On-Farm Pasteurization of Milk for Calves

Total Page:16

File Type:pdf, Size:1020Kb

On-Farm Pasteurization of Milk for Calves University of Wisconsin Dairy Update On-Farm Pasteurization of Milk for Calves Matt Jorgensen and Pat Hoffman Introduction Listed in the table are the time and temperature guidelines set forth for human consumption. All dairy operations have a supply of milk that is not saleable, commonly called waste milk. Waste milk can be Temperature(°F) Time defined as excess colostrum, non-saleable transition milk, 145 30 min mastitic milk or non-saleable antibiotic treated milk. In the past, waste milk was commonly fed to calves but 161 15 sec concerns with bacteria contamination such as E.coli and 191 1 sec salmonella as well as larger concerns with possible transmission of diseases such as Mycobacterium 194 .5 sec paratuberculosis (Johnes) through feeding waste milk 201 .1 sec have led to a general recommendation not to feed raw waste milk to calves. 204 .05 sec 212 .01 sec Pasteurization of waste milk for calves is one option to reduce management risk while utilizing a valuable low cost liquid feed source for calves. Milk has been It should be noted that pasteurization temperatures for pasteurized for human consumption for many years, but milk containing a high fat content (10 %) should be milk pasteurization equipment and technology has been increased 5° F. This scenario can be very typical for relegated to dairy plants bottling milk or waste milk that can be very high in fat producing dairy products for human content. consumption. Currently, companies are starting to produce, smaller, self- Typical on-farm applications for contained, on-farm pasteurizers pasteurization of waste milk for calves specifically for the utilization of waste involve homemade batch pasteurization milk to feed to calves. These smaller on- systems or commercially produced farm pasteruizers are being marketed at continuous-flow (CF)/flash/high prices that now make the technology temperature, short time (HTST) affordable to an individual dairy operation pasteurizers. Commercially produced CF to consider. pasteurizers feature a heating system with 1 to 15 second retention time, cooling reservoir tank and How Pasteurization Works clean in place (CIP) systems. Specific pasteurizers are also being marketed for the pasteurization of colostrums. Pasteurization was named after Louis Pasteur whom discovered that simple heating could inactivate spoilage Typically, non-agitated batch pasteurizers and CF organisms in wine. The process was later transferred to pasteurizer do not work very well for colostrums because other commodities such as milk. The actual definition of colostrum has a tendency to thicken and flow poorly when pasteurization is; the heating of every particle of milk to a heated to pasteurization temperatures. Despite altered specific temperature for a specific time to reduce physical characteristics, the immunoglobulins and growth undesirable enzymes and bacteria to negligible levels. It factors in colostrums have been shown to be completely is important to understand the pasteurization is not total bioactive after careful pasteurization. sterilization of the milk. It is also important to note that pasteurization is function of time and temperature not just Generally, newly available on-farm waste CF temperature. pasteurization units heat milk to 162° F for 15 seconds. Clinical studies have shown that this combination is effective at killing the bacteria such as Staphylococcus, 1 Streptococcus, Salmonella, E. Coli, Listeria, and the about the long term feeding aspects and risk associated Johnes organism Mycobacterium paratuberculosis, as with feeding pasteurized waste milk. well as most Mycoplasma bacterium. What About Calf Health It is important to note that pasteurization does not kill all the There are two aspects of feeding bacteria, but it reduces numbers of pasteurized waste milk on calf health organisms present to extremely low that need to be considered. First, levels. Despite its effectiveness, feeding pasteurized waste milk has extremely contaminated or notable been demonstrated to improve calf abnormal milk should be discarded health as compared to feeding raw and not pasteurized because its waste milk. In a California study, nutritional characteristics for calves calves fed pasteurized waste milk cannot be assured. had lower incidence of scours and pneumonia; labor cost to treat calf Potential Benefits diseases was also lower. The potential to have an acute disease outbreak in calves should be greatly reduced if A benefit to on-farm commercial waste milk pasteurizers waste milk is pasteurized as compared to feeding raw is that they are becoming relatively easy for users to waste milk. operate, clean, and maintain. Control systems are simple and easier to understand and installation is not complex. Calf health aspects of feeding pasteurized waste milk as On-farm pasteurizers are relatively small, taking up the compared to feeding milk replacer have not been well space of a small milk bulk tank. Calf nutrition is relatively defined. Assuming a high quality milk replacer is fed to unaltered by feeding pasteurized milk. In research trials calves, there would be no apparent logic to suggest any at the University of California-Davis, feeding pasteurized major differences in the incidence of calf disease between milk resulted in calves having fewer days of scours and calves fed milk replacer or pasteurized waste milk. pneumonia, when compared to non-treated milk. Calves fed typical pasteurized waste milk feeding rates (2 Pasteurized waste milk will contain more protein (25-30%) quarts/feeding) will consume significantly more energy and fat (25-35%) on a dry matter basis than a standard and protein as compared to a typical feeding rate of 1.0 lb 20% protein, 20% fat milk replacer; thus pasteurized DM/calf/day of a 20:20 milk replacer (2 quarts/feeding). waste milk is more energy dense on a dry matter basis Calves on higher plane of nutrition are less likely to than typical milk replacers. succumb to mal-absorption during scours events. Milk replacers; however, can and are being reformulated and Potential Problems fed at different rates to optimize nutrient intakes. Dairy operations have to consider their supply of waste milk. To be practically effective a dairy operation must Pasteurizer Set-Up have a stable supply of waste milk. A stable supply of Currently available flash pasteurizers are easy to set-up waste milk is critically important because the liquid feed and are generally self-contained. Units generally require fed to calves should not be changed frequently. For a dedicated circuit at 240 volt, and a 50-80 amp smaller herds this is sometimes difficult because days or receptacle (depending on the size of the unit). Water is weeks can go be where there is no waste milk at all. also required for the pasteurization unit. A drain is also Quality control is also an issue that demands constant required to dispose of water and cleaning solutions. No attention. Milk pasteurizers need to be operated, hard plumbing is typically required to set up the unit. evaluated, and maintained so a quality product is produced. Milk pasteurizers are also an investment The methods of heating milk to pasteurization requiring a return on investment. temperature will determine the water temperature that is needed. If pasteurization temperature is achieved Additionally, little is known about the effects of electrically, water needs to enter the unit at 95-115° F to pasteurization on antibiotic residues in milk. Some cool the milk after pasteurization. antibiotics are heat sensitive and maybe rendered inactive other antibiotics are not. Calves fed pasteurized However, some units reach pasteurization temperature waste milk maybe contaminated with antibiotic residue using water. These units require a dedicated water and would be un-saleble as result until after the heater that will reach pasteurization temperature. appropriate withholding periods. Finally, little is known Typically, units that use a water-heat exchanger will have 2 a feedback loop to cool milk that has been pasteurized. A Tips for Success lower cost option is to let the milk air cool. · Routinely culture samples of pasteurized milk to Because bacteria can survive on debris like hay, manure, monitor quality. and insects, most units now include a filter screen for · Train all employees that will be using the unpasteurized milk. It is vitally important, from a quality pasteurizer to be sure they understand how to control standpoint, that this screen be in place whenever operate the unit and what the concepts of raw milk is put into the machine. In addition, waste milk pasteurization is. should be properly refrigerated and keep as hygienic as · Conduct follow-up training and review for possible prior to pasteurization. employees · Do not pasteurize extremely abnormal milk Clean up of the units is not unlike cleaning milking because nutritional characteristics may be altered equipment. A hot water, alkaline wash followed by an · If calf death loss occurs, diagnose calf morbidities acid rinse is typical. The hot water used for washing and mortalities. needs to be supplied at 135-145° F. This water is · Know how to manually check the temperature of typically supplied from a sink or exterior hose, not the pasteurized milk to ensure proper temperatures water supply that is needed during pasteurization. Some are being met. units may offer an automated cleaning cycle, others · Visit other operations successfully using on-farm require hand washing of some components. waste milk pasteurization systems. Economics
Recommended publications
  • Pasteurization and Its Discontents: Raw Milk, Risk, and the Reshaping of the Dairy Industry Andrea M
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 Pasteurization and its discontents: Raw milk, risk, and the reshaping of the dairy industry Andrea M. Suozzo University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Agriculture Commons, Communication Commons, and the Food Science Commons Recommended Citation Suozzo, Andrea M., "Pasteurization and its discontents: Raw milk, risk, and the reshaping of the dairy industry" (2015). Graduate College Dissertations and Theses. 320. https://scholarworks.uvm.edu/graddis/320 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PASTEURIZATION AND ITS DISCONTENTS: RAW MILK, RISK AND THE RESHAPING OF THE DAIRY INDUSTRY A Thesis Presented By Andrea Suozzo To The Faculty of the Graduate College Of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Food Systems January 2015 Defense Date: August 28, 2014 Thesis Examination Committee: Amy Trubek, Ph.D., Advisor Sarah N. Heiss, Ph.D., Advisor David Conner, Ph.D., Chair Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Milk is something many Americans consume every day, whether over cereal, in coffee or in a cup; as yogurt, cream, cheese or butter. The vast majority of that milk is pasteurized, or heated to the point where much of the bacteria in the milk dies.
    [Show full text]
  • Pasteurization Effects on Yield and Physicochemical Parameters Of
    a ISSN 0101-2061 (Print) ISSN 1678-457X (Online) Food Science and Technology DOI: https://doi.org/10.1590/fst.13119 Pasteurization effects on yield and physicochemical parameters of cheese in cow and goat milk Dahmane TADJINE1, Sofiane BOUDALIA2,3* , Aissam BOUSBIA2,3, Rassim KHELIFA4, Lamia MEBIROUK BOUDECHICHE1, Aicha TADJINE5, Mabrouk CHEMMAM2,3 Abstract Cheese production is one of the most common forms of valorization of dairy production, adding value and preserving milk. Various types of cheese produced from raw and pasteurized milk are known worldwide. In the present work, we are interested in studying the effect of the type of milk (raw and pasteurized) of two species (cow and goat) on the yield and physicochemical characteristics of the fresh cheese. In the northeastern Algeria, on 5 cow farms and 3 goat farms; 5 raw and 5 pasteurized milk cheese manufacturing trials were conducted. The analysis of the results of the 80 samples of milk and cheese of both cow and goat species showed that the latter contained significantly more fat and protein than cow’s milk and that pasteurized milk contained more protein than raw milk. As a result, actual cheese yield of goat cheese was higher than that of cows in pasteurized and raw milk. For higher yield, our result supported the use of pasteurized milk as a raw material in the manufacture of farmhouse cheese. Keywords: cheese yield; manufacturing; pasteurized; raw milk; livestock. Practical Application: For cheese-making under small scale using milk from cow or goat: pasteurization can increase actual cheese yield. 1 Introduction In Algeria, as in all regions of the world, consumption of have been attributed to several indigenous microbiota, such dairy products like cheeses is an old tradition linked to livestock as Lactococcus spp., Lactobacillus spp., Leuconostoc spp., and farming, since dairy products are made using ancient artisanal Enterococcus spp.
    [Show full text]
  • Microbiological Safety of Cheese Made from Heat-Treated Milk, Part I
    441 Journal of Food Protection, Vol. 53, No. 5, Pages 441-452 (May 1990) Copyright© International Association of Milk, Food and Environmental Sanitarians Microbiological Safety of Cheese Made from Heat-Treated Milk, Part I. Executive Summary, Introduction and History ERIC A. JOHNSON1, JOHN H. NELSON1*, and MARK JOHNSON2 Food Research Institute and the Walter V. Price Cheese Research Institute, University of Wisconsin, Madison, Wisconsin 53706 Downloaded from http://meridian.allenpress.com/jfp/article-pdf/53/5/441/1660707/0362-028x-53_5_441.pdf by guest on 30 September 2021 (Received for publication August 2, 1989) ABSTRACT four decades, the United States cheese industry produced over 100 billion pounds of natural cheese (not including Research on pasteurization of milk for cheesemaking was cottage and related varieties). The most frequent causative begun in the late 1800's. Early equipment was crude and control factor in U.S. and Canadian cheese-related outbreaks was devices non-existent. Consequently, early pasteurization proc­ post-pasteurization contamination. Faulty pasteurization esses were not well verified. Commercial application was slow, equipment or procedures were implicated in one outbreak except in New Zealand, where almost the entire cheese industry converted to pasteurization in the 1920's. In the United States, each in the U.S. and Canada. Use of raw milk was a factor debate on the merits of pasteurization continued for years. Demand in one outbreak in each country. Inadequate time-tempera­ for cheese during World War II and foodborne disease outbreaks ture combinations used for milk heat treatment were not caused by cheese stimulated promulgation of government stan­ implicated.
    [Show full text]
  • For Several Commercial Pasteurization and Sterilization Processes: Overview, Uses, and Restrictions
    R&D AND PRODUCTION RETORTS SPECIALISTS (33 to 175 L) www.terrafoodtech.com Heat Process Values F (2nd Ed.) for several Commercial Pasteurization and Sterilization Processes: Overview, Uses, and Restrictions Janwillem Rouweler - [email protected]; June 12, 2015 Which heat process value F should a particular food receive to make it safe and shelf stable? 10 * Section 1 lists reported sterilization values F0 = F 121.1 (= F zero) for commercial food preservation processes of all types of food products, for several package sizes and types. * Section2 contains reported pasteurization values F, or P, of a great variety of foods. The required storage conditions of the pasteurized foods, either at ambient temperature, or refrigerated (4-7 °C), are indicated. * Section 3 shows a decision scheme: should a particular food be pasteurized or sterilized? This depends on the intended storage temperature (refrigerated or ambient) after heating, the required shelf life (7 days to 4 years), the food pH (high acid, acid, or low acid), the food - water activity aW, and on the presence of preservatives such as nitrite NO2 (E250) miXed with salt NaCl, or nisin. * In Section 4, two worked eXamples are presented on how to use an F value when calculating the actual sterilization time Pt: - C.R. Stumbo’s (1973) calculation method has been manually applied, verified by computer program STUMBO.eXe, to find the sterilization time and the thiamine retention of bottled liquid milk in a rotating steam retort; - O.T. Pham’s (1987; 1990) formula method, incorporated in EXcel program “Heat Process calculations according to Pham.xls”, has been used to find the sterilization time and the nutrient retention of canned carrot purée in a still steam retort.
    [Show full text]
  • Federal Regulation of Raw Milk Cheese
    FEDERAL REGULATION OF RAW MILK CHEESE Obianuju Nsofor PhD Dairy and Egg Branch Office of Food Safety Food and Drug Administration Background ¡ Safety of raw milk cheeses is a public health concern. ¡ The presence of pathogens in dairy products is an indicator of poor sanitation, temperature abuse, inadequate pasteurization, fermentation failure, or obtaining milk from sick animals. ¡ Raw milk has been shown to be a major source of foodborne pathogens from prevalence studies. Background cont. ¡ Consumption of contaminated raw milk products has led to several foodborne outbreaks including brucellosis, salmonellosis, listeriosis, HUS associated with E. coli 0157:H7, staph. enterotoxin poisoning etc. ¡ Between 1941 to 1944, there were outbreaks of illnesses due to the consumption of cheeses made from raw milk. ¡ By 1946, there were scientific reports indicating the survival of pathogenic bacteria in raw milk cheeses. Background cont. ¡ FDA in 1949 promulgated standards for cheese as a response to numerous foodborne outbreaks due to consumption of improperly heat treated or raw milk cheeses. ¡ In the 1960’s more challenge studies were carried out to investigate the survival of pathogens after the 60-day aging period. Regulation /Policy ¡ In 1987, FDA prohibited interstate sale or distribution of non-pasteurized dairy products to consumers. ¡ Current Federal Regulations (21 CFR 1240.61) require: l “mandatory pasteurization for all milk and milk products in final package form intended for direct human consumption” Regulation /Policy cont. Exception: ¡ Cheeses identified by standards at 21 CFR 133 et seq. may be made from raw milk. They typically have to be aged for a defined time period in order to control microbial pathogens.
    [Show full text]
  • Pasteurization of Market Milk in the Glass Enameled Tank and in the Bottle T.H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Public Research Access Institutional Repository and Information Exchange South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange South Dakota State University Agricultural Bulletins Experiment Station 6-1-1923 Pasteurization of Market Milk in the Glass Enameled Tank and in the Bottle T.H. Wright Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_bulletins Recommended Citation Wright, T.H., "Pasteurization of Market Milk in the Glass Enameled Tank and in the Bottle" (1923). Bulletins. Paper 203. http://openprairie.sdstate.edu/agexperimentsta_bulletins/203 This Bulletin is brought to you for free and open access by the South Dakota State University Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Bulletin No. 203 June, 1923 PASTEURIZATIO N OF MARKET MILK IN THE GLASS ENAMELED TANK AND IN-THE-BOTTLE Dairy Husbandry Department AGRICULTURAL EXPERIMENT STATION SOUTH DAKOTA STATE COLLEGE OF AGRICULTURE AND MECHANIC ARTS Brookings, South Dakota GOVERNING BOARD Honorable T. W. D'Yight, president ..............Sioux Falls Honorable_ August Frieberg, vice-president ........Beresford Honorable J. 0. Johnson .......................Watertown Honorable Robert Dailey ............·............ Flandreau Honorable Alvin Waggoner ......................' ...Philip STATION STAFF Robert Dailey ............................Regent Member T. W. Dwight ............................Regent Member Willis E. Johnson ..·.................. President of College . C. Larsen ............................Dean of Agriculture James W.
    [Show full text]
  • Vacuum Pasteurization of Cream for Butter
    STATION BULLETIN 368 JANUARY 1940 Vacuum Pasteurization of Cream for Butter By G. H. WILSTER II Oregon State System of Higher Education Agricultural Experiment Station Oregon State College Corvallis TABLE OF CONTENTS Page Summary 6 Vactnim Pasteurization of Cream for Butter 9 History of Pasteurization 10 Effect of Pasteurization on the Number of Bacteria, Yeasts, Molds and Enzymes in Cream 11 History and Development of Pasteurization and Vacreation in New Zealand13 Feed and Weed Flavors in Milk, Cream, and Butter 14 Introduction of Vacreation in the United States 16 The Treatment of Cream by Vacreation 16 Method of Conducting the Investigational Work 18 Results Obtained from the Investigational Work 20 Scores of the Fresh Butter (Weekly Scorings) 21 Scores by the Federal Butter Grader at Portland 24 Scores of the Butter after Holding it for One Month 27 Scores of the Butter after Storing it for Four Months 29 Influence of Pasteurization on the Bacteria, Yeasts, and Molds 32 Vacreation of Premium and First Grade Cream 34 The Influence of Vacreation of Cream Tainted with Weed Flavor on the Quality of Butter 37 Vacreated Cream Butter Obtained from New Zealand 39 Discussion of the Results Obtained Additional Investigational Projects Involving Vacreation now in Prog- ress at the Oregon Agricultural Experiment Station 47 Bibliography 47 FOREWORD of the several functions of the Oregon Agricultural Experi- ONEment Station is to improve through research and investigation the market quality of the agricultural products of the state. The object of the particular investigation reported herein was to determine whether or not a newer method of pasteurization would improve the marketability of butter by removing certain undesirable flavors and improving the body, texture, and keeping quality.
    [Show full text]
  • A Summary of Water Pasteurization Techniques
    A SUMMARY OF WATER PASTEURIZATION TECHNIQUES Dale Andreatta, Ph. D., P. E. SEA Ltd. 7349 Worthington-Galena Rd. Columbus, OH 43085 (614) 888-4160 FAX (614) 885-8014 e-mail [email protected] Last modified Feb. 6, 2007 Introduction In developing countries the burden of disease caused by contaminated water and a lack of sanitation continues to be staggering, particularly among young children. According to the United Nations Children's Fund (UNICEF) diarrhea is the most common childhood disease in developing countries. Dehydration resulting from diarrhea is the leading cause of death in children under the age of five, annually killing an estimated five million children.1 (Footnotes refer to references at the end of this document.) Contrary to what many people believe, it is not necessary to boil water to make it safe to drink. Heating water to 65° C (149° F) for 6 minutes, or to a higher temperature for a shorter time, will kill all germs, viruses, and parasites.3 This process is called pasteurization. In this document we describe several pasteurization techniques applicable to developing countries. Pasteurization is not the only technique that can be used to make water safe to drink. Chlorination, ultra- violet disinfection, and the use of a properly constructed, properly maintained well are other ways of providing clean water that may be more appropriate, particularly if a large amount of water is needed. Conversely, if a relatively small amount of water is needed, pasteurization systems have the advantage of being able to be scaled down with a corresponding decrease in cost. In other words, if you have only a little money, you can use pasteurization to get a little clean water, perhaps enough for a family but not a village.
    [Show full text]
  • Human Milk from Previously COVID-19-Infected Mothers: the Effect of Pasteurization on Specific Antibodies and Neutralization Capacity
    nutrients Article Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity Britt J. van Keulen 1,† , Michelle Romijn 1,†, Albert Bondt 2,3,† , Kelly A. Dingess 2,3,† , Eva Kontopodi 1,4,† , Karlijn van der Straten 5 , Maurits A. den Boer 2,3 , Judith A. Burger 5, Meliawati Poniman 5, Berend J. Bosch 6, Philip J. M. Brouwer 5, Christianne J. M. de Groot 7, Max Hoek 2, Wentao Li 6 , Dasja Pajkrt 1 , Rogier W. Sanders 5,8, Anne Schoonderwoerd 1, Sem Tamara 2,3, Rian A. H. Timmermans 9, Gestur Vidarsson 10 , Koert J. Stittelaar 11, Theo T. Rispens 12, Kasper A. Hettinga 4 , Marit J. van Gils 5, Albert J. R. Heck 2,3 and Johannes B. van Goudoever 1,* 1 Department of Pediatrics, Amsterdam UMC, Vrije Universiteit, University of Amsterdam Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; [email protected] (B.J.v.K.); [email protected] (M.R.); [email protected] (E.K.); [email protected] (D.P.); [email protected] (A.S.) 2 Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; [email protected] (A.B.); [email protected] (K.A.D.); [email protected] (M.A.d.B.); [email protected] (M.H.); [email protected] (S.T.); [email protected] (A.J.R.H.) 3 Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands Citation: van Keulen, B.J.; Romijn, 4 Food Quality & Design Group, Wageningen University and Research, M.; Bondt, A.; Dingess, K.A.; 6708 WG Wageningen, The Netherlands; [email protected] 5 Kontopodi, E.; van der Straten, K.; Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, den Boer, M.A.; Burger, J.A.; Poniman, 1105 AZ Amsterdam, The Netherlands; [email protected] (K.v.d.S.); [email protected] (J.A.B.); [email protected] (M.P.); M.; Bosch, B.J.; et al.
    [Show full text]
  • The Study on UHT Processing of Milk: a Versatile Option for Rural Sector
    World Journal of Dairy & Food Sciences 2 (2): 49-53, 2007 ISSN 1817-308X © IDOSI Publications, 2007 The Study on UHT Processing of Milk: A Versatile Option for Rural Sector Kishor Gedam, Rajendra Prasad and V.K. Vijay Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi-110016, India Abstract: India is the largest milk producing country in the world. Most of the rural poor people are involved in the milk production. India has a tropical climate; milk cannot be kept for more than three hours at ambient temperature immediately after milking. Cooling equipments are not available in many parts of the country and if available, which are not affordable to rural people. Milk preservation prior to distribution and sale is major problem in India. So it is necessary to develop a new sciencitific and efficient method to overcome such problems. If low cost and highly effective technology for preservation of milk can be implemented in rural areas, it can be beneficial to rural people. Ultra-high Temperature processing (or UHT) is the partial sterilization of food by heating it for a short time, around 1-2 seconds, at a temperature exceeding 135°C and then kept inside the aseptic package. Such a high temperature required to kill spores in milk. The high temperature also reduces the processing time, thereby reducing the spoiling of nutrients and has excellent keeping qualities and stored for long period of time at ambient temperature. Aseptic packaging machines are very expensive and UHT milk depends entirely on it. There is a need to reduce its cost so that UHT processing and packaging machine can be approachable to rural poor farmers in India.
    [Show full text]
  • On-Farm Pasteurization of Milk for Calves
    University of Wisconsin Dairy Update On-Farm Pasteurization of Milk for Calves Matt Jorgensen and Pat Hoffman Introduction Listed in the table are the time and temperature guidelines set forth for human consumption. All dairy operations have a supply of milk that is not saleable, commonly called waste milk. Waste milk can be Temperature(°F) Time defined as excess colostrum, non-saleable transition milk, 145 30 min mastitic milk or non-saleable antibiotic treated milk. In the past, waste milk was commonly fed to calves but 161 15 sec concerns with bacteria contamination such as E.coli and 191 1 sec salmonella as well as larger concerns with possible transmission of diseases such as Mycobacterium 194 .5 sec paratuberculosis (Johnes) through feeding waste milk 201 .1 sec have led to a general recommendation not to feed raw waste milk to calves. 204 .05 sec Pasteurization of waste milk for calves is one option to 212 .01 sec reduce management risk while utilizing a valuable low cost liquid feed source for calves. Milk has been It should be noted that pasteurization temperatures for pasteurized for human consumption for many years, but milk containing a high fat content (10 %) should be milk pasteurization equipment and technology has been increased 5° F. This scenario can be very typical for relegated to dairy plants bottling milk or waste milk that can be very high in fat producing dairy products for human content. consumption. Currently, companies are starting to produce, smaller, self- Typical on-farm applications for contained, on-farm pasteurizers pasteurization of waste milk for calves specifically for the utilization of waste involve homemade batch pasteurization milk to feed to calves.
    [Show full text]
  • UHT Vs ESL Beverages: Advantages, Disadvantages and a Unified Testing Platform
    White Paper UHT vs ESL beverages: Advantages, Disadvantages and a Unified Testing Platform Introduction The global aseptic food and beverage packaging market is derived beverages. In addition, it poses new obstacles: the expected to reach $35 billion by 2025. Some of this growth need for extra equipment, processes and technologies. This is due to the increased popularity in dairy products. This means higher processing costs which are often recouped at has fueled the demand for products with longer shelf lives a premium price, but this is not the case for milk. Therefore, and room temperature storage. As a result, the demand for many dairies have been looking for better ways to process aseptically packaged beverages has grown significantly. milk for consumer use, especially in emerging markets where milk is often distributed at ambient temperatures. Aseptic packaging and filling is a specialized process in which “Aseptic packaging and filling is Milk products are generally required product is sterilized separately a specialized process in which to be processed by thermal from the packaging, and then product is sterilized separately methods such as pasteurization, filled into sterile containers under from the packaging” as has been done for decades. extremely clean environments to Drawbacks to this are it still has maintain sterility and long shelf life. This method requires the restrictions of limited shelf life, chilled distribution, and extremely high temperatures for short bursts of time so that it must be stored refrigerated after purchase. This paper will maintains the freshness of the contents and ensures that it is look at two additional processing methods which offer some not contaminated with microorganisms.
    [Show full text]