Novitates 37
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Herpetofaunal Survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the Foothills of the Drakensberg, Eastern Cape Province, South Africa
Herpetology Notes, volume 13: 717-730 (2020) (published online on 25 August 2020) Herpetofaunal survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the foothills of the Drakensberg, Eastern Cape Province, South Africa Werner Conradie1,2,* Brian Reeves3, Sandile Mdoko3, Lwandiso Pamla3, and Oyama Gxabhu3 Abstract. The results of a herpetofaunal survey of Ongeluksnek Nature Reserve, Eastern Cape Province, South Africa are presented here. Combination of visual encounter survey methods and standard Y-shape trap arrays were used to conduct the survey. A total of 26 species (eight amphibians and 18 reptiles) were recorded, representing 29 quarter-degree grid cell records, of which 62% represented the first records for these units. Furthermore, we document the presence of three species of snakes (Crotaphopeltis hotamboeia, Hemachatus haemachatus and Homoroselaps lacteus) for the first time for the whole degree square of 3028 (approx. 100 km2). This study highlights the need to survey poorly known regions to enable us to understand and document the full distributional extent of species. We also discuss the impact of uncontrolled fires on the absence of grassland specialised species during our survey. Keywords. Amphibia, Reptilia, karroid, conservation, biodiversity, fire Introduction has been done in the southern and western regions (e.g. Branch and Braack, 1987), while the northern and The herpetofaunal richness of South Africa is central areas associated with the former homelands of considered to be amongst the highest in the world the Ciskei and Transkei remained poorly surveyed. In (Branch, 1998; Bates et al., 2014; Du Preez and recent years a series of rapid biodiversity studies has Carruthers, 2017; Tolley et al., 2019). -
References Please Help Making This Preliminary List As Complete As Possible!
Cypraeidae - important references Please help making this preliminary list as complete as possible! ABBOTT, R.T. (1965) Cypraea arenosa Gray, 1825. Hawaiian Shell News 14(2):8 ABREA, N.S. (1980) Strange goings on among the Cypraea ziczac. Hawaiian Shell News 28 (5):4 ADEGOKE, O.S. (1973) Paleocene mollusks from Ewekoro, southern Nigeria. Malacologia 14:19-27, figs. 1-2, pls. 1-2. ADEGOKE, O.S. (1977) Stratigraphy and paleontology of the Ewekoro Formation (Paleocene) of southeastern Nigeria. Bulletins of American Paleontology 71(295):1-379, figs. 1-6, pls. 1-50. AIKEN, R. P. (2016) Description of two undescribed subspecies and one fossil species of the Genus Cypraeovula Gray, 1824 from South Africa. Beautifulcowries Magazine 8: 14-22 AIKEN, R., JOOSTE, P. & ELS, M. (2010) Cypraeovula capensis - A specie of Diversity and Beauty. Strandloper 287 p. 16 ff AIKEN, R., JOOSTE, P. & ELS, M. (2014) Cypraeovula capensis. A species of diversity and beauty. Beautifulcowries Magazine 5: 38–44 ALLAN, J. (1956) Cowry Shells of World Seas. Georgian House, Melbourne, Australia, 170 p., pls. 1-15. AMANO, K. (1992) Cypraea ohiroi and its associated molluscan species from the Miocene Kadonosawa Formation, northeast Japan. Bulletin of the Mizunami Fossil Museum 19:405-411, figs. 1-2, pl. 57. ANCEY, C.F. (1901) Cypraea citrina Gray. The Nautilus 15(7):83. ANONOMOUS. (1971) Malacological news. La Conchiglia 13(146-147):19-20, 5 unnumbered figs. ANONYMOUS. (1925) Index and errata. The Zoological Journal. 1: [593]-[603] January. ANONYMOUS. (1889) Cypraea venusta Sowb. The Nautilus 3(5):60. ANONYMOUS. (1893) Remarks on a new species of Cypraea. -
Freshwater Fishes
WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage. -
Une Ovulidae Singulière Du Bartonien (Éocène Moyen) De Catalogne (Espagne)
Olianatrivia riberai n. gen., n. sp. (Mollusca, Caenogastropoda), une Ovulidae singulière du Bartonien (Éocène moyen) de Catalogne (Espagne) Luc DOLIN 1, rue des Sablons, Mesvres F-37150 Civray-de-Touraine (France) Josep BIOSCA-MUNTS Universitat Politècnica de Catalunya Museu de Geologia « Valenti Masachs » Av. Bases de Manresa, 61-73 E-08242 Manresa (Espagne) David PARCERISA Universitat Politècnica de Catalunya Dpt. d’Enginyeria Minera i Recursos Naturals Av. Bases de Manresa, 61-73 E-08242 Manresa (Espagne) Dolin L., Biosca-Munts J. & Parcerisa D. 2013. — Olianatrivia riberai n. gen., n. sp. (Mollusca, Caenogastropoda), une Ovulidae singulière du Bartonien (Éocène moyen) de Catalogne (Es- pagne). Geodiversitas 35 (4): 931-939. http://dx.doi.org/10.5252/g2013n4aX RÉSUMÉ Les coquilles d’une espèce d’Ovulidae aux caractères totalement inhabituels MOTS CLÉS ont été récoltés dans la partie axiale de l’anticlinal d’Oliana, en Catalogne : Mollusca, Gastropoda, Olianatrivia riberai n. gen., n. sp. (Mollusca, Caenogastropoda), dont la forme Cypraeoidea, et l’ornementation rappellent certaines Triviinae. En accord avec les datations Ovulidae, Pediculariinae, chrono-stratigraphiques connues établies dans le bassin, l’âge de la faune mala- Bartonien, cologique, déplacée à partir d’un faciès récifal, est datée du Bartonien supérieur Bassin sud-Pyrénéen, (Éocène moyen). Il est proposé de placer O. riberai n. gen., n. sp. au sein des Espagne, genre nouveau, Pediculariinae, une sous-famille des Ovulidae (Cypraeoidea), à proximité de espèce nouvelle. Cypropterina ceciliae (De Gregorio, 1880) du Lutétien inférieur du Véronais. GEODIVERSITAS • 2013 • 35 (4) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris. www.geodiversitas.com 931 Dolin L. -
The Marine Zoologist, Volume 1, Number 7, 1959
The Marine Zoologist, Volume 1, Number 7, 1959 Item Type monograph Publisher Royal Zoological Society of New South Wales Download date 23/09/2021 18:13:28 Link to Item http://hdl.handle.net/1834/32615 TI I LIBRAR THE MARINE ZOOLOGIST Vol 1. No.". Sydney, September 18, -1959 Donated by BAMFIELD MARINE STATION Dr. Ian McTaggart Cowan ~~THE some of the molluscs these were replaced as soon as the "danger" had MARINE ZOOLOGIST" passed. Owing to the darkness and depth of water it was difficult to make detailed observations of parental care. The mother used her siphon to Vol. 1. No.7. squirt water over the eggs, and her tentacles were usually weaving in and out among the egg-strings. The same thing was observed with the female in (Incorporated with the Proceedings of the Royal Zoological Society of April 1957, and Le Souef & Allan recorded the fact in some detail in New South Wales, 1957-58, published September 18, 1959.) 1933 and 1937. Unfortunately on 29th October 1957 the tank had to be emptied and cleaned and the octopus was released into the sea in a rather weak state. Her "nest" was destroyed and the eggs removed and examined. It came as a surprise to find that hatching had commenced and was progressing at a rapid rate because the eggs examined on 8th October showed little sign Some Observations on the Development of Two of development and it was believed that, as reported by Le Souef & Allan (1937), 5-6 weeks had to elapse between laying and hatching. -
Contributions to the Knowledge of the Ovulidae. XVI. the Higher Systematics
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2007 Band/Volume: 030 Autor(en)/Author(s): Fehse Dirk Artikel/Article: Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda) 121-125 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 30 1 121–125 München, 1. Mai 2007 ISSN 0341–8391 Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda) Dirk Fehse Fehse, D. (2007): Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda). – Spixiana 30/1: 121-125 The higher systematics of the family Ovulidae is reorganised on the basis of re- cently published studies of the radulae, shell and animal morphology and the 16S rRNA gene. The family is divided into four subfamilies. Two new subfamilîes are introduced as Prionovolvinae nov. and Aclyvolvinae nov. The apomorphism and the result of the study of the 16S rRNA gene are contro- versally concerning the Pediculariidae. Therefore, the Pediculariidae are excluded as subfamily from the Ovulidae. Dirk Fehse, Nippeser Str. 3, D-12524 Berlin, Germany; e-mail: [email protected] Introduction funiculum. A greater surprise seemed to be the genetically similarity of Ovula ovum (Linneaus, 1758) In conclusion of the recently published studies on and Volva volva (Linneaus, 1758) in fi rst sight but a the shell morphology, radulae, anatomy and 16S closer examination of the shells indicates already rRNA gene (Fehse 2001, 2002, Simone 2004, Schia- that O. -
(Mollusca, Gastropoda, Cypraeoidea) Description of a Species
Cainozoic Research, 8(1-2), pp. 29-34, December2011 Contributions to the knowledge of the Pediculariidae (Mollusca, Gastropoda, Cypraeoidea) 2. On the of the Eotrivia 1924 occurrence genus Schilder, in the Ukraine Eocene, with the description of a new species Dirk Fehse Nippeser Str. 3, D-12524 Berlin, Germany; e-mail: [email protected] Received 18 August 2010; revised version accepted 16 August 2011 known from West Eocene is confirmedfor the A The genus Eotrivia formerly European deposits now easternmost Paratethys. second, Eotrivia Eocene still unknown Eotrivia besides faracii is described from the of Ukraine as Eotrivia procera sp. nov. KEY WORDS:: Cypraeoidea, Eocypraeidae, Pediculariidae, Eotrivia, new species, new combinations, fossil, Eocene, Ukraine. Introduction clarified by geological studies. In the following the term ‘Mandrikovka beds, Eocene’ is therefore used. Recently some shells from Mandrikovka, Dnepropetrovsk region of Ukraine became available for study. Among In Part 1 (Fehse & Vician, 2008) of this small series of those shells several species of families Eocypraeidae papers on the Pediculariidae the identity of Projenneria Schilder, 1924 and PediculariidaeAdams & Adams, 1854 neumayri (Hilber, 1879) is discussed and Projenneria al- were found.These species formerly known from the Mid- bopunctata Fehse & Vician, 2008 is described. dle Eocene of Western Europe are unusually common at Mandrikovka. The species ofthe Eocypraeidae are Apiocy- Abbreviations - To denote the repositories of materialre- praea sellei (de Raincourt, 1874), Oxycypraea del- ferred to in the text, the following abbreviations are used: phinoides (Cossmann, 1886), Oxycypraea fourtaui (Op- penheim, 1906) comb, nov., Cyproglobina parvulorbis (de DFB collection Dirk Fehse, Berlin, Germany. Gregorio), 1880, Cyproglobina pisularia (de Gregorio, ZSM Zoological State Collection, Munich, Germany. -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
Benthic Data Sheet
DEMERSAL OTTER/BEAM TRAWL DATA SHEET RESEARCH VESSEL_____________________(1/20/13 Version*) CLASS__________________;DATE_____________;NAME:___________________________; DEVICE DETAILS_________ LOCATION (OVERBOARD): LAT_______________________; LONG______________________________ LOCATION (AT DEPTH): LAT_______________________; LONG_____________________________; DEPTH___________ LOCATION (START UP): LAT_______________________; LONG______________________________;.DEPTH__________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ TIME: IN______AT DEPTH_______START UP_______SURFACE_______.DURATION OF TRAWL________; SHIP SPEED__________; WEATHER__________________; SEA STATE__________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_______________________________ INVERTEBRATES Phylum Porifera Order Pennatulacea (sea pens) Class Calcarea __________________________________ Family Stachyptilidae Class Demospongiae (Vase sponge) _________________ Stachyptilum superbum_____________________ Class Hexactinellida (Hyalospongia- glass sponge) Suborder Subsessiliflorae Subclass Hexasterophora Family Pennatulidae Order Hexactinosida Ptilosarcus gurneyi________________________ Family Aphrocallistidae Family Virgulariidae Aphrocallistes vastus ______________________ Acanthoptilum sp. ________________________ Other__________________________________________ Stylatula elongata_________________________ Phylum Cnidaria (Coelenterata) Virgularia sp.____________________________ Other_______________________________________ -
Systematics and Phylogenetic Species Delimitation Within Polinices S.L. (Caenogastropoda: Naticidae) Based on Molecular Data and Shell Morphology
Org Divers Evol (2012) 12:349–375 DOI 10.1007/s13127-012-0111-5 ORIGINAL ARTICLE Systematics and phylogenetic species delimitation within Polinices s.l. (Caenogastropoda: Naticidae) based on molecular data and shell morphology Thomas Huelsken & Daniel Tapken & Tim Dahlmann & Heike Wägele & Cynthia Riginos & Michael Hollmann Received: 13 April 2011 /Accepted: 10 September 2012 /Published online: 19 October 2012 # Gesellschaft für Biologische Systematik 2012 Abstract Here, we present the first phylogenetic analysis of callus) to be informative, while many characters show a a group of species taxonomically assigned to Polinices high degree of homoplasy (e.g. umbilicus, shell form). sensu latu (Naticidae, Gastropoda) based on molecular data Among the species arranged in the genus Polinices s.s., four sets. Polinices s.l. represents a speciose group of the infau- conchologically very similar taxa often subsumed under the nal gastropod family Naticidae, including species that have common Indo-Pacific species P. mammilla are separated often been assigned to subgenera of Polinices [e.g. P. distinctly in phylogenetic analyses. Despite their striking (Neverita), P. (Euspira), P.(Conuber) and P. (Mammilla)] conchological similarities, none of these four taxa are relat- based on conchological data. The results of our molecular ed directly to each other. Additional conchological analyses phylogenetic analysis confirm the validity of five genera, of available name-bearing type specimens and type figures Conuber, Polinices, Mammilla, Euspira and Neverita, in- reveal the four “mammilla”-like white Polinices species to cluding four that have been used previously mainly as sub- include true P. mammilla and three additional species, which genera of Polinices s.l. -
Phylogenetic Implications 16.15 – 16.30 D.T
Genetic diversity within lichen photobionts of the Lecanora varia group (Lichenes, Ascomycota) Pérez-Ortega, S.; Søchting, Ulrik; Printzen, C. Publication date: 2007 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Pérez-Ortega, S., Søchting, U., & Printzen, C. (2007). Genetic diversity within lichen photobionts of the Lecanora varia group (Lichenes, Ascomycota). Abstract from Genetic diversity within lichen photobionts of the Lecanora varia group (Lichenes, Ascomycota), Vienna, Austria. Download date: 02. okt.. 2021 Wien, 20. – 23. Februar 2007 Naturhistorisches Museum Wien 9. Jahrestagung der Gesellschaft für Biologische Systematik (GfBS) Programm Kurzfassung der Vorträge (Abstracts) 1 Kurzfassung der Posterbeiträge (Abstracts) 1 Herausgeber: Naturhistorisches Museum Wien / Gesellschaft für Biologische Systematik (GfBS), Wien 2007 Herstellung und Druck: Naturhistorisches Museum Wien Druckerei Berger Horn Redaktion: Ulrike Aspöck Elisabeth Haring Christoph Hörweg Kriemhild Repp Helmut Sattmann 1 Die eingelangten Kurzfassungen sind alphabetisch (Erstautor) geordnet PROGRAMM – 9. KURATORENTREFFEN 20. FEBRUAR 2007 DIENSTAG, 20. FEBRUAR 2007 10.00 – 13.00 Vorstandssitzung GfBS 11.00 Uhr Öffnung des Tagungsbüros im NHM Wien, Eingangshalle Bitte nutzen Sie diese Möglichkeit, um sich zu registrieren, Ihr Poster auszustellen und Ihren Vortrag aufzuspielen. 11.00 – 14.00 Führung in die Sammlung des Naturhistorischen Museums, Treffpunkt Seiteneingang NHM 14.00 – 18.00 9. Kuratorentreffen -
UC Davis UC Davis Previously Published Works
UC Davis UC Davis Previously Published Works Title Molluscan marginalia: Serration at the lip edge in gastropods Permalink https://escholarship.org/uc/item/2mx5c6w9 Journal Journal of Molluscan Studies, 80(3) ISSN 0260-1230 Author Vermeij, GJ Publication Date 2014 DOI 10.1093/mollus/eyu020 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of The Malacological Society of London Molluscan Studies Journal of Molluscan Studies (2014) 80: 326–336. doi:10.1093/mollus/eyu020 Advance Access publication date: 16 April 2014 Molluscan marginalia: serration at the lip edge in gastropods Geerat J. Vermeij Geology Department, University of California, One Shields Avenue, Davis, CA 95616, USA Correspondence: G.J. Vermeij; e-mail: [email protected] Downloaded from (Received 5 September 2013; accepted 10 February 2014) ABSTRACT The shells of many marine gastropods have ventrally directed serrations (serial projections) at the edge http://mollus.oxfordjournals.org/ of the adult outer lip. These poorly studied projections arise as extensions either of external spiral cords or of interspaces between cords. This paper describes taxonomic, phylogenetic, architectural and func- tional aspects of serrations. Cord-associated serrations occur in cerithiids, strombids, the personid Distorsio anus, ocenebrine muricids and some cancellariids. Interspace-associated serrations are phylo- genetically much more widespread, and occur in at least 16 family-level groups. The nature of serration may be taxonomically informative in some fissurellids, littorinids, strombids and costellariids, among other groups. Serrated outer lips occur only in gastropods in which the apex points more backward than upward, but the presence of serrations is not a necessary byproduct of the formation of spiral sculp- tural elements.