jr3. 1 Department of Geoscience, University of Oslo, P.O.BOX 1047, Blindern, NO-0316 Oslo, Norway 2 Centre for Earth Evolution and Dynamics, University of Oslo, P.O.BOX 1028, Blindern, NO-0315 Oslo, Norway 3 Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA, 70803, USA Corresponding author – Pingchuan Tan: [email protected] ABSTRACT Saprock-saprolite associations were studied by field and laboratory methods (optical microscopy, X-ray powder diffraction, scanning electron microscopy, electron microprobe) in order to describe regolith development in the crystalline rocks of the Nygård kaolin pit (Bornholm, Denmark). The clay sequences and stages of porosity development are similar to those observed for reservoir rocks from the Utsira High (Riber, L., Dypvik, H., Sørlie, R. and Ferrell, R. (2016) Clay minerals in deeply buried paleoregolith profiles, Norwegian North Sea. Clays and Clay Minerals, in press). The weathering of the parent granite began before the end of the Mesozoic. Two stages of syn- /pre-burial alteration, followed by diagenesis during burial, and then post-uplift weathering have been recognized. In stage Ι, plagioclase and some biotite (biotite-vermiculite-kaolinite) reacted to form elongate booklets of highly-ordered kaolinite or smaller, blocky pseudohexagonal crystals. Stage II represented more extreme weathering developed along local fracture systems. The higher potential for fluid flow in the fractures caused highly-ordered kaolinite to alter to halloysitic, poorly- ordered kaolinite. Plagioclase, biotite, and K-feldspar continued to interact with formation water and formed additional quantities of secondary clay minerals.
    [Show full text]
  • The Tendaguru Formation (Late Jurassic to Early Cretaceous, Southern Tanzania): Definition, Palaeoenvironments, and Sequence Stratigraphy
    Fossil Record 12 (2) 2009, 141–174 / DOI 10.1002/mmng.200900004 The Tendaguru Formation (Late Jurassic to Early Cretaceous, southern Tanzania): definition, palaeoenvironments, and sequence stratigraphy Robert Bussert1, Wolf-Dieter Heinrich2 and Martin Aberhan*,2 1 Institut fr Angewandte Geowissenschaften, Technische Universitt Berlin, Skr. BH 2, Ernst-Reuter-Platz 1, 10587 Berlin, Germany. E-mail: [email protected] 2 Museum fr Naturkunde – Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany. E-mail: [email protected]; [email protected] Abstract Received 8 December 2008 The well-known Late Jurassic to Early Cretaceous Tendaguru Beds of southern Tanza- Accepted 15 February 2009 nia have yielded fossil plant remains, invertebrates and vertebrates, notably dinosaurs, Published 3 August 2009 of exceptional scientific importance. Based on data of the German-Tanzanian Tenda- guru Expedition 2000 and previous studies, and in accordance with the international stratigraphic guide, we raise the Tendaguru Beds to formational rank and recognise six members (from bottom to top): Lower Dinosaur Member, Nerinella Member, Middle Dinosaur Member, Indotrigonia africana Member, Upper Dinosaur Member, and Ruti- trigonia bornhardti-schwarzi Member. We characterise and discuss each member in de- tail in terms of derivation of name, definition of a type section, distribution, thickness, lithofacies, boundaries, palaeontology, and age. The age of the whole formation appar- ently ranges at least from the middle Oxfordian to the Valanginian through Hauterivian or possibly Aptian. The Tendaguru Formation constitutes a cyclic sedimentary succes- sion, consisting of three marginal marine, sandstone-dominated depositional units and three predominantly coastal to tidal plain, fine-grained depositional units with dinosaur remains.
    [Show full text]
  • Water-Mass Evolution in the Cretaceous Western Interior Seaway of North America and Equatorial Atlantic
    Clim. Past, 13, 855–878, 2017 https://doi.org/10.5194/cp-13-855-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic James S. Eldrett1, Paul Dodsworth2, Steven C. Bergman3, Milly Wright4, and Daniel Minisini3 1Shell International Exploration & Production B.V, Kesslerpark 1, 2288 GS Rijswijk, the Netherlands 2StrataSolve Ltd, 42 Gaskell Street, Stockton Heath, Warrington, WA4 2UN, UK 3Shell International Exploration and Production Inc, 200 N. Dairy Ashford, Houston, TX 77079, USA 4Chemostrat Inc., 3760 Westchase Drive, Houston, Texas, TX 77042, USA Correspondence to: James S. Eldrett ([email protected]) Received: 1 November 2016 – Discussion started: 25 November 2016 Revised: 4 May 2017 – Accepted: 29 May 2017 – Published: 14 July 2017 Abstract. The Late Cretaceous Epoch was characterized by tion event related to open water-mass exchange and may have major global perturbations in the carbon cycle, the most been complicated by variable contribution of organic matter prominent occurring near the Cenomanian–Turonian (CT) from different sources (e.g. refractory/terrigenous material), transition marked by Oceanic Anoxic Event 2 (OAE-2) requiring further investigation. at 94.9–93.7 Ma. The Cretaceous Western Interior Sea- way (KWIS) was one of several epicontinental seas in which a complex water-mass evolution was recorded in widespread sedimentary successions. This contribution integrates new 1 Introduction data on the main components of organic matter, geochem- istry, and stable isotopes along a north–south transect from The Late Cretaceous Epoch was characterized by sus- the KWIS to the equatorial western Atlantic and Southern tained global warming, emplacement of several large igneous Ocean.
    [Show full text]