1 1.1. INTRODUCTION 1.1.1. Plant and Human Life “We Come on This

Total Page:16

File Type:pdf, Size:1020Kb

1 1.1. INTRODUCTION 1.1.1. Plant and Human Life “We Come on This 1.1. INTRODUCTION 1.1.1. Plant and human life “We come on this earth as guests of plants” is a monumental ancient aphorism. Since time immemorial, nature’s own supreme creation, man, has completely learnt to exploit plant resources and to make use of every bit of it as civilization developed. In fact from the start of the life to the last breath, almost every aspect of human life is deeply associated with plants for all his needs (Bown, 1995). The plants are valuable natural renewable resource, and the most important producers of natural products including food, fiber, wood, oil and important life saving drugs. 1.1.2. Herbal medicines Herbal medicines have been used since the dawn of civilization to maintain health and to treat diseases. The World Health Organization estimates that about three quarters of the world’s population currently use herbs and other forms of traditional medicines to treat their diseases. Even as we commence the new century with its exiting prospects of gene therapy herbal medicines remains as one of the common forms of therapy available to most of the world’s population (Kuruvilla, 2002). Even today, majority of the medicines are prepared from the plant and plant products. Major pharmaceutical industries depend on the plant products for the preparation of various medicines. In the present context, the plant based system of medicine is widely accepted and practiced not only in the Indian peninsula but also in the developing and developed countries of the world. Thus plant derived medicines have been the first line of defense in maintaining health and combating diseases world over (John, 1984; Veale, 1992). 1.1.3 Indian scenario India’s biodiversity is unmatched due to the presence of 16 different agro- climatic zones, 10 vegetation zones, 25 biotic provinces and 426 biomes (habitats of specific species). With only 2.4% of the land area, India already accounts for 7-8% of the recorded species of the world. Over 46,000 species of plants and 81,000 species of animals have been recorded in the country so far by the Botanical Survey of India, and the Zoological Survey of India, respectively. India is an acknowledged centre of crop diversity, and harbors many wild relatives and breeds of domesticated animals (NBA, 2005). 1 The Indian subcontinent is a vast repository of medicinal plants that are used in traditional medical treatments (Ballabh and Chaurasia, 2007). Many westerners have long regarded the Indian systems of medicine as a rich source of knowledge (Subhose, 2005). In India, around 25,000 medicinal plants have been recorded (Dev, 1997; Joy et al., 1998; FRLHT, 2009); however traditional communities are using only 7,000 - 7,500 plants for curing different diseases (Nayar, 1987; Samy, et. al., 1998; Samy and Ignacimuthu, 2000; Kamboj, 2000). The medicinal plants are listed in various indigenous systems such as Siddha (600), Ayurveda (700), Amchi (600) and Unani (700). The Allopathy utilizes (30) plant species for ailments (Rabe and Staden, 1997; FRLHT, 2009). 1.1.4. Market potential of herbal medicines Recent times have witnessed increased sale of herbal products in the international market. Herbal medicines continue to be a major market in U.S. pharmaceuticals and constitute a multi-billion dollar business. According to the WHO, present demand for medicinal plants annually, is about US $ 14 billion. Traditional Chinese Medicine (TCM) has made tremendous advances in terms of modern scientific research, and according to the latest studies it contributes 80 % of the annual turnover of the total herbal drug industry (FRLHT, 2009). Figure 1.1. Ayurvedic Product Market The current world market potential of herbal medicine is estimated to be over $ 60 billion per year; about $ 80-250 million in Europe and USA (El and Karakava, 2004). The turn over of the medicinal plant-related trade in India is about Rs. 2300 2 crores (US $ 551 million). Exports of Ayurvedic medicines from India have reached a value of 100 million dollars a year. About 60% of this is crude herbs and about 30% is finished product shipped abroad for direct sales to consumers (Fig. 1.1). The remaining 10% is partially prepared products to be finished in the foreign countries (Singh, 2008). Approximately 1500 botanicals are sold as dietary supplements, formulations which are not subjected to ‘Food and Drug Administration’s (FDA) clinical toxicity test to assure their safety and efficacy. Improvement in modern herbal medicine and reflective of their growing demand for natural medicines, 73 % of the respondents to a consumer survey indicated that they would depend more on herbal medicine in the future (Bouldin et al., 1999) 1.1.5. Active herbal constituents The herbs contain ingredients known as active principles (phytochemicals) synthesized and stored by them. Some of the main active constituents found in the herbs are listed in Table 1.1. Table 1.1. Active principles found in the herbs (Bown, 1995) SL.NO TYPES PROPERTIES EFFECTS SOURCE 1. Acids Sour antiseptic, cleansing Citrus species bitter, alkaline addictives, affects Papaver 2. Alkaloids nitrogenous central nervous system, somniferun compounds toxic 3. Anthraquinones Bitter irritant, laxative Rheum palmatum appetizer and improves 4. Bitters Bitter Gentiana lutea digestion a smell of new- antibacterial, Melilotus 5. Coumarins mown hay anticoagulant officinalis often diuretic, antiseptic, Fagopyrum 6. Flavones bitter or sweet antispasmodic, and anti- esculentum inflammatory anti-spasmodic, Digitalis lanata, carcinogenic, sedative, 7. Glycosides bitter, acrid Prunus serotina; affecting heart rate and Allium sativum, respiration, antibiotic 8. Gums and bland, sticky or soothing and softening Althaea officinalis 3 Mucilage slimy acrid, Commiphora 9. Resins antiseptic, healing astringent, myrrha sweet, often anti-inflammatory Saponaria 10. Saponins stimulant, or diuretic; soapy in officinalis hormonal water checking bleeding and Potentilla erecta 11. Tannins often antiseptic discharges antiseptic, fungicidal, Thymus vulgaris 12. Volatile oils Aromatic irritant and stimulant 1.1.6. How herbal ingredients work Phytochemicals, the herbal ingredients, have a measurable effect on the body when given internally or applied externally. The herbal ingredients act right from the fundamental systems such as digestive, respiratory, circulatory etc., to the complex systems such as the endocrine and reproductive (Chaudhury, 1992; Zhang, 1998). They act as anti-diarrhoeals (Acacia arabica and A. catechu), laxatives (Aloe ferox, Cassia acatifolia), carminatives (Cinnamon zeylancium, Ocimum sanctum), spasmolytics (Datura spp.), anti-emetics (Mentha spp.) etc. The herbal products can cure almost all kinds of ailments. The stomach, liver, kidney, skin, lungs, heart, bone and blood disorders are the common ailments cured by medicinal plants since ancient times. But specific compositions are formulated and administered for acute ailments such as cancer and AIDS (Chaudhury, 1992). Herbal medicines differ greatly from the compounds synthesized within them and isolated from them. The whole plant (and extracts derived from it) contains many ingredients that work together and produce a quite different effect (synergistic effect) from that of an isolated constituent given on higher dosage. An example is meadowsweet containing healing ingredients (e.g. salicylates), and also buffering substances that protect the mucous membrane from the corrosive effects of salicylates. The complex chemistry of whole plant appears to lower the risk of side-effects, whereas isolated compounds may be surprisingly toxic. This is especially true of volatile oils derived from herbs (Bown, 1995). 4 1.1.7. Standards of curative principles Chemical principles from natural sources have become much simpler and have contributed significantly to the development of new drugs from medicinal plants (Cox, 1990 & 1994). In the last century, roughly 121 pharmaceutical products have been discovered from the plant source (Anesini, 1993). Majority of the pharmaceutical companies promoting herbal products have fixed standards (percentage of active principle). Since the efficacy of herbal product is based on percentage of active principle, it becomes mandatory that claimed percentage of active principle should be present in the finished product. Consumer laboratory in America issued several alerts addressing batch to batch variability of the active constituents in commercial preparations for herbal remedies like Hypericum perforatum, Ginkgo biloba and Silybum marianum (Singh, 2008). Central Council of Indian Medicine (CCIM) has developed agricultural techniques for prioritized Ayurvedic plants and commercialized the technology. Ayurveda recommends use of fresh herbs rather than stored herbs. Although it is not practically possible to have all herbs on store, one has to depend on the market for buying. Shelf-life and transportation are other factors responsible for variation of active principles in the herbs purchased from the market (Singh, 2008). Good Agricultural Practices (GAP) need to be standardized for enhancing quality of finished herbal products. With the introduction of organic farming and transgenic crops, it will be possible to get standardized raw material for therapeutically active finished products. 1.1.8. Environmental factors and plants All organisms must live in some sort of environment. Their physiological processes, which are essential for the maintenance of life, are dependant upon environmental conditions and substances. In an ecosystem
Recommended publications
  • In China: Phylogeny, Host Range, and Pathogenicity
    Persoonia 45, 2020: 101–131 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.04 Cryphonectriaceae on Myrtales in China: phylogeny, host range, and pathogenicity W. Wang1,2, G.Q. Li1, Q.L. Liu1, S.F. Chen1,2 Key words Abstract Plantation-grown Eucalyptus (Myrtaceae) and other trees residing in the Myrtales have been widely planted in southern China. These fungal pathogens include species of Cryphonectriaceae that are well-known to cause stem Eucalyptus and branch canker disease on Myrtales trees. During recent disease surveys in southern China, sporocarps with fungal pathogen typical characteristics of Cryphonectriaceae were observed on the surfaces of cankers on the stems and branches host jump of Myrtales trees. In this study, a total of 164 Cryphonectriaceae isolates were identified based on comparisons of Myrtaceae DNA sequences of the partial conserved nuclear large subunit (LSU) ribosomal DNA, internal transcribed spacer new taxa (ITS) regions including the 5.8S gene of the ribosomal DNA operon, two regions of the β-tubulin (tub2/tub1) gene, plantation forestry and the translation elongation factor 1-alpha (tef1) gene region, as well as their morphological characteristics. The results showed that eight species reside in four genera of Cryphonectriaceae occurring on the genera Eucalyptus, Melastoma (Melastomataceae), Psidium (Myrtaceae), Syzygium (Myrtaceae), and Terminalia (Combretaceae) in Myrtales. These fungal species include Chrysoporthe deuterocubensis, Celoporthe syzygii, Cel. eucalypti, Cel. guang­ dongensis, Cel. cerciana, a new genus and two new species, as well as one new species of Aurifilum. These new taxa are hereby described as Parvosmorbus gen.
    [Show full text]
  • Dissertation Nefhere Kv.Pdf
    PERCEPTIONS OF TRADITIONAL HEALERS REGARDING ETHNOBOTANICAL IMPORTANCE AND CONSERVATION STATUS OF INDIGENOUS MEDICINAL PLANTS OF THULAMELA, LIMPOPO by KHAMUSI VICTOR NEFHERE Submitted in accordance with the requirements for the degree of MASTER OF SCIENCE In the subject ORNAMENTAL HORTICULTURE at the UNIVERSITY OF SOUTH AFRICA DEPARTMENT OF ENVIRONMENTAL SCIENCES SUPERVISOR: PROF. WAJ NEL CO-SUPERVISOR: PROF. RM HENDRICK March 2019 DECLARATION I, Khamusi Victor Nefhere, hereby declare that the dissertation which I hereby submit for the degree of Master of Science in ornamental horticulture, at the University of South Africa, is my own work, and has not previously been submitted by me for a degree at this or any other institution. I declare that the dissertation does not contain any written work presented by other persons whether written, pictures, graphs or data or any other information, without acknowledging the source. I declare that where words from a written source have been used, the words have been paraphrased and referenced, and, where exact words from a source have been used, the words have been placed inside quotation marks and referenced. I declare that during my study I adhered to the research ethics policy of the University of South Africa. I received ethics approval for the duration of my study, prior to the commencement of data gathering, and have not acted outside the approval conditions. I declare that the content of my thesis has been submitted through an electronic plagiarism detection program before the final submission for examination. Student signature: _____________________ date ____________________ Khamusi Victor Nefhere ii DEDICATION This project is dedicated to my late father (Nkhelebeni Wilson), mother (Tshinakaho) and brother, Phalanndwa Nefhere.
    [Show full text]
  • Principles and Practice of Forest Landscape Restoration Case Studies from the Drylands of Latin America Edited by A.C
    Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,000 government and NGO members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 60 offices and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor This book is dedicated to the memory of Margarito Sánchez Carrada, a student who worked on the research project described in these pages. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the European Commission concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Flora Vascular De La Laguna Avendaño, Provincia De Diguillín, Chile
    Gayana Bot. 76(1): 74-83, 2019. ISSN 0016-5301 Artículo Original Flora vascular de la Laguna Avendaño, Provincia de Diguillín, Chile Vascular flora of the Avendaño Lagoon, Province of Diguillín, Chile CARLOS BAEZA1*, ROBERTO RODRÍGUEZ1 & OSCAR TORO-NÚÑEZ1 1Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile. *[email protected] RESUMEN La Laguna Avendaño se ubica en la Provincia de Diguillín, dentro del macrobioclima Mediterráneo, Región de Ñuble, Chile, y constituye un importante centro de recreación durante los meses de verano. Se estudió la flora vascular presente en el cuerpo de agua y en sectores aledaños, los cuales difieren en el grado de antropización. Se compararon 5 sitios en cuanto a la composición y riqueza específica de ellos. Los sitios más alterados, en base al número de especies introducidas, corresponden a los lugares abiertos al público y de uso recreacional masivo. Se documenta la presencia de 113 especies de plantas vasculares que crecen espontáneamente, incluyendo 6 Pteridophyta, 77 Dicotyledoneae y 30 Monocotyledoneae. Del total de especies, 13,3% son endémicas de Chile, 52,2% nativas y 34,5% introducidas. Las familias mejor representadas son: Poaceae, Asteraceae, Cyperaceae y Scrophulariaceae. El objetivo de este catálogo fue describir la flora aledaña al cuerpo de agua de esta laguna que tiene una enorme importancia turística para la Comuna de Quillón, y por ende fuerte presión antrópica. PALABRAS CLAVE: Laguna Avendaño, flora vascular, Chile. ABSTRACT The Avendaño Lagoon is located in the Province of Diguillin, Ñuble Region, Chile and represents a very popular recreation area during the summer season.
    [Show full text]
  • Knowledge Gaps, Training Needs and Bio-Ecological Studies on Fruit-Infesting Flies (Diptera: Tephritidae) in Northern Ghana
    University of Ghana http://ugspace.ug.edu.gh KNOWLEDGE GAPS, TRAINING NEEDS AND BIO-ECOLOGICAL STUDIES ON FRUIT-INFESTING FLIES (DIPTERA: TEPHRITIDAE) IN NORTHERN GHANA BY BADII KONGYELI BENJAMIN MASTER OF PHILOSOPHY IN ENTOMOLOGY UNIVERSITY OF GHANA, LEGON, GHANA THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF DOCTOR OF PHILOSOPHY CROP SCIENCE (ENTOMOLOGY) DEGREE JULY, 2014 University of Ghana http://ugspace.ug.edu.gh DECLARATION I hereby declare that this thesis is the result of my own original research, and that it has neither in whole nor in part been presented for a degree elsewhere. Works of others which served as sources of information have been duly acknowledged by reference to the authors. Candidate ………………………… Badii Kongyeli Benjamin Principal Supervisor …………………. Co-supervisor ………………….. Prof. Daniel Obeng-Ofori Prof. Kwame Afreh-Nuamah Co-supervisor …………………… Dr. Maxwell Kevin Billah University of Ghana http://ugspace.ug.edu.gh ACKNOWLEDGEMENTS This thesis could not have been accomplished without the guidance of my dear supervisors and academic mentors. My supervisors (Prof. Daniel Obeng-Ofori, Prof. Kwame Afreh-Nuamah and Dr. Maxwell K. Billah) offered me the needed encouragement, support and guidance throughout the study. Also, Prof. Gebriel A. Teye (Pro-Vice Chancellor), Prof. George Nyarko (Dean, Faculty of Agriculture), Dr. Elias N. K. Sowley (Director, Academic Quality Assurance Directorate) and Dr. Isaac K. Addai (Head, Department of Agronomy) all of the University for Development Studies (UDS) approved of my leave of study, supported and encouraged me throughout my study. The Head of Department (Mrs. Dr C.
    [Show full text]
  • Morphology and Vascular Anatomy of the Flower of Angophora Intermedia
    © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 13 (2006): 11–19 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Morphology and vascular anatomy of the fl ower of Angophora intermedia DC. (Myrtaceae) with special emphasis on the innervation of the fl oral axis Sergey A. Volgin & Anastasiya Stepanova Summary: A peculiar receptacle structure in Angophora intermedia DC. (Myrtaceae) has been determined by a vascular-anatomical method. The vascular system of the fl ower of A. intermedia consists of numerous ascending bundles and girdling bundles in the hypanthium and the inferior ovary wall. In the central column of the trilocular ovary we found a dense conical plexus of vascular bundles supplying the placentae (infralocular plexus). It is connected with ascending bundles of the receptacle in the ovary base. In its central part it contains “hanged” bundles and blind bundles, so it seems to be a residual stele of a rudimentary fl oral apex. Thus, the receptacle ofA. intermedia is toroidal at the level of fl oral organs and conical above the carpel node. Keywords: Angophora intermedia, Myrtaceae, fl ower morphology, vascular system, fl oral axis, innervation, anatomy The fl oral development in different species of Myrtaceae has been studied precisely to elucidate the homology of the inferior ovary, hypanthium, operculate perianth and stamens of the polymerous androecium (PAYER 1857; MAYR 1969; BUNNIGER 1972; DRINNAN & LADIGES 1988; RONSE DECRAENE & SMETS 1991; ORLOVICH et al. 1996). Developmental and histogenetical studies have shown, that the receptacle in the fl ower of Myrtaceae is cup-like and take part to certain extent in the formation of the inferior ovary wall and the hypanthium (PAYER 1857; BUNNIGER 1972; RONSE DECRAENE & SMETS 1991).
    [Show full text]
  • Genera in Myrtaceae Family
    Genera in Myrtaceae Family Genera in Myrtaceae Ref: http://data.kew.org/vpfg1992/vascplnt.html R. K. Brummitt 1992. Vascular Plant Families and Genera, Royal Botanic Gardens, Kew REF: Australian – APC http://www.anbg.gov.au/chah/apc/index.html & APNI http://www.anbg.gov.au/cgi-bin/apni Some of these genera are not native but naturalised Tasmanian taxa can be found at the Census: http://tmag.tas.gov.au/index.aspx?base=1273 Future reference: http://tmag.tas.gov.au/floratasmania [Myrtaceae is being edited at mo] Acca O.Berg Euryomyrtus Schaur Osbornia F.Muell. Accara Landrum Feijoa O.Berg Paragonis J.R.Wheeler & N.G.Marchant Acmena DC. [= Syzigium] Gomidesia O.Berg Paramyrciaria Kausel Acmenosperma Kausel [= Syzigium] Gossia N.Snow & Guymer Pericalymma (Endl.) Endl. Actinodium Schauer Heteropyxis Harv. Petraeomyrtus Craven Agonis (DC.) Sweet Hexachlamys O.Berg Phymatocarpus F.Muell. Allosyncarpia S.T.Blake Homalocalyx F.Muell. Pileanthus Labill. Amomyrtella Kausel Homalospermum Schauer Pilidiostigma Burret Amomyrtus (Burret) D.Legrand & Kausel [=Leptospermum] Piliocalyx Brongn. & Gris Angasomyrtus Trudgen & Keighery Homoranthus A.Cunn. ex Schauer Pimenta Lindl. Angophora Cav. Hottea Urb. Pleurocalyptus Brongn. & Gris Archirhodomyrtus (Nied.) Burret Hypocalymma (Endl.) Endl. Plinia L. Arillastrum Pancher ex Baill. Kania Schltr. Pseudanamomis Kausel Astartea DC. Kardomia Peter G. Wilson Psidium L. [naturalised] Asteromyrtus Schauer Kjellbergiodendron Burret Psiloxylon Thouars ex Tul. Austromyrtus (Nied.) Burret Kunzea Rchb. Purpureostemon Gugerli Babingtonia Lindl. Lamarchea Gaudich. Regelia Schauer Backhousia Hook. & Harv. Legrandia Kausel Rhodamnia Jack Baeckea L. Lenwebia N.Snow & ZGuymer Rhodomyrtus (DC.) Rchb. Balaustion Hook. Leptospermum J.R.Forst. & G.Forst. Rinzia Schauer Barongia Peter G.Wilson & B.Hyland Lindsayomyrtus B.Hyland & Steenis Ristantia Peter G.Wilson & J.T.Waterh.
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • Phylogenetic Studies in the Euasterids II
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 676 _____________________________ _____________________________ Phylogenetic Studies in the Euasterids II with Particular Reference to Asterales and Escalloniaceae BY JOHANNES LUNDBERG ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy in Systematic Botany presented at Uppsala University in 2002 Abstract Lundberg, J. 2001. Phylogenetic studies in the Euasterids II with particular reference to Asterales and Escalloniaceae. Acta Univ. Ups. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 676. 38 pp. Uppsala. ISBN 91-554-5191-8. The present study is concerned with the evolutionary relationships among the Euasterids II, a group of angiosperms that includes the orders Apiales, Aquifoliales, Asterales, and Dipsacales together with several small, poorly known families yet unplaced as to order. Parsimony analysis of nucleotide sequence data from the chloroplast genes atpB, ndhF and rbcL together with morphological data are used to construct a phylogeny of the order Asterales, which in the present sense includes 11 families and more than 26 000 species. It is argued that Rousseaceae should be expanded to include also Carpodetaceae (and thus contain four genera), and that Donatia should be re-merged with Stylidiaceae. The present study also strongly supports that the sister taxon to the largest plant family, Asteraceae (Compositae), is the small South American Calyceraceae. A new addition to Asterales is Platyspermation (formerly in Escalloniaceae). Using the recently developed Bayesian approach to phylogenetic reconstruction, in combination with a dataset consisting of the atpB, ndhF and rbcL nucleotide sequences, a resolved and fairly well supported phylogeny of the Euasterids II was reconstructed.
    [Show full text]
  • Psiloxylon Mauritianum (Bouton Ex Hook.F.) Baillon (Myrtaceae): a Promising Traditional Medicinal Plant from the Mascarene Islands
    Journal of Intercultural Ethnopharmacology www.jicep.com Monograph DOI: 10.5455/jice.20140804010620 Psiloxylon mauritianum (Bouton ex Hook.f.) Baillon (Myrtaceae): A promising traditional medicinal plant from the Mascarene Islands Mohamad Fawzi Mahomoodally, Housna Nazifah Korumtollee, Zaynab Zaina Banu Khan Chady Department of Health ABSTRACT Sciences, Faculty of Psiloxylon mauritianum (PM) (Bouton ex Hook.f.) Baillon (Myrtaceae) is an evergreen endemic medicinal plant Science, University of Mauritius, Réduit, which has shown promising uses in traditional medicine from the Mascarene Islands (Mauritius and Réunion Mauritius Islands). Folk use of this endemic plant in Mauritius and Réunion Islands has been geared toward the treatment and management of amenorrhea, dysentery and Type II diabetes mellitus. Recent findings from in vitro studies Address for correspondence: have led to the discovery of two potent acids namely corosolic acid and asiatic acid which have been shown to Mohamad Fawzi bear most inhibitory activities against Staphylococcus aureus. Such findings tend to appraise the therapeutic Mahomoodally, Department potential of this medicinal plant against infectious diseases. The present monograph has tried to establish the of Health Sciences, Faculty of Science, University of botanical description, traditional uses and the main constituents identified from PM (Bouton ex Hook.f.) Baillon. Mauritius, Réduit, Mauritius. The limited documentation of in vitro assays of this plant demonstrates an urgent need for extensive research E-mail:
    [Show full text]
  • Using the Checklist N W C
    Using the checklist • The arrangement of the checklist is alphabetical by family followed by genus, grouped under Pteridophyta, Gymnosperms, Monocotyledons and Dicotyledons. • All species and synonyms are arranged alphabetically under genus. • Accepted names are in bold print while synonyms or previously-used names are in italics. • In the case of synonyms, the currently used name follows the equals sign (=), and only refers to usage in Zimbabwe. • Distribution information is included under the current name. • The letters N, W, C, E, and S, following each listed taxon, indicate the known distribution of species within Zimbabwe as reflected by specimens in SRGH or cited in the literature. Where the distribution is unknown, we have inserted Distr.? after the taxon name. • All species known or suspected to be fully naturalised in Zimbabwe are included in the list. They are preceded by an asterisk (*). Species only known from planted or garden specimens were not included. Mozambique Zambia Kariba Mt. Darwin Lake Kariba N Victoria Falls Harare C Nyanga Mts. W Mutare Gweru E Bulawayo GREAT DYKEMasvingo Plumtree S Chimanimani Mts. Botswana N Beit Bridge South Africa The floristic regions of Zimbabwe: Central, East, North, South, West. A checklist of Zimbabwean vascular plants A checklist of Zimbabwean vascular plants edited by Anthony Mapaura & Jonathan Timberlake Southern African Botanical Diversity Network Report No. 33 • 2004 • Recommended citation format MAPAURA, A. & TIMBERLAKE, J. (eds). 2004. A checklist of Zimbabwean vascular plants.
    [Show full text]