Flexion and Neural Tube Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Works Neuroembryology
Swarthmore College Works Biology Faculty Works Biology 1-1-2017 Neuroembryology D. Darnell Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation D. Darnell and Scott F. Gilbert. (2017). "Neuroembryology". Wiley Interdisciplinary Reviews: Developmental Biology. Volume 6, Issue 1. DOI: 10.1002/wdev.215 https://works.swarthmore.edu/fac-biology/493 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Wiley Interdiscip Manuscript Author Rev Dev Manuscript Author Biol. Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Wiley Interdiscip Rev Dev Biol. 2017 January ; 6(1): . doi:10.1002/wdev.215. Neuroembryology Diana Darnell1 and Scott F. Gilbert2 1University of Arizona College of Medicine 2Swarthmore College and University of Helsinki Abstract How is it that some cells become neurons? And how is it that neurons become organized in the spinal cord and brain to allow us to walk and talk, to see, recall events in our lives, feel pain, keep our balance, and think? The cells that are specified to form the brain and spinal cord are originally located on the outside surface of the embryo. They loop inward to form the neural tube in a process called neurulation. -
The Genetic Basis of Mammalian Neurulation
REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm. -
Clonal Dispersion During Neural Tube Formation 4097 of Neuromeres
Development 126, 4095-4106 (1999) 4095 Printed in Great Britain © The Company of Biologists Limited 1999 DEV2458 Successive patterns of clonal cell dispersion in relation to neuromeric subdivision in the mouse neuroepithelium Luc Mathis1,*, Johan Sieur1, Octavian Voiculescu2, Patrick Charnay2 and Jean-François Nicolas1,‡ 1Unité de Biologie moléculaire du Développement, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France 2Unité INSERM 368, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France *Present address: Beckman Institute (139-74), California Institute of Technology, Pasadena, CA, 91125, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 5 July; published on WWW 23 August 1999 SUMMARY We made use of the laacz procedure of single-cell labelling the AP and DV axis of the neural tube. A similar sequence to visualize clones labelled before neuromere formation, in of AP cell dispersion followed by an arrest of AP cell 12.5-day mouse embryos. This allowed us to deduce two dispersion, a preferential DV cell dispersion and then by a successive phases of cell dispersion in the formation of the coherent neuroepithelial growth, is also observed in the rhombencephalon: an initial anterior-posterior (AP) cell spinal cord and mesencephalon. This demonstrates that a dispersion, followed by an asymmetrical dorsoventral (DV) similar cascade of cell events occurs in these different cell distribution during which AP cell dispersion occurs in domains of the CNS. In the prosencephalon, differences in territories smaller than one rhombomere. We conclude that spatial constraints may explain the variability in the the general arrest of AP cell dispersion precedes the onset orientation of cell clusters. -
2/2/2011 1 Development of Development of Endodermal
2/2/2011 ZOO 401- Embryology-Dr. Salah A. Martin DEVELOPMENT OF THE DIGESTIVE SYSTEM ◦ Primitive Gut Tube ◦ Proctodeum and Stomodeum ◦ Stomach Development of Endodermal Organs ◦ Duodenum ◦ Pancreas ◦ Liver and Biliary Apparatus ◦ Spleen ◦ Midgut Wednesday, February 02, 2011 DEVELOPMENT OF THE DIGESTIVE SYSTEM 2 Wednesday, February 02, 2011 Development of Ectodermal Organs 1 ZOO 401- Embryology-Dr. Salah A. Martin ZOO 401- Embryology-Dr. Salah A. Martin Primitive Gut Tube Proctodeum and Stomodeum The primitive gut tube is derived from the dorsal part of the yolk sac , which is incorporated into the body of The proctodeum (anal pit) is the primordial the embryo during folding of the embryo during the fourth week. anus , and the stomodeum is the primordial The primitive gut tube is divided into three sections. mouth . The epithelium of and the parenchyma of In both of these areas ectoderm is in direct glands associated with the digestive tract (e.g., liver and pancreas) are derived from endoderm . contact with endoderm without intervening The muscular walls of the digestive tract (lamina mesoderm, eventually leading to degeneration propria, muscularis mucosae, submucosa, muscularis of both tissue layers. Foregut, Esophagus. externa, adventitia and/or serosa) are derived from splanchnic mesoderm . The tracheoesophageal septum divides the During the solid stage of development the endoderm foregut into the esophagus and of the gut tube proliferates until the gut is a solid tube. trachea. information. A process of recanalization restores the lumen. Wednesday, February 02, 2011 Primitive Gut Tube 3 Wednesday, February 02, 2011 Proctodeum and Stomodeum 4 ZOO 401- Embryology-Dr. Salah A. -
Fate of the Mammalian Cardiac Neural Crest
Development 127, 1607-1616 (2000) 1607 Printed in Great Britain © The Company of Biologists Limited 2000 DEV4300 Fate of the mammalian cardiac neural crest Xiaobing Jiang1,3, David H. Rowitch4,*, Philippe Soriano5, Andrew P. McMahon4 and Henry M. Sucov2,3,‡ Departments of 1Biological Sciences and 2Cell & Neurobiology, 3Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St., IGM 240, Los Angeles, CA 90033, USA 4Department of Molecular and Cell Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA 5Program in Developmental Biology, Division of Basic Sciences, A2-025, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, WA 98109, USA *Present address: Department of Pediatric Oncology, Dana Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 26 January; published on WWW 21 March 2000 SUMMARY A subpopulation of neural crest termed the cardiac neural of these vessels. Labeled cells populate the crest is required in avian embryos to initiate reorganization aorticopulmonary septum and conotruncal cushions prior of the outflow tract of the developing cardiovascular to and during overt septation of the outflow tract, and system. In mammalian embryos, it has not been previously surround the thymus and thyroid as these organs form. experimentally possible to study the long-term fate of this Neural-crest-derived mesenchymal cells are abundantly population, although there is strong inference that a similar distributed in midgestation (E9.5-12.5), and adult population exists and is perturbed in a number of genetic derivatives of the third, fourth and sixth pharyngeal arch and teratogenic contexts. -
NERVOUS SYSTEM هذا الملف لالستزادة واثراء المعلومات Neuropsychiatry Block
NERVOUS SYSTEM هذا الملف لﻻستزادة واثراء المعلومات Neuropsychiatry block. قال تعالى: ) َو َل َق د َخ َل قنَا ا ِْلن َسا َن ِمن ُس ََل َل ة ِ من ِطي ن }12{ ثُ م َجعَ لنَاه ُ نُ ط َفة فِي َق َرا ر م ِكي ن }13{ ثُ م َخ َل قنَا ال ُّن ط َفة َ َع َل َقة َف َخ َل قنَا ا لعَ َل َقة َ ُم ضغَة َف َخ َل قنَا ا ل ُم ضغَة َ ِع َظا ما َف َك َس ونَا ا ل ِع َظا َم َل ح ما ثُ م أَن َشأنَاه ُ َخ ل قا آ َخ َر َفتَبَا َر َك ّللا ُ أَ ح َس ُن ا ل َخا ِل ِقي َن }14{( Resources BRS Embryology Book. Pathoma Book ( IN DEVELOPMENTAL ANOMALIES PART ). [email protected] 1 OVERVIEW A- Central nervous system (CNS) is formed in week 3 of development, during which time the neural plate develops. The neural plate, consisting of neuroectoderm, becomes the neural tube, which gives rise to the brain and spinal cord. B- Peripheral nervous system (PNS) is derived from three sources: 1. Neural crest cells 2. Neural tube, which gives rise to all preganglionic autonomic nerves (sympathetic and parasympathetic) and all nerves (-motoneurons and -motoneurons) that innervate skeletal muscles 3. Mesoderm, which gives rise to the dura mater and to connective tissue investments of peripheral nerve fibers (endoneurium, perineurium, and epineurium) DEVELOPMENT OF THE NEURAL TUBE Neurulation refers to the formation and closure of the neural tube. BMP-4 (bone morphogenetic protein), noggin (an inductor protein), chordin (an inductor protein), FGF-8 (fibroblast growth factor), and N-CAM (neural cell adhesion molecule) appear to play a role in neurulation. -
And Krox-20 and on Morphological Segmentation in the Hindbrain of Mouse Embryos
The EMBO Journal vol.10 no.10 pp.2985-2995, 1991 Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos G.M.Morriss-Kay, P.Murphy1,2, R.E.Hill1 and in embryos are unknown, but in human embryonal D.R.Davidson' carcinoma cells they include the nine genes of the Hox-2 cluster (Simeone et al., 1990). Department of Human Anatomy, South Parks Road, Oxford OXI 3QX The hindbrain and the neural crest cells derived from it and 'MRC Human Genetics Unit, Western General Hospital, Crewe are of particular interest in relation to the developmental Road, Edinburgh EH4 2XU, UK functions of RA because they are abnormal in rodent 2Present address: Istituto di Istologia ed Embriologia Generale, embryos exposed to a retinoid excess during or shortly before Universita di Roma 'la Sapienza', Via A.Scarpa 14, 00161 Roma, early neurulation stages of development (Morriss, 1972; Italy Morriss and Thorogood, 1978; Webster et al., 1986). Communicated by P.Chambon Human infants exposed to a retinoid excess in utero at early developmental stages likewise show abnormalities of the Mouse embryos were exposed to maternally administered brain and of structures to which cranial neural crest cells RA on day 8.0 or day 73/4 of development, i.e. at or just contribute (Lammer et al., 1985). Retinoid-induced before the differentiation of the cranial neural plate, and abnormalities of hindbrain morphology in rodent embryos before the start of segmentation. On day 9.0, the RA- include shortening of the preotic region in relation to other treated embryos had a shorter preotic hindbrain than the head structures, so that the otocyst lies level with the first controls and clear rhombomeric segmentation was pharyngeal arch instead of the second (Morriss, 1972; absent. -
Hox Genes Make the Connection
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Establishing neuronal circuitry: Hox genes make the connection James Briscoe1 and David G. Wilkinson2 Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK The vertebrate nervous system is composed of a vast meres maintain these partitions. Each rhombomere array of neuronal circuits that perceive, process, and con- adopts unique cellular and molecular properties that ap- trol responses to external and internal cues. Many of pear to underlie the spatial organization of the genera- these circuits are established during embryonic develop- tion of cranial motor nerves and neural crest cells. More- ment when axon trajectories are initially elaborated and over, the coordination of positional identity between the functional connections established between neurons and central and peripheral derivatives of the hindbrain may their targets. The assembly of these circuits requires ap- underlie the anatomical and functional registration be- propriate matching between neurons and the targets tween MNs, cranial ganglia, and the routes of neural they innervate. This is particularly apparent in the case crest migration. Cranial neural crest cells derived from of the innervation of peripheral targets by central ner- the dorsal hindbrain migrate ventral-laterally as discrete vous system neurons where the development of the two streams adjacent to r2, r4, and r6 to populate the first tissues must be coordinated to establish and maintain three branchial arches (BA1–BA3), respectively, where circuits. A striking example of this occurs during the they generate distinct skeletal and connective tissue formation of the vertebrate head. -
Cephalic Neurulation in the Mouse Embryo Analyzed by SEM and Morphometry
THE ANATOMICAL RECORD 203:375-396 (1982) Cephalic Neurulation in the Mouse Embryo Analyzed by SEM and Morphometry ANTONE G. JACOBSON AND PATRICK P.L. TAM Department of Zoology. Uniuersity of Texas, Austin, TX 78712 (A.G.J.) and Department of Anatomy, (‘hinese University of Hong Kong, Shatin, N.T., Hong Kong IP.PL.T) ABSTRACT A detailed account of mouse neurulation is given based mostly on SEM analysis over 20 hr of development. Many observations and measure- ments were made on staged living embryos and on embryos prepared for scanning and light microscopy to help deduce what mechanisms may contribute to neural tube formation. Each lateral half of the early cephalic neural plate makes a convex bulge, opposite to the way it must fold to form a tube. Underlying mesenchyme and matrix are reported to have a role in forming these bulges. Processes that form the tube must overcome this opposed folding and the forces that produce it. Crani- al flexure begins long before tube formation. The flexure commences at the rostra1 tip of the cephalic neural plate, then the apex of the flexure migrates caudally to the mesencephalic region. Early appearance of this flexure imposes a mechanical impediment to tube closure in forebrain and midbrain regions. Tube closure begins in the cervical region exactly where the neural plate is reflected dorsally by a bend in the embryo. This bend may mechanically assist closure in this region. Cells of the mouse neural plate are reported to contain organized microfilaments and mi- crotubules, and the plate cells appear to change shape (reduce apical area and in- crease cell height) in the same manner as that suggested in embryos of some other species to contribute to neural tube formation. -
The Urogenital Sinus 1.The Anal Membrane Deepens to Form the Proctodeum
Duodenum -The duodenum develops from the caudal part of the foregut and cranial part of the midgut . So, it is supplied by branches from both celiac and cranial mesenteric arteries. -Due to rotation of the stomach, the duodenum rotates to be located in the right side. Anomalies of duodenum: 1-Duodenal stenosis:- Narrowing of the duodenal lumen results from:- a-Incomplete recanalization of duodenum b-It may be caused by pressure from an annular pancreas. 2-Duodenal atresia:- -A short segment of duodenum is occluded due to failure of recanalization of this segment. -In fetus with duodenal atresia , vomiting begins within few hours of birth before ingestion of any fluid -Often there is distension of epigastrium resulting from overfilled stomach and upper duodenum. Liver -The liver appears as a hepatic bud from the ventral aspect of (duodenum) distal end of the foregut. -The hepatic bud is divided into two cranial and caudal. -The cranial part gives liver and hepatic duct while caudal part gives gall bladder and cystic duct. -The hepatic bud directed towards the septum transversum. - The hepatic bud differentiate into hepatic cords which invade the umbilical and vitelline veins of the septum transversum and transforms them into hepatic sinusoids. - The hepatic cords differentiate into the parenchyma and the lining of the bile duct. - The hemopiotic cells , capsule and connective tissue supporting the liver are differentiated from the mesoderm of the septum transversum. Anomalies of liver:- 1-Atresia of gall bladder This results from failure of vacuolization of the gall bladder, consequently the bladder remains atretic i.e solid. -
Migration and Differentiation of Neural Crest and Ventral Neural Tube Cells in Vitro: Implications for in Vitro and in Vivo Studies of the Neural Crest
The Journal of Neuroscience, March 1988, 8(3): 1001-l 01.5 Migration and Differentiation of Neural Crest and Ventral Neural Tube Cells in vitro: Implications for in vitro and in vivo Studies of the Neural Crest J. F. Loring,’ D. L. Barker;,= and C. A. Erickson’ ‘Department of Zoology, University of California, Davis, California 95616, and *Hatfield Marine Sciences Center, Newport, Oregon 97365 During vertebrate development, neural crest cells migrate trunk neural crest cell cultures, a number of classicalneuro- from the dorsal neural tube and give rise to pigment cells transmitters have been reported, including catecholamines(Co- and most peripheral ganglia. To study these complex pro- hen, 1977; Loring et al., 1982;Maxwell et al., 1982) ACh (Kahn cesses it is helpful to make use of in vitro techniques, but et al., 1980; Maxwell et al., 1982) GABA (Maxwell et al., 1982), the transient and morphologically ill-defined nature of neural and 5-HT (Sieber-Blum et al., 1983). In addition, neuroactive crest cells makes it difficult to isolate a pure population of peptides, suchas somatostatin (Maxwell et al., 1984) have been undifferentiated cells. We have used several established reported in neural crest cell culture. techniques to obtain neural crest-containing cultures from In spite of the advantagesof an in vitro approachto analysis quail embryos and have compared their subsequent differ- of neural crest differentiation, it is clear that a fundamental entiation. We confirm earlier reports of neural crest cell dif- problem ariseswhen attempts are made to isolate these cellsin ferentiation in vitro into pigment cells and catecholamine- culture.