The Ontogenesis of Cranial Neuromeres in the Rat Embryo II

Total Page:16

File Type:pdf, Size:1020Kb

The Ontogenesis of Cranial Neuromeres in the Rat Embryo II J. Embryol. exp. Morph. 88, 231-247 (1985) 231 Printed in Great Britain © The Company of Biologists Limited 1985 The ontogenesis of cranial neuromeres in the rat embryo II. A transmission electron microscope study FIONA TUCKETT AND GILLIAN M. MORRISS-KAY Department of Human Anatomy, University of Oxford, South Parks Road, Oxford OX1 3QX, U.K. SUMMARY The morphogenesis of rhombomeres (neuromeres) caudal to the preotic sulcus during neurulation in rat embryos is described. A model is proposed to explain the development of the characteristic neuromeric sulci and interneuromeric gyri based on the cytoskeletal elements and the kinetic behaviour of the neural epithelium. Evidence obtained from a study of control, cytochalasin D-treated and colchicine-treated embryos, at the electron microscopic level, supports the proposed model. The longitudinally expanding cranial neural epithelium bulges between microtubule blocks present within the interneuromeric gyri, causing a bulge to develop along the line of least resistance, away from the microfilament-rich luminal border of the neuromeric sulcus region. INTRODUCTION Neuromeres have been observed as a segmental arrangement of sulci and gyri within the early neural tube of all vertebrate embryos. Their characteristic morphology is illustrated in Fig. 1. This study addresses the question of how the sulci and gyri develop from an initially straight neural epithelium, and how their structure is maintained. Observations on a variety of vertebrates (chick, fish, urodeles) led Kallen (1956) to propose that the formation of neuromeric sulci was the result of mitotic patterning within the neural epithelium. His model is based on transverse sections of the neural epithelium during the formation of a neuromere, which he termed a 'proliferation centre'. According to Kallen, the furrowing of the luminal border results from the redistribution of neuroepithelial cells, due to the mitotic patterning, while the bulging at the basal border is brought about by the formation of proportionally more cells in the centre of the region, where the mitotic activity is highest. This interpretation relies strictly on the kinetics of the cells within the neuromere and their movement across the epithelium between the basal and luminal borders, and takes no account of the possible migration of cells within the Key words: rat embryo, neuromeres, neural tube, cytochalasin D, colchicine, cranial neuromeres. 232 F. TUCKETT AND G. M. MORRISS-KAY neural epithelium (along the length of the embryo), or of possible regulation of shape through a periodicity of structural components. We have suggested that a localized increase in the mitotic index is the initial means of identifying a neuromere, and once the neuromere is expressed morphologically as a surface sulcus the mitotic index returns to its basal level (Tuckett, 1984; Tuckett, Lim & Morriss-Kay, 1985). Kallen's 'proliferation centre' appears to refer to the localized concentrations of mitotic activity which we have observed in both transverse and coronal section. This study investigates the possibility of an alternative hypothesis for the development of neuromeres which embraces both the mitotic patterning (orientation of the mitotic spindle axes) and the cytoskeletal components of the neural epithelium. This hypothesis is illustrated diagrammatically in Fig. 2. It proposes that growth of the neural tube is generated longitudinally by cell division in this plane, but that elongation is prevented by the fixed nature of the tube within the embryo. In consequence, the lengthening epithelium bulges outwards Fig. 1. A light micrograph of a coronal section, along the neural tube of a 16-somite- stage embryo, at the level of the otocysts (o). The lumen of the neural tube is narrowed caudally (to the right). The neural epithelium (nep) is folded into a series of sulci and gyri which is characteristic of neuromeres. The centre of each neuromere, the sulcus, is arrowed; mitotic figures with their darkly staining chromatin are generally localized within the sulci. The interneuromeric junctions (gyri) are marked with asterisks (*). Cranial mesenchyme (mes) underlies the neural epithelium. Alcian-blue-stained wax section (5/mi) from Tuckett (1984). Scale bar represents 40/mi. Ontogenesis of cranial neuromeres studied by TEM 233 ABC • nep mes mes m * b gyrus gyrus t t 1™ sulcus sulcus • • b • • Fig. 2. Schematic diagram representing coronal sections through a similar part of the myelencephalon to that shown in Fig. 1. b, 'block'; nep, neural epithelium; mes, mesenchyme; m, microfilaments. (A) Before generation of a neuromere. Growth of the neural tube is generated by cell division within the longitudinal plane; however the neural epithelium is fixed at various points along the tube, thus forming 'blocks' to tube elongation. The luminal border is rich in microfilament bundles which contract along the line indicated by the arrows. (B) After generation of a neuromere. The lengthening epithelium has to bulge either outward, or inward along the line of least resistance. The microfilament-bound luminal border prevents inward bulging of the neural epithelium, and thus an outward bulge into the more easily deformable mesenchyme results. Due to the structural integrity of the neural epithelium and as a consequence of the outward bulging, a sulcus develops at the luminal border. The blocks to tube elongation are localized at the interneuromeric junctions (gyri). (C) Modification of the model following the studies reported in this paper. The gyrus region consists of a fan-shaped arrangement of cells with microtubule groups aligned perpendicular to the luminal border. into the adjacent mesenchyme since the basal border (lacking in microfilaments) is more easily deformable than the microfilament-bound luminal border. The repeating pattern of sulci and gyri results from the presence of a series of blocks to deformation (gyri) between the bulging regions (sulci). This hypothesis is based on evidence from a previous study (Tuckett & Morriss-Kay, 1985), as follows: (i) cell division within the neural epithelium at relevant stages is predominantly (98%) orientated with the mitotic spindle axis parallel to the long axis of the embryo, so as to increase the length of the neural epithelium; (ii) rostral to the preotic sulcus cells generated in the midbrain and upper hindbrain appear to flow rostrally to provide an extrinsic source of cells for the rapidly expanding forebrain, suggesting the existence of a block to cell movement at or close to the preotic sulcus. Since we are now suggesting a series of blocks to cell movement between neuromeric sulci, the present hypothesis relates only to the clearly segmented caudal metencephalon and myelencephalon, i.e. the region caudal to the preotic sulcus. 234 F. TUCKETT AND G. M. MORRISS-KAY To examine the feasibility of this model for the development of neuromere morphology, and to investigate the morphogenetic nature of the proposed blocks to cell movement between neuromeres, transmission electron microscopy was employed. The function of microtubules and microfilaments in maintaining the morphology was examined by treating embryos in vitro with colchicine which binds to tubulin and prevents microtubule assembly, and cytochalasin D which inhibits microfilament assembly; each may also disrupt existing microtubules and micro- filaments respectively. MATERIALS AND METHODS Wistar strain rat embryos were explanted in Tyrode's saline on day 10 of pregnancy (day of positive vaginal smear = day 0). A total of 39 embryos was used. In the 34 embryos which were subsequently to be cvltured only Reichert's membrane was opened; in the remaining 5 embryos the extraembryonic membranes were removed before fixation. At the time of fixation the embryos had between 12 and 16 somite pairs. Whole embryo culture Embryos were cultured at a temperature of 38 °C in 60 ml Pyrex glass bottles containing 2-5 ml immediately centrifuged, heat-inactivated rat serum (Steele & New, 1974), 2-5 ml Tyrode's saline and lOjul penicillin/streptomycin (5000 i.u. ml"1 and SOOOjUgmP1). The bottles were gassed with 5 % CO2:5 % O2:90 % N2 (New, Coppola & Cockroft, 1976a,b) prior to sealing. The bottles were continuously rotated at 30r.p.m. At the end of the culture period, the embryos were thoroughly washed in Tyrode's saline and the extraembryonic membranes were removed before fixation. Cytochalasin D-treated embryos A stock solution of l-Omgml"1 cytochalasin D (Sigma, London) was prepared in a 10% solution of dimethylsulphoxide (DMSO; Sigma, London) and stored at -20°C. 7-5/il of the stock solution was added to the culture medium (final concentration of 0-15 fig ml"1). Ten embryos at the 11- to 13-somite stage were cultured in the presence of cytochalasin D for 2h. Five control embryos were cultured in the presence of 7 • 5 /A of a 10 % solution of DMSO for 2 h. Colchicine-treated embryos 14 embryos at the 11- to 13-somite stage were treated in culture for 3 h with colchicine (Sigma, London) which had been added to the culture medium so as to produce a final concentration of 0-2 jug ml"1. This concentration was found to cause a sufficiently high mitotic arrest without adversely affecting the gross morphology of the embryo; the duration of colchicine treatment was less than half the cell-cycle time which we have determined previously (Tuckett & Morriss- Kay, 1985), and thus only a small number of cells were observed to be arrested at the metaphase stage. Subsequent treatment was the same as for the untreated, control embryos. Five embryos were cultured in unsupplemented culture medium for 3 h. Electron microscopy After removal of the membranes, embryos were fixed in 2-5 % cacodylate-buffered osmium tetroxide, washed and dehydrated through graded alcohols before embedding in Spurr resin. Thin sections of 80-90 nm thickness were collected on copper grids and double stained with uranyl acetate at 40°C for 45 min and lead citrate for 5 min at room temperature. Ontogenesis of cranial neuromeres studied by TEM 235 Light microscopy Semi thin sections of 1 /an thickness were cut immediately adjacent to the thin sections.
Recommended publications
  • Works Neuroembryology
    Swarthmore College Works Biology Faculty Works Biology 1-1-2017 Neuroembryology D. Darnell Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation D. Darnell and Scott F. Gilbert. (2017). "Neuroembryology". Wiley Interdisciplinary Reviews: Developmental Biology. Volume 6, Issue 1. DOI: 10.1002/wdev.215 https://works.swarthmore.edu/fac-biology/493 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Wiley Interdiscip Manuscript Author Rev Dev Manuscript Author Biol. Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Wiley Interdiscip Rev Dev Biol. 2017 January ; 6(1): . doi:10.1002/wdev.215. Neuroembryology Diana Darnell1 and Scott F. Gilbert2 1University of Arizona College of Medicine 2Swarthmore College and University of Helsinki Abstract How is it that some cells become neurons? And how is it that neurons become organized in the spinal cord and brain to allow us to walk and talk, to see, recall events in our lives, feel pain, keep our balance, and think? The cells that are specified to form the brain and spinal cord are originally located on the outside surface of the embryo. They loop inward to form the neural tube in a process called neurulation.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Subject Index
    979 Subject Index Acellularity Asymmetry of embryonic starfish mesenchyme cells: KANEKO AND development of left/right asymmetry: BROWN AND OTHERS 129 WOLPERT 1 Acetylcholinesterase Avian tropomyosin/cholinesterase expression in ascidian embryo zygotes: CROWTHER AND OTHERS 953 localization of bFGF: KALCHEIM AND NEUFELD 203 Acrosome Axis reaction anterior-posterior zona receptors on guinea-pig spermatozoa: JONES AND organizer amount and axial pattern in Xenopus: WILLIAMS 41 STEWART AND GERHART 363 Actin Axogenesis effect of stretch on muscle gene expression: LOUGHNA AND Thy-1 expression in murine olfactory bulb: XUE AND OTHERS 217 OTHERS 851 Adult Axolotl rat embryo perinatnl ndu coexistence of O-2A and O-2A " progenitors: extracellular matrix in neural crest pathways: PERRIS WOLSWIJK AND OTHERS 691 AND OTHERS 533 Aggregation Axon pattern guidance of Dictyostelium discoideum: FOERSTER AND OTHERS 11 axon patterning at rat floor plate: BOVOLENTA AND Aging DODD 435 NGF receptor in rat dental tissue: BYERS AND OTHERS 461 outgrowth Agouti growth associated protein in chick visual system: cellular action of the mouse lethal yellow mutation: BARSH SCHLOSSHAUER AND OTHERS 395 AND OTHERS 683 rat Ammonia prenatal Schwann cell development: MIRSKY AND promotes cAMP accumulation in Dictyostelium: RILEY AND OTHERS 105 BARCLAY 715 regeneration AMP effects of protease inhibitors: FAWCETT AND HOUSDEN cyclic 59 ammonia promotes cAMP accumulation in Dictyostelium: RILEY AND BARCLAY 715 prenatal Schwann cell development: MIRSKY AND Back-transplantation OTHERS
    [Show full text]
  • Clonal Dispersion During Neural Tube Formation 4097 of Neuromeres
    Development 126, 4095-4106 (1999) 4095 Printed in Great Britain © The Company of Biologists Limited 1999 DEV2458 Successive patterns of clonal cell dispersion in relation to neuromeric subdivision in the mouse neuroepithelium Luc Mathis1,*, Johan Sieur1, Octavian Voiculescu2, Patrick Charnay2 and Jean-François Nicolas1,‡ 1Unité de Biologie moléculaire du Développement, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France 2Unité INSERM 368, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France *Present address: Beckman Institute (139-74), California Institute of Technology, Pasadena, CA, 91125, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 5 July; published on WWW 23 August 1999 SUMMARY We made use of the laacz procedure of single-cell labelling the AP and DV axis of the neural tube. A similar sequence to visualize clones labelled before neuromere formation, in of AP cell dispersion followed by an arrest of AP cell 12.5-day mouse embryos. This allowed us to deduce two dispersion, a preferential DV cell dispersion and then by a successive phases of cell dispersion in the formation of the coherent neuroepithelial growth, is also observed in the rhombencephalon: an initial anterior-posterior (AP) cell spinal cord and mesencephalon. This demonstrates that a dispersion, followed by an asymmetrical dorsoventral (DV) similar cascade of cell events occurs in these different cell distribution during which AP cell dispersion occurs in domains of the CNS. In the prosencephalon, differences in territories smaller than one rhombomere. We conclude that spatial constraints may explain the variability in the the general arrest of AP cell dispersion precedes the onset orientation of cell clusters.
    [Show full text]
  • Fate of the Mammalian Cardiac Neural Crest
    Development 127, 1607-1616 (2000) 1607 Printed in Great Britain © The Company of Biologists Limited 2000 DEV4300 Fate of the mammalian cardiac neural crest Xiaobing Jiang1,3, David H. Rowitch4,*, Philippe Soriano5, Andrew P. McMahon4 and Henry M. Sucov2,3,‡ Departments of 1Biological Sciences and 2Cell & Neurobiology, 3Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St., IGM 240, Los Angeles, CA 90033, USA 4Department of Molecular and Cell Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA 5Program in Developmental Biology, Division of Basic Sciences, A2-025, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, WA 98109, USA *Present address: Department of Pediatric Oncology, Dana Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 26 January; published on WWW 21 March 2000 SUMMARY A subpopulation of neural crest termed the cardiac neural of these vessels. Labeled cells populate the crest is required in avian embryos to initiate reorganization aorticopulmonary septum and conotruncal cushions prior of the outflow tract of the developing cardiovascular to and during overt septation of the outflow tract, and system. In mammalian embryos, it has not been previously surround the thymus and thyroid as these organs form. experimentally possible to study the long-term fate of this Neural-crest-derived mesenchymal cells are abundantly population, although there is strong inference that a similar distributed in midgestation (E9.5-12.5), and adult population exists and is perturbed in a number of genetic derivatives of the third, fourth and sixth pharyngeal arch and teratogenic contexts.
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • NERVOUS SYSTEM هذا الملف لالستزادة واثراء المعلومات Neuropsychiatry Block
    NERVOUS SYSTEM هذا الملف لﻻستزادة واثراء المعلومات Neuropsychiatry block. قال تعالى: ) َو َل َق د َخ َل قنَا ا ِْلن َسا َن ِمن ُس ََل َل ة ِ من ِطي ن }12{ ثُ م َجعَ لنَاه ُ نُ ط َفة فِي َق َرا ر م ِكي ن }13{ ثُ م َخ َل قنَا ال ُّن ط َفة َ َع َل َقة َف َخ َل قنَا ا لعَ َل َقة َ ُم ضغَة َف َخ َل قنَا ا ل ُم ضغَة َ ِع َظا ما َف َك َس ونَا ا ل ِع َظا َم َل ح ما ثُ م أَن َشأنَاه ُ َخ ل قا آ َخ َر َفتَبَا َر َك ّللا ُ أَ ح َس ُن ا ل َخا ِل ِقي َن }14{( Resources BRS Embryology Book. Pathoma Book ( IN DEVELOPMENTAL ANOMALIES PART ). [email protected] 1 OVERVIEW A- Central nervous system (CNS) is formed in week 3 of development, during which time the neural plate develops. The neural plate, consisting of neuroectoderm, becomes the neural tube, which gives rise to the brain and spinal cord. B- Peripheral nervous system (PNS) is derived from three sources: 1. Neural crest cells 2. Neural tube, which gives rise to all preganglionic autonomic nerves (sympathetic and parasympathetic) and all nerves (-motoneurons and -motoneurons) that innervate skeletal muscles 3. Mesoderm, which gives rise to the dura mater and to connective tissue investments of peripheral nerve fibers (endoneurium, perineurium, and epineurium) DEVELOPMENT OF THE NEURAL TUBE Neurulation refers to the formation and closure of the neural tube. BMP-4 (bone morphogenetic protein), noggin (an inductor protein), chordin (an inductor protein), FGF-8 (fibroblast growth factor), and N-CAM (neural cell adhesion molecule) appear to play a role in neurulation.
    [Show full text]
  • Expression Patterns of Neural Genes in Euperipatoides Kanangrensis Suggest Divergent Evolution of Onychophoran and Euarthropod Neurogenesis
    Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis Bo Joakim Eriksson and Angelika Stollewerk1 School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Edited by Thomas C. Kaufman, Indiana University, Bloomington, IN, and approved November 10, 2010 (received for review June 28, 2010) One of the controversial debates on euarthropod relationships pattern of neurogenesis that has been retained in these groups centers on the question as to whether insects, crustaceans, and and thus cannot be used to resolve euarthropod phylogeny? myriapods (Mandibulata) share a common ancestor or whether Analysis of neurogenesis in a closely related group, the Ony- myriapods group with the chelicerates (Myriochelata). The debate chophora, might shed light on this problem. Although the phy- was stimulated recently by studies in chelicerates and myriapods logenetic position of onychophorans is still debated, many that show that neural precursor groups (NPGs) segregate from the phylogenies group them with euarthropods and possibly tardi- neuroectoderm generating the nervous system, whereas in insects grades in the phylum Arthropoda; thus onychophorans share and crustaceans the nervous tissue is produced by stem cells. Do a common ancestor with euarthropods (8, 19–23). Analyses of the shared neural characters of myriapods and chelicerates repre- neurogenesis in onychophorans suggests that, similar to insects sent derived characters that support the Myriochelata grouping? and crustaceans, single neural precursors are formed in the neu- Or do they rather reflect the ancestral pattern? Analyses of neuro- roectoderm, rather than groups of cells as seen in chelicerates and genesis in a group closely related to euarthropods, the onycho- myriapods (24–26).
    [Show full text]
  • Hox Genes Make the Connection
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Establishing neuronal circuitry: Hox genes make the connection James Briscoe1 and David G. Wilkinson2 Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK The vertebrate nervous system is composed of a vast meres maintain these partitions. Each rhombomere array of neuronal circuits that perceive, process, and con- adopts unique cellular and molecular properties that ap- trol responses to external and internal cues. Many of pear to underlie the spatial organization of the genera- these circuits are established during embryonic develop- tion of cranial motor nerves and neural crest cells. More- ment when axon trajectories are initially elaborated and over, the coordination of positional identity between the functional connections established between neurons and central and peripheral derivatives of the hindbrain may their targets. The assembly of these circuits requires ap- underlie the anatomical and functional registration be- propriate matching between neurons and the targets tween MNs, cranial ganglia, and the routes of neural they innervate. This is particularly apparent in the case crest migration. Cranial neural crest cells derived from of the innervation of peripheral targets by central ner- the dorsal hindbrain migrate ventral-laterally as discrete vous system neurons where the development of the two streams adjacent to r2, r4, and r6 to populate the first tissues must be coordinated to establish and maintain three branchial arches (BA1–BA3), respectively, where circuits. A striking example of this occurs during the they generate distinct skeletal and connective tissue formation of the vertebrate head.
    [Show full text]
  • Cephalic Neurulation in the Mouse Embryo Analyzed by SEM and Morphometry
    THE ANATOMICAL RECORD 203:375-396 (1982) Cephalic Neurulation in the Mouse Embryo Analyzed by SEM and Morphometry ANTONE G. JACOBSON AND PATRICK P.L. TAM Department of Zoology. Uniuersity of Texas, Austin, TX 78712 (A.G.J.) and Department of Anatomy, (‘hinese University of Hong Kong, Shatin, N.T., Hong Kong IP.PL.T) ABSTRACT A detailed account of mouse neurulation is given based mostly on SEM analysis over 20 hr of development. Many observations and measure- ments were made on staged living embryos and on embryos prepared for scanning and light microscopy to help deduce what mechanisms may contribute to neural tube formation. Each lateral half of the early cephalic neural plate makes a convex bulge, opposite to the way it must fold to form a tube. Underlying mesenchyme and matrix are reported to have a role in forming these bulges. Processes that form the tube must overcome this opposed folding and the forces that produce it. Crani- al flexure begins long before tube formation. The flexure commences at the rostra1 tip of the cephalic neural plate, then the apex of the flexure migrates caudally to the mesencephalic region. Early appearance of this flexure imposes a mechanical impediment to tube closure in forebrain and midbrain regions. Tube closure begins in the cervical region exactly where the neural plate is reflected dorsally by a bend in the embryo. This bend may mechanically assist closure in this region. Cells of the mouse neural plate are reported to contain organized microfilaments and mi- crotubules, and the plate cells appear to change shape (reduce apical area and in- crease cell height) in the same manner as that suggested in embryos of some other species to contribute to neural tube formation.
    [Show full text]
  • R-Cadherin Expression During Nucleus Formation in Chicken Forebrain Neuromeres
    The Journal of Neuroscience, June 1995, 15(6): 4157-4172 R-Cadherin Expression during Nucleus Formation in Chicken Forebrain Neuromeres Susanne I. I. GBnzler and Christoph Redies Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72072 Tiibingen, Germany The primordial neuroepithelium of the vertebrate forebrait dahl, 1924; Vaage, 1969; Kuhlenbeck, 1973; Puelleset al., 1987; consists of transverse and longitudinal morphogenetic Puelles and Rubenstein, 1993) that represent independentmor- compartments (“neuromeres”). During development, neu- phogenetic fields (Bergquist and KallCn, 1953a,b, 1954; Keyser, rons born in the ventricular zone of each neuromere mi- 1972; Puelleset al., 1987). The boundariesbetween neuromeres grate outward to the mantle zone. Here, neuroblasts grad- often coincide with primordial fiber tracts and restrict cell lin- ually accumulate and aggregate either into sheets (“lami- eage and migration. Generally, they coincide with the borders nae”) or into roundish structures (“nuclei”). As brain ar- of expressionof generegulatory proteins (reviewed in Lumsden, chitecture matures, sets of nuclei and laminae derived from 1990, 1993; Figdor and Stern, 1993; Krumlauf et al., 1993; Puel- several neuromeres become connected by fiber tracts to les and Rubenstein, 1993; Wilson et al., 1993). form functional circuits. We show by immunostaining and During development, a percentageof cells born in the prolif- in situ hybridization techniques that, in the E3-E5 chicken erative (ventricular) zone of each neuromerebecome postmitotic embryo, the cell adhesion molecule R-cadherin is ex- and migrate as neuroblastsoutward into the mantle zone (Sauer, pressed in several stripes and patches in the forebrain neu- 1935; Fujita, 1964; Morest, 1970) in two or three sustained roepithelium.
    [Show full text]
  • Homeotic Gene Action in Embryonic Brain Development of Drosophila
    Development 125, 1579-1589 (1998) 1579 Printed in Great Britain © The Company of Biologists Limited 1998 DEV1254 Homeotic gene action in embryonic brain development of Drosophila Frank Hirth, Beate Hartmann and Heinrich Reichert* Institute of Zoology, University of Basel, Rheinsprung 9, CH-4051 Basel, Switzerland *Author for correspondence (e-mail: [email protected]) Accepted 18 February; published on WWW 1 April 1998 SUMMARY Studies in vertebrates show that homeotic genes are absence of labial, mutant cells are generated and positioned involved in axial patterning and in specifying segmental correctly in the brain, but these cells do not extend axons. identity of the embryonic hindbrain and spinal cord. To Additionally, extending axons of neighboring wild-type gain further insights into homeotic gene action during CNS neurons stop at the mutant domains or project ectopically, development, we here characterize the role of the homeotic and defective commissural and longitudinal pathways genes in embryonic brain development of Drosophila. We result. Immunocytochemical analysis demonstrates that first use neuroanatomical techniques to map the entire cells in the mutant domains do not express neuronal anteroposterior order of homeotic gene expression in the markers, indicating a complete lack of neuronal identity. Drosophila CNS, and demonstrate that this order is An alternative glial identity is not adopted by these mutant virtually identical in the CNS of Drosophila and mammals. cells. Comparable effects are seen in Deformed mutants but We then carry out a genetic analysis of the labial gene in not in other homeotic gene mutants. Our findings embryonic brain development. Our analysis shows that demonstrate that the action of the homeotic genes labial loss-of-function mutation and ubiquitous overexpression of and Deformed are required for neuronal differentiation in labial results in ectopic expression of neighboring the developing brain of Drosophila.
    [Show full text]