Solutions to Exercises

Total Page:16

File Type:pdf, Size:1020Kb

Solutions to Exercises Solutions to Exercises Solutions to Chapter 1 exercises: 1 i 1.1: Write x =Re(z)= 2 (z + z)andy =Im(z)=− 2 (z − z), so that 1 i 1 1 ax + by + c = a (z + z) − b (z − z)+c = (a − ib)z + (a + bi)z + c =0. 2 2 2 2 − a Note that the slope of this line is b , which is the quotient of the imaginary and real parts of the coefficient of z. 2 2 2 Given the circle (x − h) +(y − k) = r , set z0 = h + ik and rewrite the equation of the circle as 2 2 2 |z − z0| = zz − z0z − z0z + |z0| = r . 1.2: A and S1 are perpendicular if and only if their tangent lines at the point of intersection are perpendicular. Let x be a point of A ∩ S1, and consider the Euclidean triangle T with vertices 0, reiθ,andx. The sides of T joining x to the other two vertices are radii of A and S1,andsoA and S1 are perpendicular 1 if and only if the interior angle of T at x is 2 π, which occurs if and only if the Pythagorean theorem holds, which occurs if and only if s2 +12 = r2. 1.3: Let Lpq be the Euclidean line segment joining p and q. The midpoint of 1 Im(q)−Im(p) Lpq is 2 (p + q), and the slope of Lpq is m = Re(q)−Re(p) . The perpendicular 1 − 1 Re(p)−Re(q) bisector K of Lpq passes through 2 (p + q) and has slope m = Im(q)−Im(p) , and so K has the equation 1 Re(p) − Re(q) 1 y − (Im(p) + Im(q)) = x − (Re(p) + Re(q)) . 2 Im(q) − Im(p) 2 217 218 Hyperbolic Geometry The Euclidean centre c of A is the x-intercept of K,whichis 1 Im(q) − Im(p) c = − (Im(p) + Im(q)) 2 Re(p) − Re(q) 1 + (Re(p) + Re(q)) 2 1 (Im(p))2 − (Im(q))2 + (Re(p))2 − (Re(q))2 = 2 Re(p) − Re(q) 1 |p|2 −|q|2 = . 2 Re(p) − Re(q) The Euclidean radius of A is 2 2 1 |p| −|q| r = |c − p| = − p . 2 Re(p) − Re(q) 1.4: One hyperbolic line through i that is parallel to is the positive imaginary axis I = H∩{Re(z)=0}. To get a second hyperbolic line through i and parallel to , take any point x on R between 0 and 3, say x = 2, and consider the Euclidean circle A centred on R through 2 and i. 3 By Exercise 1.3, the Euclidean centre c of A is c = 4 and the Euclidean radius 5 of A is r = 4 . As the real part of every point on A is at most 2, the hyperbolic line H ∩ A is a hyperbolic line passing through i that is parallel to . 1.5: The Euclidean circle D√ through i and concentric to A has Euclidean centre −2 and Euclidean radius 5=|i − (−2)|, and so one hyperbolic line through i parallel to A is H ∩ D. To construct a second hyperbolic line through i parallel to , start by taking apointx on R between A and D,sayx = −4. Let E be the Euclidean circle centred on R passing through −4andi. By Exercise 1.3, the Euclidean centre 15 17 c of E is c = − 8 and the Euclidean radius is r = 8 . It is an easy calculation that the two Euclidean circles {z ∈ C ||z +2| =1} 15 17 and {z ∈ C | z + 8 = 8 } are disjoint, and so the hyperbolic line H ∩ E is a hyperbolic line passing through i that is parallel to . 1 1.6: If c = 0, then the Euclidean line Lc passing through i and 0 intersects S at ±i,andsoξ−1(0) = −i. Given a point c =0in R, the equation of the Euclidean line Lc passing through c and i is 1 1 y = − (x − c)=− x +1. c c Solutions to Exercises 219 To find where L intersects S1, we find the values of x for which c 1 |x + iy| = x + i − x +1 =1, c which simplifies to 1 2 x 1+ x − =0. c2 c As x = 0 corresponds to i,wehavethat 2c x = . c2 +1 So, 2c c2 − 1 ξ−1(c)= + i . c2 +1 c2 +1 1.7: Calculating, 2π 1 4π −1 ξ(1) = 1; ξ exp i = √ ;andξ exp i = √ . 3 3 − 2 3 3+2 1.8: Let z be a point of H. The Euclidean distance from z to R is Im(z). So, UIm(z)(z) is contained in H, but Uε(z) is not contained in H for any ε>Im(z). 1.9: Recall that K is bounded if and only if there exists some M>0sothat K is contained in UM (0). In particular, we have that UM (∞) is contained in X. For any z ∈ C − K, the Euclidean distance δ(z)fromz to K is positive, because K is closed, and so Uε(z) is contained in X for any 0 <ε<δ(z). Hence, the complement X of K in C is open. Suppose that W is an open subset of C.If∞ ∈ W ,thenW is contained in C, and by the definition of Uε(z), we have that W is open in C. If ∞∈W ,thenUε(∞) is contained in W for some ε>0. For this same choice of ε,wehavethatthecomplementY = C − W of W is contained in Uε(0), and so Y is bounded. The fact that Y is closed follows immediately from the fact that its complement C − Y = W is open in C. 1 ∈ 1.10: Given ε>0, we need to find N>0sothatzn = n Uε(0) for n>N. 1 1 Take N = ε . Then, for n>N,wehavethatzn = n <ε, as desired. Given ε>0, we need to find N>0sothatwn = n ∈ Uε(∞)forn>N. Take N = ε. Then, for n>N,wehavethatwn = n>ε,andsown ∈ Uε(∞), as desired. 1 ∈ ∩ 1.11: Note that 0 lies in X, because n Uε(0) X for every n>ε. However, there are no other points of X other than 0 and the points of X. 220 Hyperbolic Geometry If z ∈ C is any point with Im(z) =0,then UIm(z)(z) ∩ X = ∅. Also, because |x|≤1 for every x ∈ X, we see that U2(∞) ∩ X = ∅. ∈ R 1 ∈ Z−{ } If z is any point with Re(z) =0andRe(z) = n for n 0 , then either z lies between 1 and 1 for some m, p ∈ Z−{0},orelsez lies in one of the intervals m p ∞ −∞ − − 1 − 1 (1, )or( , 1). In the former case, let ε =min z m , z p ,sothat Uε(z) ∩ X = ∅. In the latter case, let ε = |z − 1| if z ∈ (1, ∞)orε = |z +1| if z ∈ (−∞, −1), so that Uε(z) ∩ X = ∅. Hence, X = X ∪{0}. For Y , take any z = x + yi∈ C. Given any ε>0, there exist rational numbers 1 1 a, b so that |x − a| < 2 ε and |y − b| < 2 ε, because Q is dense in R, a fact that can be proven by considering decimal expansions. Then, |(x + yi) − (a + bi)| <ε.Asforeachε>0 we can construct a point in Uε(z) ∩ Y ,wehavethateverypointofC lies in Y . As for any ε>0wehavethatn ∈ Uε(∞) for every integer n with n>ε,we also have that ∞∈Y . Hence, Y = C. 1.12: To show that X is closed in C, we show that C − X is open in C. Take z ∈ C − X. Suppose that for each ε>0, the intersection Uε(z) ∩ X = ∅.Foreachn ∈ N, choose some zn ∈ U1/n(z) ∩ X.Aszn ∈ X,thereissomexn ∈ X so that xn ∈ U1/n(zn) ∩ X. | − |≤| − | | − | 2 Combining these calculations yields that xn z xn zn + zn z < n . Hence, for each n ∈ N,wehavethatxn ∈ U2/n(z) ∩ X, which implies that z ∈ X. This result contradicts our original choice of z. 1.13: The Euclidean line LP can be expressed parametrically as N+t(P − N) = (tp1,tp2,tp3 +1− t) for t ∈ R. LP intersects the x1x2-plane when tp3 +1− t = 0, that is, when t = 1 . Hence, we see that 1−p3 p1 p2 ξ(P) = + i . 1 − p3 1 − p3 For ξ−1,letz = x + iy be any point of C, and note that z corresponds to the point Z =(x, y, 0) in R3.LetL be the Euclidean line between N and Z,and note that L is given parametrically by N+t(Z − N) = (tx, ty, 1 − t) Solutions to Exercises 221 for t ∈ R. To find where L intersects S2, we find the point on L whose distance from the origin is 1, which involves solving (tx)2 +(ty)2 +(1− t)2 = t2|z|2 + t2 − 2t +1=1 2 for t. There are two solutions: t = 0, which corresponds to N, and t = 1+|z|2 . The latter value of t yields 2Re(z) 2Im(z) |z|2 − 1 ξ−1(z)= , , . |z|2 +1 |z|2 +1 |z|2 +1 1.14: Write n g(z)=anz + ···+ a1z + a0, for n ≥ 1withan = 0. We need to quantify the statement that, if |z| is large, then |g(z)| is large. If we wanted to be precise, we could proceed as follows. By the triangle inequality, n n−1 |g(z)|≥||anz |−|an−1z + ···+ a1z + a0||. So, set A =max{|an−1|,...,|a0|} and note that n−1 n−1 n−1 |an−1z + ···+ a1z + a0|≤A (|z | + ···+ |z| +1)≤ nA|z| for |z|≥1.
Recommended publications
  • Models of 2-Dimensional Hyperbolic Space and Relations Among Them; Hyperbolic Length, Lines, and Distances
    Models of 2-dimensional hyperbolic space and relations among them; Hyperbolic length, lines, and distances Cheng Ka Long, Hui Kam Tong 1155109623, 1155109049 Course Teacher: Prof. Yi-Jen LEE Department of Mathematics, The Chinese University of Hong Kong MATH4900E Presentation 2, 5th October 2020 Outline Upper half-plane Model (Cheng) A Model for the Hyperbolic Plane The Riemann Sphere C Poincar´eDisc Model D (Hui) Basic properties of Poincar´eDisc Model Relation between D and other models Length and distance in the upper half-plane model (Cheng) Path integrals Distance in hyperbolic geometry Measurements in the Poincar´eDisc Model (Hui) M¨obiustransformations of D Hyperbolic length and distance in D Conclusion Boundary, Length, Orientation-preserving isometries, Geodesics and Angles Reference Upper half-plane model H Introduction to Upper half-plane model - continued Hyperbolic geometry Five Postulates of Hyperbolic geometry: 1. A straight line segment can be drawn joining any two points. 2. Any straight line segment can be extended indefinitely in a straight line. 3. A circle may be described with any given point as its center and any distance as its radius. 4. All right angles are congruent. 5. For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. Some interesting facts about hyperbolic geometry 1. Rectangles don't exist in hyperbolic geometry. 2. In hyperbolic geometry, all triangles have angle sum < π 3. In hyperbolic geometry if two triangles are similar, they are congruent.
    [Show full text]
  • Hyperbolic Geometry
    Hyperbolic Geometry David Gu Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University [email protected] September 12, 2020 David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 1 / 65 Uniformization Figure: Closed surface uniformization. David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 2 / 65 Hyperbolic Structure Fundamental Group Suppose (S; g) is a closed high genus surface g > 1. The fundamental group is π1(S; q), represented as −1 −1 −1 −1 π1(S; q) = a1; b1; a2; b2; ; ag ; bg a1b1a b ag bg a b : h ··· j 1 1 ··· g g i Universal Covering Space universal covering space of S is S~, the projection map is p : S~ S.A ! deck transformation is an automorphism of S~, ' : S~ S~, p ' = '. All the deck transformations form the Deck transformation! group◦ DeckS~. ' Deck(S~), choose a pointq ~ S~, andγ ~ S~ connectsq ~ and '(~q). The 2 2 ⊂ projection γ = p(~γ) is a loop on S, then we obtain an isomorphism: Deck(S~) π1(S; q);' [γ] ! 7! David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 3 / 65 Hyperbolic Structure Uniformization The uniformization metric is ¯g = e2ug, such that the K¯ 1 everywhere. ≡ − 2 Then (S~; ¯g) can be isometrically embedded on the hyperbolic plane H . The On the hyperbolic plane, all the Deck transformations are isometric transformations, Deck(S~) becomes the so-called Fuchsian group, −1 −1 −1 −1 Fuchs(S) = α1; β1; α2; β2; ; αg ; βg α1β1α β αg βg α β : h ··· j 1 1 ··· g g i The Fuchsian group generators are global conformal invariants, and form the coordinates in Teichm¨ullerspace.
    [Show full text]
  • Cross-Ratio Dynamics on Ideal Polygons
    Cross-ratio dynamics on ideal polygons Maxim Arnold∗ Dmitry Fuchsy Ivan Izmestievz Serge Tabachnikovx Abstract Two ideal polygons, (p1; : : : ; pn) and (q1; : : : ; qn), in the hyperbolic plane or in hyperbolic space are said to be α-related if the cross-ratio [pi; pi+1; qi; qi+1] = α for all i (the vertices lie on the projective line, real or complex, respectively). For example, if α = 1, the respec- − tive sides of the two polygons are orthogonal. This relation extends to twisted ideal polygons, that is, polygons with monodromy, and it descends to the moduli space of M¨obius-equivalent polygons. We prove that this relation, which is, generically, a 2-2 map, is completely integrable in the sense of Liouville. We describe integrals and invari- ant Poisson structures, and show that these relations, with different values of the constants α, commute, in an appropriate sense. We inves- tigate the case of small-gons, describe the exceptional ideal polygons, that possess infinitely many α-related polygons, and study the ideal polygons that are α-related to themselves (with a cyclic shift of the indices). Contents 1 Introduction 3 ∗Department of Mathematics, University of Texas, 800 West Campbell Road, Richard- son, TX 75080; [email protected] yDepartment of Mathematics, University of California, Davis, CA 95616; [email protected] zDepartment of Mathematics, University of Fribourg, Chemin du Mus´ee 23, CH-1700 Fribourg; [email protected] xDepartment of Mathematics, Pennsylvania State University, University Park, PA 16802; [email protected] 1 1.1 Motivation: iterations of evolutes . .3 1.2 Plan of the paper and main results .
    [Show full text]
  • A Historical Introduction to Elementary Geometry
    i MATH 119 – Fall 2012: A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning “earth measure” ( ge = earth or land ) + ( metria = measure ) . Euclid wrote the Elements of geometry between 330 and 320 B.C. It was a compilation of the major theorems on plane and solid geometry presented in an axiomatic style. Near the beginning of the first of the thirteen books of the Elements, Euclid enumerated five fundamental assumptions called postulates or axioms which he used to prove many related propositions or theorems on the geometry of two and three dimensions. POSTULATE 1. Any two points can be joined by a straight line. POSTULATE 2. Any straight line segment can be extended indefinitely in a straight line. POSTULATE 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center. POSTULATE 4. All right angles are congruent. POSTULATE 5. (Parallel postulate) If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. The circle described in postulate 3 is tacitly unique. Postulates 3 and 5 hold only for plane geometry; in three dimensions, postulate 3 defines a sphere. Postulate 5 leads to the same geometry as the following statement, known as Playfair's axiom, which also holds only in the plane: Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.
    [Show full text]
  • Geometry Course Outline
    GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid
    [Show full text]
  • Points, Lines, and Planes a Point Is a Position in Space. a Point Has No Length Or Width Or Thickness
    Points, Lines, and Planes A Point is a position in space. A point has no length or width or thickness. A point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. A A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. It does not have a beginning or end. A B C D A line consists of infinitely many points. The four points A, B, C, D are all on the same line. Postulate: Two points determine a line. We name a line by using any two points on the line, so the above line can be named as any of the following: ! ! ! ! ! AB BC AC AD CD Any three or more points that are on the same line are called colinear points. In the above, points A; B; C; D are all colinear. A Ray is part of a line that has a beginning point, and extends indefinitely to one direction. A B C D A ray is named by using its beginning point with another point it contains. −! −! −−! −−! In the above, ray AB is the same ray as AC or AD. But ray BD is not the same −−! ray as AD. A (line) segment is a finite part of a line between two points, called its end points. A segment has a finite length. A B C D B C In the above, segment AD is not the same as segment BC Segment Addition Postulate: In a line segment, if points A; B; C are colinear and point B is between point A and point C, then AB + BC = AC You may look at the plus sign, +, as adding the length of the segments as numbers.
    [Show full text]
  • Historical Introduction to Geometry
    i A HISTORICAL INTRODUCTION TO ELEMENTARY GEOMETRY Geometry is an word derived from ancient Greek meaning “earth measure” ( ge = earth or land ) + ( metria = measure ) . Euclid wrote the Elements of geometry between 330 and 320 B.C. It was a compilation of the major theorems on plane and solid geometry presented in an axiomatic style. Near the beginning of the first of the thirteen books of the Elements, Euclid enumerated five fundamental assumptions called postulates or axioms which he used to prove many related propositions or theorems on the geometry of two and three dimensions. POSTULATE 1. Any two points can be joined by a straight line. POSTULATE 2. Any straight line segment can be extended indefinitely in a straight line. POSTULATE 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center. POSTULATE 4. All right angles are congruent. POSTULATE 5. (Parallel postulate) If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. The circle described in postulate 3 is tacitly unique. Postulates 3 and 5 hold only for plane geometry; in three dimensions, postulate 3 defines a sphere. Postulate 5 leads to the same geometry as the following statement, known as Playfair's axiom, which also holds only in the plane: Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.
    [Show full text]
  • MATH32052 Hyperbolic Geometry
    MATH32052 Hyperbolic Geometry Charles Walkden 12th January, 2019 MATH32052 Contents Contents 0 Preliminaries 3 1 Where we are going 6 2 Length and distance in hyperbolic geometry 13 3 Circles and lines, M¨obius transformations 18 4 M¨obius transformations and geodesics in H 23 5 More on the geodesics in H 26 6 The Poincar´edisc model 39 7 The Gauss-Bonnet Theorem 44 8 Hyperbolic triangles 52 9 Fixed points of M¨obius transformations 56 10 Classifying M¨obius transformations: conjugacy, trace, and applications to parabolic transformations 59 11 Classifying M¨obius transformations: hyperbolic and elliptic transforma- tions 62 12 Fuchsian groups 66 13 Fundamental domains 71 14 Dirichlet polygons: the construction 75 15 Dirichlet polygons: examples 79 16 Side-pairing transformations 84 17 Elliptic cycles 87 18 Generators and relations 92 19 Poincar´e’s Theorem: the case of no boundary vertices 97 20 Poincar´e’s Theorem: the case of boundary vertices 102 c The University of Manchester 1 MATH32052 Contents 21 The signature of a Fuchsian group 109 22 Existence of a Fuchsian group with a given signature 117 23 Where we could go next 123 24 All of the exercises 126 25 Solutions 138 c The University of Manchester 2 MATH32052 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 27 55805, Email: [email protected]. My office hour is: WHEN?. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § 0.2.1 MATH32052 § MATH32052 Hyperbolic Geoemtry is a 10 credit course.
    [Show full text]
  • Lesson 5: Three-Dimensional Space
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 M3 GEOMETRY Lesson 5: Three-Dimensional Space Student Outcomes . Students describe properties of points, lines, and planes in three-dimensional space. Lesson Notes A strong intuitive grasp of three-dimensional space, and the ability to visualize and draw, is crucial for upcoming work with volume as described in G-GMD.A.1, G-GMD.A.2, G-GMD.A.3, and G-GMD.B.4. By the end of the lesson, students should be familiar with some of the basic properties of points, lines, and planes in three-dimensional space. The means of accomplishing this objective: Draw, draw, and draw! The best evidence for success with this lesson is to see students persevere through the drawing process of the properties. No proof is provided for the properties; therefore, it is imperative that students have the opportunity to verify the properties experimentally with the aid of manipulatives such as cardboard boxes and uncooked spaghetti. In the case that the lesson requires two days, it is suggested that everything that precedes the Exploratory Challenge is covered on the first day, and the Exploratory Challenge itself is covered on the second day. Classwork Opening Exercise (5 minutes) The terms point, line, and plane are first introduced in Grade 4. It is worth emphasizing to students that they are undefined terms, meaning they are part of the assumptions as a basis of the subject of geometry, and they can build the subject once they use these terms as a starting place. Therefore, these terms are given intuitive descriptions, and it should be clear that the concrete representation is just that—a representation.
    [Show full text]
  • University Microfilms 300 North Zmb Road Ann Arbor, Michigan 40106 a Xerox Education Company 73-11,544
    INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Arxiv:1808.05573V2 [Math.GT] 13 May 2020 A.K.A
    THE MAXIMAL INJECTIVITY RADIUS OF HYPERBOLIC SURFACES WITH GEODESIC BOUNDARY JASON DEBLOIS AND KIM ROMANELLI Abstract. We give sharp upper bounds on the injectivity radii of complete hyperbolic surfaces of finite area with some geodesic boundary components. The given bounds are over all such surfaces with any fixed topology; in particular, boundary lengths are not fixed. This extends the first author's earlier result to the with-boundary setting. In the second part of the paper we comment on another direction for extending this result, via the systole of loops function. The main results of this paper relate to maximal injectivity radius among hyperbolic surfaces with geodesic boundary. For a point p in the interior of a hyperbolic surface F , by the injectivity radius of F at p we mean the supremum injrad p(F ) of all r > 0 such that there is a locally isometric embedding of an open metric neighborhood { a disk { of radius r into F that takes 1 the disk's center to p. If F is complete and without boundary then injrad p(F ) = 2 sysp(F ) at p, where sysp(F ) is the systole of loops at p, the minimal length of a non-constant geodesic arc in F with both endpoints at p. But if F has boundary then injrad p(F ) is bounded above by the distance from p to the boundary, so it approaches 0 as p approaches @F (and we extend it continuously to @F as 0). On the other hand, sysp(F ) does not approach 0 as p @F .
    [Show full text]
  • Math 181 Handout 16
    Math 181 Handout 16 Rich Schwartz March 9, 2010 The purpose of this handout is to describe continued fractions and their connection to hyperbolic geometry. 1 The Gauss Map Given any x (0, 1) we define ∈ γ(x)=(1/x) floor(1/x). (1) − Here, floor(y) is the greatest integer less or equal to y. The Gauss map has a nice geometric interpretation, as shown in Figure 1. We start with a 1 x × rectangle, and remove as many x x squares as we can. Then we take the left over (shaded) rectangle and turn× it 90 degrees. The resulting rectangle is proportional to a 1 γ(x) rectangle. × x 1 Figure 1 Starting with x0 = x, we can form the sequence x0, x1, x2, ... where xk+1 = γ(xk). This sequence is defined until we reach an index k for which xk = 0. Once xk = 0, the point xk+1 is not defined. 1 Exercise 1: Prove that the sequence xk terminates at a finite index if { } and only if x0 is rational. (Hint: Use the geometric interpretation.) Consider the rational case. We have a sequence x0, ..., xn, where xn = 0. We define ak+1 = floor(1/xk); k =0, ..., n 1. (2) − The numbers ak also have a geometric interpretation. Referring to Figure 1, where x = xk, the number ak+1 tells us the number of squares we can remove before we are left with the shaded rectangle. In the picture shown, ak+1 = 2. Figure 2 shows a more extended example. Starting with x0 =7/24, we have a1 = floor(24/7) = 3.
    [Show full text]