Deep Exploration of Ε Eridani with Keck Ms-Band Vortex

Total Page:16

File Type:pdf, Size:1020Kb

Deep Exploration of Ε Eridani with Keck Ms-Band Vortex The Astronomical Journal, 157:33 (20pp), 2019 January https://doi.org/10.3847/1538-3881/aaef8a © 2019. The American Astronomical Society. All rights reserved. Deep Exploration of ò Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet* Dimitri Mawet1,2 , Lea Hirsch3,4 , Eve J. Lee5 , Jean-Baptiste Ruffio6 , Michael Bottom2 , Benjamin J. Fulton7 , Olivier Absil8,20 , Charles Beichman2,9,10, Brendan Bowler11 , Marta Bryan1 , Elodie Choquet1,21 , David Ciardi7, Valentin Christiaens8,12,13, Denis Defrère8 , Carlos Alberto Gomez Gonzalez14 , Andrew W. Howard1 , Elsa Huby15, Howard Isaacson4 , Rebecca Jensen-Clem4,22 , Molly Kosiarek16,23 , Geoff Marcy4 , Tiffany Meshkat17 , Erik Petigura1 , Maddalena Reggiani8 , Garreth Ruane1,24 , Eugene Serabyn2, Evan Sinukoff18 , Ji Wang1 , Lauren Weiss19 , and Marie Ygouf17 1 Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 3 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4 University of California, Berkeley, 510 Campbell Hall, Astronomy Department, Berkeley, CA 94720, USA 5 TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125, USA 6 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 7 NASA Exoplanet Science Institute, Caltech/IPAC-NExScI, 1200 East California Boulevard, Pasadena, CA 91125, USA 8 Space sciences, Technologies & Astrophysics Research (STAR) Institute, Université de Liège, Allée du Six Août 19c, B-4000 Sart Tilman, Belgium 9 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 10 NASA Exoplanet Science Institute, 770 S. Wilson Avenue, Pasadena, CA 911225, USA 11 McDonald Observatory and the University of Texas at Austin, Department of Astronomy, 2515 Speedway, Stop C1400, Austin, TX 78712, USA 12 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 13 Millennium Nucleus “Protoplanetary Disks in ALMA Early Science,” Chile 14 Université Grenoble Alpes, IPAG, F-38000 Grenoble, France 15 LESIA, Observatoire de Paris, Meudon, France 16 University of California, Santa Cruz; Department of Astronomy and Astrophysics, Santa Cruz, CA 95064, USA 17 IPAC, California Institute of Technology, M/C 100-22, 770 S. Wilson Ave, Pasadena, CA 91125, USA 18 Institute for Astronomy, University of Hawai’i at Manoa, Honolulu, HI 96822, USA 19 Institut de Recherche sur les Exoplanètes, Dèpartement de Physique, Universitè de Montrèal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada Received 2018 May 1; revised 2018 October 16; accepted 2018 October 29; published 2019 January 3 Abstract We present the most sensitive direct imaging and radial velocity (RV) exploration of ò Eridani to date. ò Eridani is an adolescent planetary system, reminiscent of the early solar system. It is surrounded by a prominent and complex debris disk that is likely stirred by one or several gas giant exoplanets. The discovery of the RV signature of a giant exoplanet was announced 15 yr ago, but has met with scrutiny due to possible confusion with stellar noise. We confirm the planet with a new compilation and analysis of precise RV data spanning 30 yr, and combine it with upper limits from our direct imaging search, the most sensitive ever performed. The deep images were taken in the Ms band (4.7 μm) with the vortex coronagraph recently installed in W.M. Keck Observatory’s infrared camera NIRC2, which opens a sensitive window for planet searches around nearby adolescent systems. The RV data and direct imaging upper limit maps were combined in an innovative joint Bayesian analysis, providing new ò +0.38 constraints on the mass and orbital parameters of the elusive planet. Eridani b has a mass of 0.78-0.12 MJup and is orbiting ò Eridani at about 3.48±0.02 au with a period of 7.37±0.07 yr. The eccentricity of ò Eridani b’s orbit is +0.06 0.07-0.05, an order of magnitude smaller than early estimates and consistent with a circular orbit. We discuss our findings from the standpoint of planet–disk interactions and prospects for future detection and characterization with the James Webb Space Telescope. Key words: planet–disk interactions – planets and satellites: dynamical evolution and stability – planets and satellites: gaseous planets – stars: planetary systems – techniques: high angular resolution – techniques: radial velocities Supporting material: machine-readable tables 1. Introduction ò Eridani is an adolescent (200–800 Myr)(Fuhrmann 2004; ) ( ) * Mamajek & Hillenbrand 2008 K2V dwarf star Table 1 .Ata Based on observations obtained at the W. M. Keck Observatory, which is distance of 3.2 pc, ò Eridani is the tenth closest star to the Sun, operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by Caltech, the University which makes it a particularly attractive target for deep planet of Hawai’i, the University of California, and NASA. searches. Its age, spectral type, distance, and consequent 20 F.R.S.-FNRS Research Associate. apparent brightness (V=3.73 mag) make it a benchmark 21 Hubble Postdoctoral Fellow. 22 system, as well as an excellent analog for the early phases of Miller Fellow. 23 ’ ò NSF Graduate Research Fellow. the solar system s evolution. Eridani hosts a prominent, 24 NSF Astronomy and Astrophysics Postdoctoral Fellow. complex debris disk, and a putative Jupiter-like planet. 1 The Astronomical Journal, 157:33 (20pp), 2019 January Mawet et al. Table 1 Booth et al. (2017) used the Atacama Large Millimeter/ Properties of ò Eridani submillimeter Array (ALMA) to image the northern arc of ( < ″) Property Value References the outer ring at high angular resolution beam size 2 . The 1.34 mm continuum image has a low signal-to-noise ratio ( ) ( ) ( ) R.A. hms 03 32 55.8 J2000 van Leeuwen 2007 (S/N) but is well-resolved, with the outer ring extending from Decl. (dms) −09 27 29.7 (J2000) van Leeuwen (2007) ( ) 62.6 to 75.9 au. The fractional outer disk width is comparable Spect. type K2V Keenan & McNeil 1989 ’ ( ) ± ( ) to that of the solar system s Kuiper Belt and makes it one of the Mass Me 0.781 0.005 Boyajian et al. 2012 ; Distance (pc) 3.216±0.0015 van Leeuwen (2007) narrowest debris disks known, with a width of just 12 au. = °± ° V mag 3.73 Ducati (2002) The outer ring inclination is measured to be i 34 2 , K mag 1.67 Ducati (2002) consistent with all previous estimates using lower-resolution L mag 1.60 Cox (2000) submm facilities (Greaves et al. 1998, 2005; Backman et al. M mag 1.69 Cox (2000) 2009). No significant emission is detected between ∼20 and Age (Myr) 200–800 Mamajek & Hillenbrand (2008) ∼60 au (see Booth et al. (2017), their Figure 5), suggesting a large clearing between the inner belt(s) within 20 au and the outer belt outward of 60 au. Booth et al. (2017) find tentative evidence for clumps in the ring, and claim that the inner and 1.1. ò Eridani’s Debris Disk outer edges are defined by resonances with a planet at a The disk was first detected by the Infrared Astronomical semimajor axis of 48 au. The authors also confirm the previous Satellite (Aumann 1985) and later on by the Infrared Space detection of unresolved mm emission at the location of the star Observatory (Walker & Heinrichsen 2000). It was first imaged that is above the level of the photosphere and attribute this by the Submillimetre Common-User Bolometer Array excess to stellar chromospheric emission, as suggested by (SCUBA) at the James Clerk Maxwell Telescope by Greaves MacGregor et al. (2015). However, the chromospheric et al. (1998). ò Eridani is one of the “fabulous four” Vega-like emission cannot reproduce the infrared excess seen by Spitzer debris disks and shows more than 1 Jy of far-infrared (FIR) and SOFIA. excess over the stellar photosphere at 60–200 μm and a lower Finally, recent 11 μm observations with the Large Binocular significance excess at 25 μm (Aumann 1985). Using the Spitzer Telescope Interferometer (LBTI) suggest that warm dust is Space Telescope and the Caltech Submillimeter Observatory present within ∼500 mas (or 1.6 au) from ò Eridani (Ertel et al. (CSO) to trace ò Eridani’s spectral energy distribution (SED) 2018). The trend of the detected signal with respect to the from 3.5 to 350 μm, the model presented in Backman et al. stellocentric distance also indicates that the bulk of the (2009) paints a complex picture. ò Eridani’s debris disk is emission comes from the outer part of the LBTI field of view, composed of a main ring at 35–90 au, and a set of two narrow and hence is likely associated with the dust belt(s) responsible inner dust belts inside the cavity delineated by the outer ring: for the 15–38 μm emission detected by Spitzer and SOFIA. one belt with a color temperature T;55 K at approximately 20 au, and another belt with a color temperature T;120 K at 1.2. ò Eridani’s Putative Planet approximately 3 au (Backman et al. 2009). The authors argue that, to maintain the three-belt system around ò Eridani, three Hatzes et al. (2000) demonstrated that the most likely shepherding planets are necessary. explanation for the observed decade-long radial velocity (RV) Using Herschel at 70, 160, 250, 350, and 500 μm, Greaves variations was the presence of a ;1.5 MJ giant planet with a et al. (2014) refined the position and the width of the outer belt period P=6.9 yr (;3 au orbit) and a high eccentricity to be 54–68 au, but only resolved one of the inner belts at (e=0.6).
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • News from the High Plains
    Department of Physics & Astronomy Greetings Alumni & Friends, February 2014 Physics & Astronomy at 7200’ is alive and kicking. The enclosed plot shows how News from the our student population has seen significant growth over the past decade to a present total of 115, including 38 graduate students (see also the Sputnik-era spike!). This High Plains growth has gone hand-in-hand with the University’s decision to recommit to physics. Our astronomy program now has expertise in star formation, planetary formation, galaxies, quasars, instrumentation, and cosmology. UW physicists work on a wide array of areas in condensed matter physics and biophysics. Much of the focus has been on developing and understanding nanostructures geared toward efficient energy transportation and conversion (e.g., solar cells). Our physics faculty have also been working with the departments of Chemistry, Chemical & Petroleum Engineering, and Mechanical Engineering to develop a cross-college, interdisciplinary Materials Science and Engineering program. This program allows students to take courses from multiple departments, carry out collaborative research, and ultimately pursue a terminal degree in their home departments with a concentration in Materials Science. In terms of infrastructure, our program is almost unrecognizable from where it stood just a few years ago. We now have a first-class nano-fabrication and characterization lab that includes key pieces of equipment such as an electron-beam evaporator, X-ray diffractometer, reactive ion etcher, chemical vapor deposition systems, mask aligner, etc. Our newest faculty member, TeYu Chien, is building up a lab centered around Spring Graduates a state-of-the-art scanning tunneling microscope. Our observatory WIRO is also continuing to see upgrades.
    [Show full text]
  • Résumés / Abstract
    RENCONTRE ANNUELLE DU CRAQ 2016 Auberge Estrimont, Orford, 19{21 avril 2016 Organisateurs / Organizers Lorne Nelson (Bishop's University) et Martin Aub´e(C´egepde Sherbrooke) R´esum´es/ Abstract LISTE DES PARTICIPANTS / ATTENDEES LIST Nom Institution Contribution (Invit´ee/Orale/Affiche) Lo¨ıcAlbert Universit´ede Montr´eal Orale Genevi`eve Arboit Universit´ede Montr´eal - Etienne Artigau Universit´ede Montr´eal Orale Martin Aub´e C´egepde Sherbrooke - Roxane Barnab´e Universit´ede Montr´eal Orale Fr´ederiqueBaron Universit´ede Montr´eal Orale Patrice Beaudoin Universit´ede Montr´eal Orale Pierre Bergeron Universit´ede Montr´eal Orale F´elixBlais Universit´eLaval - Julie Bolduc-Duval A la d´ecouverte de l'Univers Orale Anne Boucher Universit´ede Montr´eal Orale Etienne Bourbeau Universit´eMcGill Orale Daniel Capellupo Universit´eMcGill - Christian Carles Universit´eLaval Orale Pierre Chastenay UQAM Orale Wen-Jian Chung Bishop's University - Benoit C^ot´e University of Victoria - Simon Coud´e Universit´ede Montr´eal Orale Andrew Cumming Universit´eMcGill - Antoine Darveau-Bernier Universit´ede Montr´eal Orale Matt Dobbs Universit´eMcGill - Ren´eDoyon Universit´ede Montr´eal - Mike Duchesne Universit´eLaval Orale Patrick Dufour Universit´ede Montr´eal - Michael Eby Bishop's University - Mariam El-Amine Bishop's University - Gilles Fontaine Universit´ede Montr´eal - Jo¨elGaudreault C´egepde Sherbrooke - Marie-Lou Gendron-Marsolais Universit´ede Montr´eal Orale Cynthia Genest-Beaulieu Universit´ede Montr´eal - 1 Fran¸coisHardy Universit´ede
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]
  • Spectral and Atmospheric Characterization of 51 Eridani B Using VLT/SPHERE?,?? M
    A&A 603, A57 (2017) Astronomy DOI: 10.1051/0004-6361/201629767 & c ESO 2017 Astrophysics Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE?,?? M. Samland1; 2, P. Mollière1; 2, M. Bonnefoy3, A.-L. Maire1, F. Cantalloube1; 3; 4, A. C. Cheetham5, D. Mesa6, R. Gratton6, B. A. Biller7; 1, Z. Wahhaj8, J. Bouwman1, W. Brandner1, D. Melnick9, J. Carson9; 1, M. Janson10; 1, T. Henning1, D. Homeier11, C. Mordasini12, M. Langlois13; 14, S. P. Quanz15, R. van Boekel1, A. Zurlo16; 17; 14, J. E. Schlieder18; 1, H. Avenhaus16; 17; 15, J.-L. Beuzit3, A. Boccaletti19, M. Bonavita7; 6, G. Chauvin3, R. Claudi6, M. Cudel3, S. Desidera6, M. Feldt1, T. Fusco4, R. Galicher19, T. G. Kopytova1; 2; 20; 21, A.-M. Lagrange3, H. Le Coroller14, P. Martinez22, O. Moeller-Nilsson1, D. Mouillet3, L. M. Mugnier4, C. Perrot19, A. Sevin19, E. Sissa6, A. Vigan14, and L. Weber5 (Affiliations can be found after the references) Received 21 September 2016 / Accepted 10 April 2017 ABSTRACT Context. 51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, which was recently discovered by direct imaging. It is one of the closest direct imaging planets in angular and physical separation (∼0.500, ∼13 au) and is well suited for spectroscopic analysis using integral field spectrographs. Aims. We aim to refine the atmospheric properties of the known giant planet and to constrain the architecture of the system further by searching for additional companions. Methods. We used the extreme adaptive optics instrument SPHERE at the Very Large Telescope (VLT) to obtain simultaneous dual-band imaging with IRDIS and integral field spectra with IFS, extending the spectral coverage of the planet to the complete Y- to H-band range and providing ad- ditional photometry in the K12-bands (2.11, 2:25 µm).
    [Show full text]
  • Exoplanet Greetings from President Gaber
    utnews.utoledo.edu AUG. 24, 2015 VOLUME 16, ISSUE 1 Greetings from President Gaber Dear Faculty, Staff and Students, Welcome to the start of a new academic year! As you might know, I have had the privilege of serving as UT’s president since July 1, and I have been eagerly awaiting the energy and enthusiasm that comes with the start of the fall semester. I’ve had the chance to say hello to some of you, and I’m looking forward to many more meetings during campus activities and programs, at athletic events, or just in line for lunch at the Student Union. During the summer, I’ve been able to meet with many groups across campus, as well as community leaders and elected officials at all levels of government representing northwest Ohio. I’m excited to work with my leadership team to find ways we can enhance our relationships with the various components of the community to provide learning and engagement opportunities for our students and faculty. I am currently working to finalize my senior leadership team. We’ve combined the external affairs and institutional advancement vice presidencies into one position. Sam McCrimmon, a great addition to UT from the University of Pittsburgh Medical Center, will President Sharon Gaber has had a full schedule since becoming the lead the new division. University’s 17th president July 1. Last week she attended a reception for new faculty members in the Driscoll Alumni Center, top, and she helped continued on p. 3 students move into Parks Tower. UT astronomer part of research team to discover ‘young Jupiter’ exoplanet By Meghan Cunningham University of Toledo researcher is among a group of astronomers to discover a young AJupiter-like planet that could help further our understanding about how planets formed around the sun.
    [Show full text]
  • En Interaktiv Visualisering Av Data Och Upptäcktsmetoder Karin Reidarman
    LIU-ITN-TEK-A-018/045--SE Exoplaneter: En Interaktiv Visualisering av Data och Upptäcktsmetoder Karin Reidarman 2018-11-30 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LIU-ITN-TEK-A-018/045--SE Exoplaneter: En Interaktiv Visualisering av Data och Upptäcktsmetoder Examensarbete utfört i Medieteknik vid Tekniska högskolan vid Linköpings universitet Karin Reidarman Handledare Emil Axelsson Examinator Anders Ynnerman Norrköping 2018-11-30 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Near-Resonance in a System of Sub-Neptunes from TESS
    Near-resonance in a System of Sub-Neptunes from TESS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Quinn, Samuel N., et al.,"Near-resonance in a System of Sub- Neptunes from TESS." Astronomical Journal 158, 5 (November 2019): no. 177 doi 10.3847/1538-3881/AB3F2B ©2019 Author(s) As Published 10.3847/1538-3881/AB3F2B Publisher American Astronomical Society Version Final published version Citable link https://hdl.handle.net/1721.1/124708 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astronomical Journal, 158:177 (16pp), 2019 November https://doi.org/10.3847/1538-3881/ab3f2b © 2019. The American Astronomical Society. All rights reserved. Near-resonance in a System of Sub-Neptunes from TESS Samuel N. Quinn1 , Juliette C. Becker2 , Joseph E. Rodriguez1 , Sam Hadden1 , Chelsea X. Huang3,45 , Timothy D. Morton4 ,FredC.Adams2 , David Armstrong5,6 ,JasonD.Eastman1 , Jonathan Horner7 ,StephenR.Kane8 , Jack J. Lissauer9, Joseph D. Twicken10 , Andrew Vanderburg11,46 , Rob Wittenmyer7 ,GeorgeR.Ricker3, Roland K. Vanderspek3 , David W. Latham1 , Sara Seager3,12,13,JoshuaN.Winn14 , Jon M. Jenkins9 ,EricAgol15 , Khalid Barkaoui16,17, Charles A. Beichman18, François Bouchy19,L.G.Bouma14 , Artem Burdanov20, Jennifer Campbell47, Roberto Carlino21, Scott M. Cartwright22, David Charbonneau1 , Jessie L. Christiansen18 , David Ciardi18, Karen A. Collins1 , Kevin I. Collins23,DennisM.Conti24,IanJ.M.Crossfield3, Tansu Daylan3,48 , Jason Dittmann3 , John Doty25, Diana Dragomir3,49 , Elsa Ducrot17, Michael Gillon17 , Ana Glidden3,12 , Robert F.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie The ExoGRAVITY project: using single mode interferometry to characterize exoplanets Lacour, S., Wang, J., Nowak, M., Pueyo, L., Eisenhauer, F., et al. S. Lacour, J. J. Wang, M. Nowak, L. Pueyo, F. Eisenhauer, A.-M. Lagrange, P. Mollière, R. Abuter, A. Amorin, R. Asensio-Torres, M. Bauböck, M. Benisty, J. P. Berger, H. Beust, S. Blunt, A. Boccaletti, A. Bohn, M. Bonnefoy, H. Bonnet, W. Brandner, F. Cantalloube, P. Caselli, B. Charnay, G. Chauvin, E. Choquet, V. Christiaens, Y. Clénet, A. Cridland, P. T. de Zeeuw, R. Dembet, J. Dexter, A. Drescher, G. Duvert, F. Gao, P. Garcia, R. Garcia-Lopez, T. Gardner, E. Gendron, R. Genzel, S. Gillessen, J. H. Girard, X. Haubois, G. Heißel, T. Henning, S. Hinkley, S. Hippler, M. Horrobin, M. Houllé, Z. Hubert, A. Jiménez-Rosales, L. Jocou, J. Kammerer, M. Keppler, P. Kervella, L. Kreidberg, V. Lapeyrere, J.-B. Le Bouquin, P. Léna, D. Lutz, A.-L. Maire, A. Mérand, J. D. Monnier, D. Mouillet, A. Muller, E. Nasedkin, T. Ott, G. P. P. L. Otten, C. Paladini, T. Paumard, K. Perraut, G. Perrin, O. Pfuhl, J. Rameau, L. Rodet, G. Rodriguez- Coira, G. Rousset, J. Shangguan, T. Shimizu, J. Stadler, O. Straub, C. Straubmeier, E. Sturm, T. Stolker, E. F. van Dishoeck, A. Vigan, F. Vincent, S. D. von Fellenberg, K. Ward Duong, F. Widmann, E. Wieprecht, E. Wiezorrek, J. Woillez, "The ExoGRAVITY project: using single mode interferometry to characterize exoplanets," Proc. SPIE 11446, Optical and Infrared Interferometry and Imaging VII, 114460O (16 December 2020); doi: 10.1117/12.2561667 Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online Only Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 21 Dec 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Invited Paper The ExoGRAVITY project: using single mode interferometry to characterize exoplanets S.
    [Show full text]
  • KELT-25 B and KELT-26 B: a Hot Jupiter and a Substellar Companion Transiting Young a Stars Observed by TESS
    Swarthmore College Works Physics & Astronomy Faculty Works Physics & Astronomy 9-1-2020 KELT-25 B And KELT-26 B: A Hot Jupiter And A Substellar Companion Transiting Young A Stars Observed By TESS R. R. Martínez R. R. Martínez Follow this and additional works at: https://works.swarthmore.edu/fac-physics B. S. Gaudi Part of the Astrophysics and Astronomy Commons J.Let E. us Rodriguez know how access to these works benefits ouy G. Zhou Recommended Citation See next page for additional authors R. R. Martínez, R. R. Martínez, B. S. Gaudi, J. E. Rodriguez, G. Zhou, J. Labadie-Bartz, S. N. Quinn, K. Penev, T.-G. Tan, D. W. Latham, L. A. Paredes, J. F. Kielkopf, B. Addison, D. J. Wright, J. Teske, S. B. Howell, D. Ciardi, C. Ziegler, K. G. Stassun, M. C. Johnson, J. D. Eastman, R. J. Siverd, T. G. Beatty, L. Bouma, T. Bedding, J. Pepper, J. Winn, M. B. Lund, S. Villanueva Jr., D. J. Stevens, Eric L.N. Jensen, C. Kilby, J. D. Crane, A. Tokovinin, M. E. Everett, C. G. Tinney, M. Fausnaugh, David H. Cohen, D. Bayliss, A. Bieryla, P. A. Cargile, K. A. Collins, D. M. Conti, K. D. Colón, I. A. Curtis, D. L. Depoy, P. Evans, D. L. Feliz, J. Gregorio, J. Rothenberg, D. J. James, M. D. Joner, R. B. Kuhn, M. Manner, S. Khakpash, J. L. Marshall, K. K. McLeod, M. T. Penny, P. A. Reed, H. M. Relles, D. C. Stephens, C. Stockdale, M. Trueblood, P. Trueblood, X. Yao, R. Zambelli, R. Vanderspek, S.
    [Show full text]