Can Fish Really Feel Pain?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Fish Do Not Feel Pain
Key, Brian (2016) Why fish do not eelf pain. Animal Sentience 3(1) DOI: 10.51291/2377-7478.1011 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html Why fish do not feel pain Brian Key Biomedical Sciences University of Queensland Australia Abstract: Only humans can report feeling pain. In contrast, pain in animals is typically inferred on the basis of nonverbal behaviour. Unfortunately, these behavioural data can be problematic when the reliability and validity of the behavioural tests are questionable. The thesis proposed here is based on the bioengineering principle that structure determines function. Basic functional homologies can be mapped to structural homologies across a broad spectrum of vertebrate species. For example, olfaction depends on olfactory glomeruli in the olfactory bulbs of the forebrain, visual orientation responses depend on the laminated optic tectum in the midbrain, and locomotion depends on pattern generators in the spinal cord throughout vertebrate phylogeny, from fish to humans. Here I delineate the region of the human brain that is directly responsible for feeling painful stimuli. -
Fish Do Not Feel Pain and Its Implications for Understanding Phenomenal Consciousness
Biol Philos (2015) 30:149–165 DOI 10.1007/s10539-014-9469-4 Fish do not feel pain and its implications for understanding phenomenal consciousness Brian Key Received: 14 April 2014 / Accepted: 6 December 2014 / Published online: 16 December 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Phenomenal consciousness or the subjective experience of feeling sen- sory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental states to other animals. Humans will typically extrapolate feelings of pain to animals if they respond physiologically and behaviourally to noxious stimuli. The alternative view that fish instead respond to noxious stimuli reflexly and with a limited behavioural repertoire is defended within the context of our current understanding of the neuroanatomy and neurophysiology of mental states. Consequently, a set of fundamental properties of neural tissue necessary for feeling pain or experiencing affective states in vertebrates is proposed. While mammals and birds possess the prerequisite neural architecture for phenomenal consciousness, it is concluded that fish lack these essential characteristics and hence do not feel pain. Keywords Fish Á Pain Á Phenomenal consciousness Á Affective states Á Avoidance learning Á Neocortex Á Pallium Introduction There is a belief in some scientific and lay communities that because fish respond behaviourally to noxious stimuli, then ipso facto, fish feel pain. Sneddon (2011) clearly articulates the logic by stating: ‘‘to explore the possibility of pain perception in nonhumans we use indirect measures similar to those used for human infants who cannot convey whether they are in pain. -
MANAGEMENT and VALUE CHAIN of NILE TILAPIA CULTURED in PONDS of SMALL-SCALE FARMERS in MOROGORO REGION, TANZANIA Sebastian W. Ch
MANAGEMENT AND VALUE CHAIN OF NILE TILAPIA CULTURED IN PONDS OF SMALL-SCALE FARMERS IN MOROGORO REGION, TANZANIA Sebastian W. Chenyambuga , Nazael A. Madalla and Berno V. Mnembuka Department of Animal Science, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania. Abstract A study was carried out to assess production performance and value chain of Nile tilapia grown in ponds of small-scale farmers in Morogoro region, Tanzania. Information was collected through individual interviews of 30 fish farmers. The main reasons for culturing fish were provision of animal protein food for home consumption (66.7%) and generation of income (23.3%). Fish farming contributed 10.6% of household annual income and was ranked second to crop production (50%). The majority of the farmers were fertilizing their ponds with chicken manure (30.0%) and cattle manure (23.3%). Most farmers (73.3%) cultured pure stand of Nile tilapia and only few (26.7%) practiced polyculture of Nile tilapia and African catfish. All farmers depended on natural food as a source of feed for their fish. Moreover, the farmers were feeding maize bran (96.7%), vegetables (66.7%), and kitchen leftovers (13.3%) as supplementary feeds. Men were responsible for purchasing and stocking fingerlings (60.0%), feeding (40.0%), pond maintenance (53.3%), harvesting (60.0%) and selling (43.3%). Women were mainly involved in fish processing (76.7%). The average period from stocking to harvesting was 5.75 ± 0.18 months for Nile tilapia and the mean yield was 6,946.2 kg/ha per year. About 22.2% of the harvested fish were consumed at home and the remaining (77.8%) were sold. -
Animal Welfare and the Paradox of Animal Consciousness
ARTICLE IN PRESS Animal Welfare and the Paradox of Animal Consciousness Marian Dawkins1 Department of Zoology, University of Oxford, Oxford, UK 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 1 2. Animal Consciousness: The Heart of the Paradox 2 2.1 Behaviorism Applies to Other People Too 5 3. Human Emotions and Animals Emotions 7 3.1 Physiological Indicators of Emotion 7 3.2 Behavioral Components of Emotion 8 3.2.1 Vacuum Behavior 10 3.2.2 Rebound 10 3.2.3 “Abnormal” Behavior 10 3.2.4 The Animal’s Point of View 11 3.2.5 Cognitive Bias 15 3.2.6 Expressions of the Emotions 15 3.3 The Third Component of Emotion: Consciousness 16 4. Definitions of Animal Welfare 24 5. Conclusions 26 References 27 1. INTRODUCTION Consciousness has always been both central to and a stumbling block for animal welfare. On the one hand, the belief that nonhuman animals suffer and feel pain is what draws many people to want to study animal welfare in the first place. Animal welfare is seen as fundamentally different from plant “welfare” or the welfare of works of art precisely because of the widely held belief that animals have feelings and experience emotions in ways that plants or inanimate objectsdhowever valuableddo not (Midgley, 1983; Regan, 1984; Rollin, 1989; Singer, 1975). On the other hand, consciousness is also the most elusive and difficult to study of any biological phenomenon (Blackmore, 2012; Koch, 2004). Even with our own human consciousness, we are still baffled as to how Advances in the Study of Behavior, Volume 47 ISSN 0065-3454 © 2014 Elsevier Inc. -
How Welfare Biology and Commonsense May Help to Reduce Animal Suffering
Ng, Yew-Kwang (2016) How welfare biology and commonsense may help to reduce animal suffering. Animal Sentience 7(1) DOI: 10.51291/2377-7478.1012 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Ng, Yew-Kwang (2016) How welfare biology and commonsense may help to reduce animal suffering. Animal Sentience 7(1) DOI: 10.51291/2377-7478.1012 Cover Page Footnote I am grateful to Dr. Timothy D. Hau of the University of Hong Kong for assistance. This article is available in Animal Sentience: https://www.wellbeingintlstudiesrepository.org/ animsent/vol1/iss7/1 Animal Sentience 2016.007: Ng on Animal Suffering Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html How welfare biology and commonsense may help to reduce animal suffering Yew-Kwang Ng Division of Economics Nanyang Technological University Singapore Abstract: Welfare biology is the study of the welfare of living things. Welfare is net happiness (enjoyment minus suffering). Since this necessarily involves feelings, Dawkins (2014) has suggested that animal welfare science may face a paradox, because feelings are very difficult to study. -
FAO Fisheries & Aquaculture
Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Fishery and Aquaculture Country Profiles The Republic of Uzbekistan Part I Overview and main indicators 1. Country brief 2. FAO Fisheries statistics Part II Narrative (2008) 3. Production sector Inland sub-sector Aquaculture sub-sector Recreational sub-sector 4. Post-harvest sector Fish utilization Source of information United Nations Geospatial Information Section http://www.un.org/Depts/Cartographic/english/htmain.htm Fish markets Imagery for continents and oceans reproduced from GEBCO, www.gebco.net 5. Socio-economic contribution of the fishery sector Role of fisheries in the national economy Supply and demand Trade Food security Employment Rural development 6. Trends, issues and development Constraints and opportunities Government and non-government sector policies and development strategies Research, education and training Foreign aid 7. Institutional framework 8. Legal framework Additional information 9. FAO Thematic data bases 10. Publications 11. Meetings & News archive FAO Fisheries and Aquaculture Department Part I Overview and main indicators Part I of the Fishery and Aquaculture Country Profile is compiled using the most up-to-date information available from the FAO Country briefs and Statistics programmes at the time of publication. The Country Brief and the FAO Fisheries Statistics provided in Part I may, however, have been prepared at different times, which would explain any inconsistencies. Country brief Prepared: March 2018 Uzbekistan covers an area of 447400km2. It is a landlocked country and mountains dominate the landscape in the east and northeast. The fisheries in Uzbekistan comprise two main components, namely inland capture fisheries and aquaculture. -
Implications for Management AFRICAN GREAT LAKES
AFRICAN GREAT LAKES CONFERENCE 2nd – 5th MAY 2017, ENTEBBE, UGANDA Dynamics of Fish Stocks of Commercial Importance in Lake Victoria, East Africa: Implications for Management Robert Kayanda, Anton Taabu-Munyaho, Dismas Mbabazi, Hillary Mrosso, and Chrisphine Nyamweya INTRODUCTION • Lake Victoria with a surface area of 68,800 sqkm is the world’s second largest freshwater body • It supports one of the world’s most productive inland fisheries with the estimated total fish landings from the lake for the period of 2011 to 2014 have been about 1 million tons with a beach value increasing from about US$ 550 Million in 2011 to about US$ 840 million in 2014. • It supports about 220,000 fishers (Frame Survey 2016) • The fish stocks of Lake Victoria have changed dramatically since the introduction of Nile perch Lates niloticus during the late 1950s and early 1960s Fishery Haplochromines The Original Fish Fauna Brycinus sp Protopterus Rastrineobola Mormyrus spp Barbus spp Bagrus docmac Labeo Schilbe intermedius Oreochromis variabilis Clarias gariepinus Mormyrus spp Synodontis victoriae Oreochromis leucostictus INTRODUCTION Currently, the fisheries is dominated by four major commercial important species, these are; •Nile perch •Dagaa •Nile tilapia •Haplochromis Apart from Nile tilapia only estimated through trawl and catch surveys, the other 3 are estimated through trawl, acoustics, and catch INTRODUCTION This paper summarizes current knowledge of the status of the fish stocks and reviews the need for species specific management plans for the major commercial important fish species of Lake Victoria (Nile perch, Nile tilapia, dagaa and haplochromines). Methods • Fisheries dependent – Frame surveys – Catch assessment surveys • Fisheries independent – Acoustic – Bottom trawl Biomass and relative abundance • Total biomass from the surveys 3500 remained fairly stable over time. -
Emotional and Spatial Learning in Goldfish Is Dependent on Different
European Journal of Neuroscience, Vol. 21, pp. 2800–2806, 2005 ª Federation of European Neuroscience Societies Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems Manuel Portavella1,* and Juan P. Vargas2 1Departamento de Psicologı´a Experimental. Universidad de Sevilla. C ⁄ Camilo Jose´ Cela s ⁄ n, E-41018, Seville, Spain 2SISSA. Cognitive Neuroscience Sector. Via Beirut, 2 ⁄ 4, 34014 Trieste, Italy Keywords: amygdala, avoidance learning, brain evolution, hippocampus, memory systems Abstract In mammals, the amygdala and the hippocampus are involved in different aspects of learning. Whereas the amygdala complex is involved in emotional learning, the hippocampus plays a critical role in spatial and contextual learning. In fish, it has been suggested that the medial and lateral region of the telencephalic pallia might be the homologous neural structure to the mammalian amygdala and hippocampus, respectively. Although there is evidence of the implication of medial and lateral pallium in several learning processes, it remains unclear whether both pallial areas are involved distinctively in different learning processes. To address this issue, we examined the effect of selective ablation of the medial and lateral pallium on both two-way avoidance and reversal spatial learning in goldfish. The results showed that medial pallium lesions selectively impaired the two-way avoidance task. In contrast, lateral pallium ablations impaired the spatial task without affecting the avoidance performance. These results indicate that the medial and lateral pallia in fish are functionally different and necessary for emotional and spatial learning, respectively. Present data could support the hypothesis that a sketch of these regions of the limbic system, and their associated functions, were present in the common ancestor of fish and terrestrial vertebrates 400 million years ago. -
Comparative Evolutionary Approach to Pain Perception in Fishes
Brown, Culum (2016) Comparative evolutionary approach to pain perception in fishes. Animal Sentience 3(5) DOI: 10.51291/2377-7478.1029 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2016.011: Brown Commentary on Key on Fish Pain Comparative evolutionary approach to pain perception in fishes Commentary on Key on Fish Pain Culum Brown Biological Sciences Macquarie University Abstract: Arguments against the fact that fish feel pain repeatedly appear even in the face of growing evidence that they do. The standards used to judge pain perception keep moving as the hurdles are repeatedly cleared by novel research findings. There is undoubtedly a vested commercial interest in proving that fish do not feel pain, so the topic has a half-life well past its due date. Key (2016) reiterates previous perspectives on this topic characterised by a black-or-white view that is based on the proposed role of the human cortex in pain perception. I argue that this is incongruent with our understanding of evolutionary processes. Keywords: pain, fishes, behaviour, physiology, nociception Culum Brown [email protected] studies the behavioural ecology of fishes with a special interest in learning and memory. He is Associate Professor of vertebrate evolution at Macquarie University, Co-Editor of the volume Fish Cognition and Behavior, and Editor for Animal Behaviour of the Journal of Fish Biology. -
(Oreochromis Niloticus L) in Three Ethiopian
OPEN ACCESS Freely available online Fisheries and Aquaculture Journal Research Article Differences in Phenotypic Characters of Nile Tilapia (Oreochromis niloticus L) in Three Ethiopian Rift Valley lakes; Screening Strains for Aquaculture 1* 2 3 Megerssa Endebu , Abebe Getahun , Misikire Tessema 1Department of Aquaculture, Batu Fishery and Other Aquatic Life Research Center, East Shoa, Ethiopia; 2Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia; 3Department of Fisheries Biologist, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia ABSTRACT Nile tilapia (Oreochromis niloticus L.) is indigenous species to Ethiopia and constitutes major proportion in the country’s fish production. In an attempt to select better performing strains for aquaculture development, tilapia populations from different Ethiopian rift valley lakes showed different growth performances in pond culture. Investigation of desired culture characteristics of target tilapia populations is required to improve their productivity in aquaculture system. The current study was made to investigate phenotypic characters of the tilapia populations in three geographically isolated Ethiopian rift valley lakes (Chamo, Koka and Ziway). A total of 450 adult tilapias of commercial catches were sampled from the three lakes and their phenotypic characters were analyzed during May 2018 to March 2019. Twenty six morphometric character indices, eight meristic counts, total length, standard length, total weight, length-weight relationship and Fulton’s condition factor were considered in the analysis. The results revealed significant differences (p ≤ 0.05) in most of the morphometric character indices, meristic counts, mean length and weight and Fulton’s condition factor among the three tilapia populations. Chamo tilapia population were found to have highest mean values of total weight, total length and standard length while Koka population have highest mean value of Fulton’s condition factor and positive allometric growth as characters desired in aquaculture. -
An Assessment of Recent Trade Law Developments from an Animal Law Perspective: Trade Law As the Sheep in Wolf's Clothing?
AN ASSESSMENT OF RECENT TRADE LAW DEVELOPMENTS FROM AN ANIMAL LAW PERSPECTIVE: TRADE LAW AS THE SHEEP IN WOLF’S CLOTHING? By Charlotte Blattner* Further development within the field of animal law seems to be at an impasse, lost among the potential paths presented by its traditional influ- ences: international treaty law, domestic animal welfare regulations, and trade law. First, classical elements of global animal treaty law are limited to preservationist aspirations, insusceptible to the questions of how animals are treated or how they cope with their environment. Second, animal welfare regulation is understood as a matter confined to national territories. In cross-border dialogue, animal matters have been reduced to allegations of imperialism, which is not conducive to furthering animal interests. Third, animals are regarded as commodities in international trade law, rendering their regulation an undesirable barrier to trade. These present deficiencies deprive global animal law of its significance as a dynamic instrument re- sponsive to global challenges, be they ethical, environmental, economic, technological, or social in nature. The objective of this paper is to demonstrate future ways out of this impasse. Recent developments in trade law, as demonstrated by four exam- ples found within the World Trade Organization’s (WTO) ‘case law,’ mark an important development for animal law. State objectives expressed through trade law are slowly moving away from anthropocentric considera- tions (i.e., geared to preserve a fraction of animals for human interests) to- wards sentiocentric animal welfare (i.e., aimed at minimizing animal suffering and focusing on animal interests). Thereby, the quality of animal law that developed on the international scene through trade law exceeded the status quo of global animal treaty law. -
Bringing Animal Protection Legislation Into Line with Its Purported Purposes: a Proposal for Equality Amongst Non- Human Animals
Pace Environmental Law Review Volume 37 Issue 2 Spring 2020 Article 1 May 2020 Bringing Animal Protection Legislation Into Line With its Purported Purposes: A Proposal for Equality Amongst Non- Human Animals Jane Kotzmann Deakin University Gisela Nip Follow this and additional works at: https://digitalcommons.pace.edu/pelr Part of the Animal Law Commons, Energy and Utilities Law Commons, Environmental Law Commons, International Law Commons, and the Natural Resources Law Commons Recommended Citation Jane Kotzmann and Gisela Nip, Bringing Animal Protection Legislation Into Line With its Purported Purposes: A Proposal for Equality Amongst Non-Human Animals, 37 Pace Envtl. L. Rev. 247 (2020) Available at: https://digitalcommons.pace.edu/pelr/vol37/iss2/1 This Article is brought to you for free and open access by the School of Law at DigitalCommons@Pace. It has been accepted for inclusion in Pace Environmental Law Review by an authorized administrator of DigitalCommons@Pace. For more information, please contact [email protected]. ARTICLE Bringing Animal Protection Legislation Into Line With its Purported Purposes: A Proposal for Equality Amongst Non-Human Animals JANE KOTZMANN* & GISELA NIP† The United States has a strong history of enacting laws to pro- tect animals from the pain and suffering inflicted by humans. In- deed, the passage of the Massachusetts’ Body of Liberties in 1641 made it the first country in the world to pass such laws. Neverthe- less, contemporary animal protection laws in all jurisdictions of the United States are limited in their ability to adequately realize their primary purpose of protecting animals from unnecessary or unjus- tifiable pain and suffering.