The Urogenital Sinus 1.The Anal Membrane Deepens to Form the Proctodeum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
2/2/2011 1 Development of Development of Endodermal
2/2/2011 ZOO 401- Embryology-Dr. Salah A. Martin DEVELOPMENT OF THE DIGESTIVE SYSTEM ◦ Primitive Gut Tube ◦ Proctodeum and Stomodeum ◦ Stomach Development of Endodermal Organs ◦ Duodenum ◦ Pancreas ◦ Liver and Biliary Apparatus ◦ Spleen ◦ Midgut Wednesday, February 02, 2011 DEVELOPMENT OF THE DIGESTIVE SYSTEM 2 Wednesday, February 02, 2011 Development of Ectodermal Organs 1 ZOO 401- Embryology-Dr. Salah A. Martin ZOO 401- Embryology-Dr. Salah A. Martin Primitive Gut Tube Proctodeum and Stomodeum The primitive gut tube is derived from the dorsal part of the yolk sac , which is incorporated into the body of The proctodeum (anal pit) is the primordial the embryo during folding of the embryo during the fourth week. anus , and the stomodeum is the primordial The primitive gut tube is divided into three sections. mouth . The epithelium of and the parenchyma of In both of these areas ectoderm is in direct glands associated with the digestive tract (e.g., liver and pancreas) are derived from endoderm . contact with endoderm without intervening The muscular walls of the digestive tract (lamina mesoderm, eventually leading to degeneration propria, muscularis mucosae, submucosa, muscularis of both tissue layers. Foregut, Esophagus. externa, adventitia and/or serosa) are derived from splanchnic mesoderm . The tracheoesophageal septum divides the During the solid stage of development the endoderm foregut into the esophagus and of the gut tube proliferates until the gut is a solid tube. trachea. information. A process of recanalization restores the lumen. Wednesday, February 02, 2011 Primitive Gut Tube 3 Wednesday, February 02, 2011 Proctodeum and Stomodeum 4 ZOO 401- Embryology-Dr. Salah A. -
Embryology, Comparative Anatomy, and Congenital Malformations of the Gastrointestinal Tract
Edorium J Anat Embryo 2016;3:39–50. Danowitz et al. 39 www.edoriumjournals.com/ej/ae REVIEW ARTICLE PEER REVIEWED | OPEN ACCESS Embryology, comparative anatomy, and congenital malformations of the gastrointestinal tract Melinda Danowitz, Nikos Solounias ABSTRACT Human digestive development is an essential topic for medical students and physicians, Evolutionary biology gives context to human and many common congenital abnormalities embryonic digestive organs, and demonstrates directly relate to gastrointestinal embryology. how structural adaptations can fit changing We believe this comprehensive review of environmental requirements. Comparative gastrointestinal embryology and comparative anatomy is rarely included in the medical anatomy will facilitate a better understanding of school curriculum. However, its concepts gut development, congenital abnormalities, and facilitate a deeper comprehension of anatomy adaptations to various evolutionary ecological and development by putting the morphology conditions. into an evolutionary perspective. Features of gastrointestinal development reflect the transition Keywords: Anatomy education, Digestive, Embry- from aquatic to terrestrial environments, such as ology, Gastrointestinal tract the elongation of the colon in land vertebrates, allowing for better water reabsorption. In How to cite this article addition, fishes exhibit ciliary transport in the esophagus, which facilitates particle transport in Danowitz M, Solounias N. Embryology, comparative water, whereas land mammals develop striated anatomy, and congenital malformations of the and smooth esophageal musculature and utilize gastrointestinal tract. Edorium J Anat Embryo peristaltic muscle contractions, allowing for 2016;3:39–50. better voluntary control of swallowing. The development of an extensive vitelline drainage system to the liver, which ultimately creates Article ID: 100014A04MD2016 the adult hepatic portal system allows for the evolution of complex hepatic metabolic ********* functions seen in many vertebrates today. -
Extrinsic Factors Involved in the Differentiation of Stem Cells Into Insulin-Producing Cells: an Overview
Hindawi Publishing Corporation Experimental Diabetes Research Volume 2011, Article ID 406182, 15 pages doi:10.1155/2011/406182 Review Article Extrinsic Factors Involved in the Differentiation of Stem Cells into Insulin-Producing Cells: An Overview RebeccaS.Y.Wong Division of Human Biology, School of Medical and Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia Correspondence should be addressed to Rebecca S. Y. Wong, rebecca [email protected] Received 16 February 2011; Accepted 28 March 2011 Academic Editor: A. Veves Copyright © 2011 Rebecca S. Y. Wong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs) from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects. -
GI Embryology 2 the Foregut
GI embryology 2 The Foregut • At first the esophagus is short • but with descent of the heart and lungs it lengthens rapidly • The muscular coat, which is formed by surrounding splanchnic mesenchyme, is striated in its upper two-thirds and innervated by the vagus; • the muscle coat is smooth in the lower third and is innervated by the splanchnic plexus. Esophageal Abnormalities • Esophageal atresia and/or tracheoesophageal fistula results either from spontaneous posterior deviation of the tracheoesophageal septum or from some mechanical factor pushing the dorsal wall of the foregut anteriorly • In its most common form the proximal part of the esophagus ends as a blind sac, and the distal part is connected to the trachea by a narrow canal just above the bifurcation • Other types of defects in this region occur much less frequently • Atresia of the esophagus prevents normal passage of amniotic fluid into the intestinal tract, resulting in accumulation of excess fluid in the amniotic sac (polyhydramnios). • In addition to atresias, the lumen of the esophagus may narrow, producing esophageal stenosis, usually in the lower third • Stenosis may be caused by incomplete recanalization, vascular abnormalities, or accidents that compromise blood flow • Occasionally the esophagus fails to lengthen sufficiently and the stomach is pulled up into the esophageal hiatus through the diaphragm. • The result is a congenital hiatal hernia Development of the glands • Most glands are formed during development by proliferation of epithelial cells so that they project into the underlying connective tissue • Some glands retain their continuity with the surface via a duct and are known as EXOCRINE GLANDS, as they maintain contact with the surface • Other glands lose this direct continuity with the surface when their ducts degenerate during development. -
A Morphological Study of the Development of the Human Liver I
A Morphological Study of the Development of the Human Liver I. DEVELOPMENT OF THE HEPATIC DIVERTICULUM ’ CHARLES B. SEVERN2 Department of Anatomy, University of Michigan, Ann Arbor, Michigan ABSTRACT The development of the hepatic diverticulum was examined in 38 human embryos representing somite stages 1, 5, 8 and 10 through 29, inclu- sive. Interpretations were based on light microscopic study of serial sections of these embryos. The liver primordium was first identified in a five-somite embryo as a flat plate of endodermal cells continuous with, but lying ventral to, the endoderm of the foregut at the anterior intestinal portal. It is positioned caudal and ventral to the developing heart. This plate of endoderm subsequently undergoes a progres- sive folding due to differential growth of adjacent structures. During the folding process there is a close spatial relationship between the cells of the endodermal plate and the caudal and ventral endothelial lining of the atrium and the sinus venosus. The result of this folding is the establishment of a “T-shaped” diver- ticulum which projects ventrally and cephalically from the gut tract. The hepatic diverticulum is established by the 20 somite-stage embryo. This mode of develop- ment of the hepatic diverticulum is compared to the classical interpretation and to the development of other visceral organs. The lack of an extensive sequential of the intrahepatic duct system, correla- series of human embryonic material has tion of the liver’s developmental pattern prevented past investigators from obtain- with its definitive architectural pattern, ing anything more than general and rather and comparison of the origin and develop- vague concepts as to how the human liver ment of the liver in various species of verte- develops. -
Flexion and Neural Tube Formation
Flexion and Neural Tube Formation RECOMMENDED READING: Larsen: Human Embryology 3rd edition 1. Review figures 2.4-2.6 and such text as necessary (pp 41-43 for source of definitive yolk sac and extra-embryonic coelom (cavity). 2. Pp 131-143. Text covers the formation of the intra-embryonic coelom and its division into peritoneal, pleural and pericardial cavities plus closure of the diaphragm. 3. Pp 57, Figure 3-4; pp 85-93. Text covers the transformation of the neural plate into the neural tube, the initial phases of differentiation of this tube and the origin of the neural crest. The multiple fates of neural crest derivatives will be given in other lectures. LEARNING OBJECTIVES: 1.Review information on the formation of the extra-embryonic coelom from prior lecture. Embryonic flexion and folding 2. Understand how the lateral plate mesoderm divides into somatopleure and splanchnopleure, which flex (fold) in the lateral plane and fuse ventrally. This results in the enclosure of some of the extra-embryonic coelom into the embryo. 3. Note that head/tail flexion is "driven" in part by rapid growth of the CNS and relative stiffness of notochord. 4. Understand the "accomplishments" of flexion and folding: a. Segregation of embryonic from extra-embryonic tissues except at umbilical cord. b. Enclosure the intra-embryonic coelom. c. Narrowing of the gut tube. d. Postioning of the buccopharyngeal membrane (future mouth) and cloacal membrane (future opening of urinary and gastrointestinal tracts) to a ventral position. e. "Movement" of the septum transversum and cardiogenic tissues ventrally. Formation of and closure of the neural tube, division into primary brain vesicles and origin of neural crest. -
Gastrointestinal Block DEVELOPMENT of PANCREAS & SMALL INTESTINE ﯾﻌﺘﺒﺮ اﻟﻌﻤﻞ ﻣﺼﺪر ﻟﻠﻤﺬاﻛﺮة واﻟﻤﺮاﺟﻌﺔ ______
Gastrointestinal block DEVELOPMENT OF PANCREAS & SMALL INTESTINE ﯾﻌﺘﺒﺮ اﻟﻌﻤﻞ ﻣﺼﺪر ﻟﻠﻤﺬاﻛﺮة واﻟﻤﺮاﺟﻌﺔ ____________________________________________________________________________________________________________ Objectives ★ Describe the development of the duodenum. ★ Describe the development of the pancreas. ★ Describe the development of the small intestine. ★ Identify the congenital anomalies of the small intestine : ● Congenital omphalocele. ● Umbilical hernia. ● Meckel’s diverticulum. Resources ★ 435 embryology (males & females) lectures. ★ BRS embryology Book. ★ Langman embryology book. Color Index ★ IMPORTANT ★ Day, Week, Month ★ Doctor notes and extra information. Team Leaders Afnan AlMalki & Helmi M AlSwerki. ❖ INTRODUCTION the Extra information for better understanding ( ) : Overview ★ The primitive gut tube is formed from the incorporation of the dorsal part of the yolk sac into the embryo due to the craniocaudal folding and lateral folding of the embryo. ★ The primitive gut tube extends from the oropharyngeal membrane to the cloacal membrane and is divided into the foregut, midgut,and hindgut. ★ Arterial supply: ○ Foregut derivatives are supplied by the celiac trunk.The exception to this is the esophagus( not all of the esophagus ). ○ Derivatives of the midgut are supplied by the superior mesenteric artery. ○ Derivatives of the hindgut are supplied by the inferior mesenteric artery. ★ Stages in the development of duodenum, liver, biliary ducts and pancreas (pic.A-D). ★ pic A > 4th week , pic B and C > 5th week , pic D > 6th week ★ Early in the 4th week , the duodenum develops from the endoderm of primordial gut of : Caudal part of foregut , Cranial part of midgut & Splanchnic mesoderm. ★ The junction of the 2 parts of the gut lies just below or distal to the origin of bile duct (pic. C&D). ★ Midgut ( development of small intestine ) : Derivatives of cranial part of the Derivatives of the caudal part of midgut Derivative of the caudal part midgut loop. -
Suppression of Alk8-Mediated Bmp Signaling Cell- Autonomously Induces Pancreatic Β-Cells in Zebrafish
Suppression of Alk8-mediated Bmp signaling cell- autonomously induces pancreatic β-cells in zebrafish Won-Suk Chunga,1,2, Olov Anderssona,2, Richard Rowb, David Kimelmanb, and Didier Y. R. Stainiera,3 aDepartment of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, the Liver Center, Institute for Regeneration Medicine and Diabetes Center, University of California, San Francisco, CA 94158; and bDepartment of Biochemistry, University of Washington, Seattle, WA 98195-7350 Edited by Donald D. Brown, Carnegie Institution, Baltimore, MD, and approved December 7, 2009 (received for review September 9, 2009) Bmp signaling has been shown to regulate early aspects of pancreas analyze single cells in mosaic embryos. Such insight is important development, but its role in endocrine, and especially β-cell, differ- because of the need to generate a large supply of Insulin-producing entiation remains unclear. Taking advantage of the ability in zebra- β-cells fortherapeutic purposes and cannot come from analyzing the fish embryos to cell-autonomously modulate Bmp signaling in expression of general, or even cell-type-specific, pancreatic markers single cells, we examined how Bmp signaling regulates the ability in tissue explants or mutant animals. of individual endodermal cells to differentiate into β-cells. We find As in mammals (14), the pancreas in zebrafish forms from that specific temporal windows of Bmp signaling prevent β-cell dif- multiple buds and the endocrine cells derive from both the early- ferentiation. Thus, future dorsal bud-derived β-cells are sensitive to forming dorsal and the late-forming ventral buds (14, 15). In this Bmp signaling specifically during gastrulation and early somitogen- study, we took advantage of the ability to transplant cells in esis stages. -
A Rare Annular Pancreatic Anomaly
Jemds.com Case Report A Rare Annular Pancreatic Anomaly 1 2 Shanubhoganahalli Puttamallappa Vinutha , Mathada Vamadevaiah Ravishankar 1Department of Anatomy, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India. 2Department of Anatomy, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India. PRESENTATION OF CASE During routine abdominal dissection of an adult male cadaver aged about 60 years, Corresponding Author: an anatomical variation was found in the pancreaticoduodenal area. The dissection Dr. Vinutha S P. Assistant Professor, was performed in the Department of Anatomy, JSS Medical College, Mysuru. It was Department of Anatomy, observed that the pancreatic tissue completely encircled second part of duodenum. JSS Medical College, It consisted of a 360-degree pancreatic ring, it measured around 2 cm in width on its JSS Academy of Higher Education lateral aspect and 5 cm width on its posterior aspect. It measured 4 cm width on its and Research, anterior aspect. The part of the duodenum, which lies proximal and distal to the Mysuru – 570015, Karnataka, India. annular pancreas was found distended. A piece of annular pancreas was collected, E-mail: [email protected] later was subjected to the histopathological examination under H & E stain. The DOI: 10.14260/jemds/2020/624 microscopic structure showed the normal architecture of the pancreatic tissue. Understanding the pancreas development is essential to understand its How to Cite This Article: congenital defects. It develops from ventral and dorsal pancreatic buds; it lies near Vinutha SP, Ravishankar MV. A rare the developing primitive duodenum. Due to the axial rotation of the second part of annular pancreatic anomaly. -
Unit 3 Embryo Questions
Unit 3 Embryology Clinically Oriented Anatomy (COA) Texas Tech University Health Sciences Center Created by Parker McCabe, Fall 2019 parker.mccabe@@uhsc.edu Solu%ons 1. B 11. A 21. D 2. C 12. B 22. D 3. C 13. E 23. D 4. B 14. D 24. A 5. E 15. C 25. D 6. C 16. B 26. B 7. D 17. E 27. C 8. B 18. A 9. C 19. C 10. D 20. B Digestive System 1. Which of the following structures develops as an outgrowth of the endodermal epithelium of the upper part of the duodenum? A. Stomach B. Pancreas C. Lung buds D. Trachea E. Esophagus Ques%on 1 A. Stomach- Foregut endoderm B. Pancreas- The pancreas, liver, and biliary apparatus all develop from outgrowths of the endodermal epithelium of the upper part of the duodenum. C. Lung buds- Foregut endoderm D. Trachea- Foregut endoderm E. Esophagus- Foregut endoderm 2. Where does the spleen originate and then end up after the rotation of abdominal organs during fetal development? A. Ventral mesentery à left side B. Ventral mesentery à right side C. Dorsal mesentery à left side D. Dorsal mesentery à right side E. It does not relocate Question 2 A. Ventral mesentery à left side B. Ventral mesentery à right side C. Dorsal mesentery à left side- The spleen and dorsal pancreas are embedded within the dorsal mesentery (greater omentum). After rotation, dorsal will go to the left side of the body and ventral will go to the right side of the body (except for the ventral pancreas). -
Article Download
wjpmr, 2020,6(11), 183-187 SJIF Impact Factor: 5.922 WORLD JOURNAL OF PHARMACEUTICAL Research Article Manoj et al. World Journal of Pharmaceutical and Medical Research AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr.com Wjpmr AN INSIGHT INTO THE ORGANOGENESIS OF HUMAN LIVER *A. Manoj and Annamma Paul Department of Anatomy, School of Medical Education, M.G University (Accredited by NAAC with A-Grade), Kottayam, Kerala, India. *Corresponding Author: A. Manoj Department of Anatomy, Government Medical College, Thrissur- 680596, under Directorate of Medical Education of Health and Family Welfare –Government of Kerala, India. Article Received on 02/09/2020 Article Revised on 23/09/2020 Article Accepted on 13/10/2020 ABSTRACT The objective of the current study was to learn the development of liver inorder to strengthen the Gross Anatomy and Microsopic Anatomy studies of liver and also ascertain the congenital anomalies of liver due to disturbance in its organogenesis. Hepatogenesis commence at Fourth week of Intrauterine life by proliferation of endodermal diverticulam at the ventral aspect of the junction between Foregut and mid gut into the septum transversum where it divides into Pars Hepatica and Pars Cystica forms liver and gall bladder respectively. On seventh week of fetal development Pars hepatica differentiates into clusters of liver parenchyma in which billiary capillaries emerges for delivery of its secretions. The trunk of hepatic buds persists as common bile duct and its two branches were right and left hepatic ducts. Haemopoeitic cells, Kuffer cells, Capsule and fibroareolar tissue derived from mesoderm of septum transversum. Fibroblast Growth Factor 2 (FGF2) secreted by cardiac mesoderm induces the development of hepatic bud which generates hepatoblasts, intending the formation of hepatocytes.