Hyperbolic Geometry—Introduction the Basics of the Half-Plane Model

Total Page:16

File Type:pdf, Size:1020Kb

Hyperbolic Geometry—Introduction the Basics of the Half-Plane Model Hyperbolic Geometry|Introduction The basics of the half-plane model of hyperbolic geometry are explored. Now that we know a lot about general geometry, what can we do that is not Euclidean| where we don't need the parallel postulate? In fact, what can we do to show that the parallel postulate is necessary in order to distinguish Euclidean geometry from something else? Imagine living in a 2-dimensional universe that is in the half-plane y > 0, but where distances are warped. The stretching factor is inversely proportional to the distance from the x-axis. So, if it takes one minute to talk from (0; 1) to (1; 1) along the horizontal line segment then it would take only 30 seconds to walk from (0; 2) to (1; 2) while going from (0; 1=3) to (1; 1=3) takes 3 minutes. This may look strange from the outside, but remember that we are inside this crazy plane, so our rulers and our legs shrink and stretch so that these distances look perfectly normal to us. This is called the hyperbolic plane. One of the more interesting things to note is that you really shouldn't travel along horizontal line segments to get from one place to another. This is because if you bow your trip a little north, you may stretch your legs to be long enough to more than make up for the extra (Euclidean) length you are covering. In fact, it turns out the geodesics in this wacky plane are pieces of circles! Specifically, if we are given two points (x1; y1) and (x2; y2): • If x1 = x2 so that the points are separated only vertically, then the geodesic between them is the vertical line segment, and the distance between them is j ln (y2=y1)j. • Otherwise, the geodesic between them is the arc of a circle centered on the x-axis that passes through both points. If this circle is centered at (c; 0) and has (Euclidean) (x1 − c − r)y2 radius r, then the distance between the points is ln . (x2 − c − r)y1 These formulas are not hard to prove with calculus, but not terribly easy either. We have Z b px02 + y02 to compute lengths of curves with the (parametric) arclength formula dt. An a y alternate formula for the distance is as follows. If the points are P and Q, and R and S are the two points where the circle through these points, centered on the x-axis meet the x-axis, PR · QS then the distance between P and Q is ln . This can be extended to vertically QR · PS separated points by taking R as the point at the base of the vertical line and S to be at infinity, and \cancelling" the two infinities. Believe it or not, this geometry satisfies the axioms of neutral geometry! 1. There is a unique geodesic through any two points. 2. Given a geodesic and a point on the geodesic and a distance, it is possible to find a point on the geodeic at the given distance from the original point. 3. Given a point and a segment with that point at one end, it is possible to draw a circle|to find a set of points all at that distance from the given point. 1 4. All right angles are equal to each other. To measure angles, we simply measure the angle between tangent lines. So we are mea- suing Euclidean angles, whcih satisfy the axiom. So axiom 4 is easy. Axiom 1 is easy, also. To explain axiom 2, we let a point slide along a geodesic. As it nears the given point, the distance drops to zero, while as it gets farther away the distance grows without bound. In fact, if we hold P fixed and let Q very, the distance between them grows toward infinity as Q nears the x-axis. Axiom 3 requires some ingenuity. Given point P (x; y) and distance r, draw the Euclidean circle with center (x; y cosh (r)) and radius y sinh (r). I claim that all the points on this circle are equidistance from (x; y). This means that all the theorems we have proved work! Consider something like the SAS theorem. We could draw triangles on very differently sized geodesics, and they are still congruent. For example, the two triangles below are both isosceles right trianlges with legs of length one. 2.
Recommended publications
  • Models of 2-Dimensional Hyperbolic Space and Relations Among Them; Hyperbolic Length, Lines, and Distances
    Models of 2-dimensional hyperbolic space and relations among them; Hyperbolic length, lines, and distances Cheng Ka Long, Hui Kam Tong 1155109623, 1155109049 Course Teacher: Prof. Yi-Jen LEE Department of Mathematics, The Chinese University of Hong Kong MATH4900E Presentation 2, 5th October 2020 Outline Upper half-plane Model (Cheng) A Model for the Hyperbolic Plane The Riemann Sphere C Poincar´eDisc Model D (Hui) Basic properties of Poincar´eDisc Model Relation between D and other models Length and distance in the upper half-plane model (Cheng) Path integrals Distance in hyperbolic geometry Measurements in the Poincar´eDisc Model (Hui) M¨obiustransformations of D Hyperbolic length and distance in D Conclusion Boundary, Length, Orientation-preserving isometries, Geodesics and Angles Reference Upper half-plane model H Introduction to Upper half-plane model - continued Hyperbolic geometry Five Postulates of Hyperbolic geometry: 1. A straight line segment can be drawn joining any two points. 2. Any straight line segment can be extended indefinitely in a straight line. 3. A circle may be described with any given point as its center and any distance as its radius. 4. All right angles are congruent. 5. For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. Some interesting facts about hyperbolic geometry 1. Rectangles don't exist in hyperbolic geometry. 2. In hyperbolic geometry, all triangles have angle sum < π 3. In hyperbolic geometry if two triangles are similar, they are congruent.
    [Show full text]
  • Holley GM LS Race Single-Plane Intake Manifold Kits
    Holley GM LS Race Single-Plane Intake Manifold Kits 300-255 / 300-255BK LS1/2/6 Port-EFI - w/ Fuel Rails 4150 Flange 300-256 / 300-256BK LS1/2/6 Carbureted/TB EFI 4150 Flange 300-290 / 300-290BK LS3/L92 Port-EFI - w/ Fuel Rails 4150 Flange 300-291 / 300-291BK LS3/L92 Carbureted/TB EFI 4150 Flange 300-294 / 300-294BK LS1/2/6 Port-EFI - w/ Fuel Rails 4500 Flange 300-295 / 300-295BK LS1/2/6 Carbureted/TB EFI 4500 Flange IMPORTANT: Before installation, please read these instructions completely. APPLICATIONS: The Holley LS Race single-plane intake manifolds are designed for GM LS Gen III and IV engines, utilized in numerous performance applications, and are intended for carbureted, throttle body EFI, or direct-port EFI setups. The LS Race single-plane intake manifolds are designed for hi-performance/racing engine applications, 5.3 to 6.2+ liter displacement, and maximum engine speeds of 6000-7000 rpm, depending on the engine combination. This single-plane design provides optimal performance across the RPM spectrum while providing maximum performance up to 7000 rpm. These intake manifolds are for use on non-emissions controlled applications only, and will not accept stock components and hardware. Port EFI versions may not be compatible with all throttle body linkages. When installing the throttle body, make certain there is a minimum of ¼” clearance between all linkage and the fuel rail. SPLIT DESIGN: The Holley LS Race manifold incorporates a split feature, which allows disassembly of the intake for direct access to internal plenum and port surfaces, making custom porting and matching a snap.
    [Show full text]
  • A Historical Introduction to Elementary Geometry
    i MATH 119 – Fall 2012: A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning “earth measure” ( ge = earth or land ) + ( metria = measure ) . Euclid wrote the Elements of geometry between 330 and 320 B.C. It was a compilation of the major theorems on plane and solid geometry presented in an axiomatic style. Near the beginning of the first of the thirteen books of the Elements, Euclid enumerated five fundamental assumptions called postulates or axioms which he used to prove many related propositions or theorems on the geometry of two and three dimensions. POSTULATE 1. Any two points can be joined by a straight line. POSTULATE 2. Any straight line segment can be extended indefinitely in a straight line. POSTULATE 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center. POSTULATE 4. All right angles are congruent. POSTULATE 5. (Parallel postulate) If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. The circle described in postulate 3 is tacitly unique. Postulates 3 and 5 hold only for plane geometry; in three dimensions, postulate 3 defines a sphere. Postulate 5 leads to the same geometry as the following statement, known as Playfair's axiom, which also holds only in the plane: Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.
    [Show full text]
  • Geometry Course Outline
    GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid
    [Show full text]
  • Points, Lines, and Planes a Point Is a Position in Space. a Point Has No Length Or Width Or Thickness
    Points, Lines, and Planes A Point is a position in space. A point has no length or width or thickness. A point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. A A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. It does not have a beginning or end. A B C D A line consists of infinitely many points. The four points A, B, C, D are all on the same line. Postulate: Two points determine a line. We name a line by using any two points on the line, so the above line can be named as any of the following: ! ! ! ! ! AB BC AC AD CD Any three or more points that are on the same line are called colinear points. In the above, points A; B; C; D are all colinear. A Ray is part of a line that has a beginning point, and extends indefinitely to one direction. A B C D A ray is named by using its beginning point with another point it contains. −! −! −−! −−! In the above, ray AB is the same ray as AC or AD. But ray BD is not the same −−! ray as AD. A (line) segment is a finite part of a line between two points, called its end points. A segment has a finite length. A B C D B C In the above, segment AD is not the same as segment BC Segment Addition Postulate: In a line segment, if points A; B; C are colinear and point B is between point A and point C, then AB + BC = AC You may look at the plus sign, +, as adding the length of the segments as numbers.
    [Show full text]
  • The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes
    S S symmetry Article The Second-Order Correction to the Energy and Momentum in Plane Symmetric Gravitational Waves Like Spacetimes Mutahir Ali *, Farhad Ali, Abdus Saboor, M. Saad Ghafar and Amir Sultan Khan Department of Mathematics, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; [email protected] (F.A.); [email protected] (A.S.); [email protected] (M.S.G.); [email protected] (A.S.K.) * Correspondence: [email protected] Received: 5 December 2018; Accepted: 22 January 2019; Published: 13 February 2019 Abstract: This research provides second-order approximate Noether symmetries of geodetic Lagrangian of time-conformal plane symmetric spacetime. A time-conformal factor is of the form ee f (t) which perturbs the plane symmetric static spacetime, where e is small a positive parameter that produces perturbation in the spacetime. By considering the perturbation up to second-order in e in plane symmetric spacetime, we find the second order approximate Noether symmetries for the corresponding Lagrangian. Using Noether theorem, the corresponding second order approximate conservation laws are investigated for plane symmetric gravitational waves like spacetimes. This technique tells about the energy content of the gravitational waves. Keywords: Einstein field equations; time conformal spacetime; approximate conservation of energy 1. Introduction Gravitational waves are ripples in the fabric of space-time produced by some of the most violent and energetic processes like colliding black holes or closely orbiting black holes and neutron stars (binary pulsars). These waves travel with the speed of light and depend on their sources [1–5]. The study of these waves provide us useful information about their sources (black holes and neutron stars).
    [Show full text]
  • Historical Introduction to Geometry
    i A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning “earth measure” ( ge = earth or land ) + ( metria = measure ) . Euclid wrote the Elements of geometry between 330 and 320 B.C. It was a compilation of the major theorems on plane and solid geometry presented in an axiomatic style. Near the beginning of the first of the thirteen books of the Elements, Euclid enumerated five fundamental assumptions called postulates or axioms which he used to prove many related propositions or theorems on the geometry of two and three dimensions. POSTULATE 1. Any two points can be joined by a straight line. POSTULATE 2. Any straight line segment can be extended indefinitely in a straight line. POSTULATE 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center. POSTULATE 4. All right angles are congruent. POSTULATE 5. (Parallel postulate) If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. The circle described in postulate 3 is tacitly unique. Postulates 3 and 5 hold only for plane geometry; in three dimensions, postulate 3 defines a sphere. Postulate 5 leads to the same geometry as the following statement, known as Playfair's axiom, which also holds only in the plane: Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.
    [Show full text]
  • MATH32052 Hyperbolic Geometry
    MATH32052 Hyperbolic Geometry Charles Walkden 12th January, 2019 MATH32052 Contents Contents 0 Preliminaries 3 1 Where we are going 6 2 Length and distance in hyperbolic geometry 13 3 Circles and lines, M¨obius transformations 18 4 M¨obius transformations and geodesics in H 23 5 More on the geodesics in H 26 6 The Poincar´edisc model 39 7 The Gauss-Bonnet Theorem 44 8 Hyperbolic triangles 52 9 Fixed points of M¨obius transformations 56 10 Classifying M¨obius transformations: conjugacy, trace, and applications to parabolic transformations 59 11 Classifying M¨obius transformations: hyperbolic and elliptic transforma- tions 62 12 Fuchsian groups 66 13 Fundamental domains 71 14 Dirichlet polygons: the construction 75 15 Dirichlet polygons: examples 79 16 Side-pairing transformations 84 17 Elliptic cycles 87 18 Generators and relations 92 19 Poincar´e’s Theorem: the case of no boundary vertices 97 20 Poincar´e’s Theorem: the case of boundary vertices 102 c The University of Manchester 1 MATH32052 Contents 21 The signature of a Fuchsian group 109 22 Existence of a Fuchsian group with a given signature 117 23 Where we could go next 123 24 All of the exercises 126 25 Solutions 138 c The University of Manchester 2 MATH32052 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 27 55805, Email: [email protected]. My office hour is: WHEN?. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § 0.2.1 MATH32052 § MATH32052 Hyperbolic Geoemtry is a 10 credit course.
    [Show full text]
  • Chapter 1 Euclidean Space
    Euclidean space 1 Chapter 1 Euclidean space A. The basic vector space We shall denote by R the ¯eld of real numbers. Then we shall use the Cartesian product Rn = R £ R £ ::: £ R of ordered n-tuples of real numbers (n factors). Typical notation for x 2 Rn will be x = (x1; x2; : : : ; xn): Here x is called a point or a vector, and x1, x2; : : : ; xn are called the coordinates of x. The natural number n is called the dimension of the space. Often when speaking about Rn and its vectors, real numbers are called scalars. Special notations: R1 x 2 R x = (x1; x2) or p = (x; y) 3 R x = (x1; x2; x3) or p = (x; y; z): We like to draw pictures when n = 1, 2, 3; e.g. the point (¡1; 3; 2) might be depicted as 2 Chapter 1 We de¯ne algebraic operations as follows: for x, y 2 Rn and a 2 R, x + y = (x1 + y1; x2 + y2; : : : ; xn + yn); ax = (ax1; ax2; : : : ; axn); ¡x = (¡1)x = (¡x1; ¡x2;:::; ¡xn); x ¡ y = x + (¡y) = (x1 ¡ y1; x2 ¡ y2; : : : ; xn ¡ yn): We also de¯ne the origin (a/k/a the point zero) 0 = (0; 0;:::; 0): (Notice that 0 on the left side is a vector, though we use the same notation as for the scalar 0.) Then we have the easy facts: x + y = y + x; (x + y) + z = x + (y + z); 0 + x = x; in other words all the x ¡ x = 0; \usual" algebraic rules 1x = x; are valid if they make (ab)x = a(bx); sense a(x + y) = ax + ay; (a + b)x = ax + bx; 0x = 0; a0 = 0: Schematic pictures can be very helpful.
    [Show full text]
  • Lesson 5: Three-Dimensional Space
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 M3 GEOMETRY Lesson 5: Three-Dimensional Space Student Outcomes . Students describe properties of points, lines, and planes in three-dimensional space. Lesson Notes A strong intuitive grasp of three-dimensional space, and the ability to visualize and draw, is crucial for upcoming work with volume as described in G-GMD.A.1, G-GMD.A.2, G-GMD.A.3, and G-GMD.B.4. By the end of the lesson, students should be familiar with some of the basic properties of points, lines, and planes in three-dimensional space. The means of accomplishing this objective: Draw, draw, and draw! The best evidence for success with this lesson is to see students persevere through the drawing process of the properties. No proof is provided for the properties; therefore, it is imperative that students have the opportunity to verify the properties experimentally with the aid of manipulatives such as cardboard boxes and uncooked spaghetti. In the case that the lesson requires two days, it is suggested that everything that precedes the Exploratory Challenge is covered on the first day, and the Exploratory Challenge itself is covered on the second day. Classwork Opening Exercise (5 minutes) The terms point, line, and plane are first introduced in Grade 4. It is worth emphasizing to students that they are undefined terms, meaning they are part of the assumptions as a basis of the subject of geometry, and they can build the subject once they use these terms as a starting place. Therefore, these terms are given intuitive descriptions, and it should be clear that the concrete representation is just that—a representation.
    [Show full text]
  • The Hyperbolic Plane
    The Hyperbolic Plane Rich Schwartz November 19, 2014 1 Euclid’s Postulates Hyperbolic geometry arose out of an attempt to understand Euclid’s fifth postulate. So, first I am going to discuss Euclid’s postulates. Here they are: 1. Given any two distinct points in the plane, there is a line through them. 2. Any line segment may be extended to a line. 3. Given any point and any radius, there is a circle with that radius cen- tered at that point. 4. All right angles are equal to one another. 5. Suppose that you have two lines L1 and L2 and a third line M. Suppose that M intersects L1 and L2 at two interior angles whose sum is less than the sum of two right angles on one side. Then L1 and L2 meet on that side. (See Figure 1.) L1 M L2 Figure 1: Euclid’s fifth postulate. 1 Euclid’s fifth postulate is often reformulated like this: For any line L and any point p not on L, there is a unique line L′ through p such that L and L′ do not intersect – i.e., are parallel. This is why Euclid’s fifth postulate is often called the parallel postulate. Euclid’s postulates have a quaint and vague sound to modern ears. They have a number of problems. In particular, they do not uniquely pin down the Euclidean plane. A modern approach is to make a concrete model for the Euclidean plane, and then observe that Euclid’s postulates hold in that model. So, from a modern point of view, the Euclidean plane is R2, namely the set of ordered pairs of real numbers.
    [Show full text]
  • Perpendicular and Parallel Line Segments
    Name: Date: r te p a h Perpendicular and C Parallel Line Segments Practice 1 Drawing Perpendicular Line Segments Use a protractor to draw perpendicular line segments. Example Draw a line segment perpendicular to RS through point T. S 0 180 10 1 70 160 20 150 30 140 40 130 50 0 120 180 6 0 10 11 0 170 70 20 100 30 160 80 40 90 80 150 50 70 60 140 100 130 110 120 R T © Marshall Cavendish International (Singapore) Private Limited. Private (Singapore) International © Marshall Cavendish 1. Draw a line segment perpendicular to PQ. P Q 2. Draw a line segment perpendicular to TU through point X. X U T 67 Lesson 10.1 Drawing Perpendicular Line Segments 08(M)MIF2015CC_WBG4B_Ch10.indd 67 4/30/13 11:18 AM Use a drawing triangle to draw perpendicular line segments. Example M L N K 3. Draw a line segment 4. Draw a line segment perpendicular to EF . perpendicular to CD. C E F D © Marshall Cavendish International (Singapore) Private Limited. Private (Singapore) International © Marshall Cavendish 5. Draw a line segment perpendicular to VW at point P. Then, draw another line segment perpendicular to VW through point Q. Q V P W Line Segments 68 and Parallel Chapter 10 Perpendicular 08(M)MIF2015CC_WBG4B_Ch10.indd 68 4/30/13 11:18 AM Name: Date: Practice 2 Drawing Parallel Line Segments Use a drawing triangle and a straightedge to draw parallel line segments. Example Draw a line segment parallel to AB . A B 1. Draw a pair of parallel line segments.
    [Show full text]