News from the High Plains

Total Page:16

File Type:pdf, Size:1020Kb

News from the High Plains Department of Physics & Astronomy Greetings Alumni & Friends, February 2014 Physics & Astronomy at 7200’ is alive and kicking. The enclosed plot shows how News from the our student population has seen significant growth over the past decade to a present total of 115, including 38 graduate students (see also the Sputnik-era spike!). This High Plains growth has gone hand-in-hand with the University’s decision to recommit to physics. Our astronomy program now has expertise in star formation, planetary formation, galaxies, quasars, instrumentation, and cosmology. UW physicists work on a wide array of areas in condensed matter physics and biophysics. Much of the focus has been on developing and understanding nanostructures geared toward efficient energy transportation and conversion (e.g., solar cells). Our physics faculty have also been working with the departments of Chemistry, Chemical & Petroleum Engineering, and Mechanical Engineering to develop a cross-college, interdisciplinary Materials Science and Engineering program. This program allows students to take courses from multiple departments, carry out collaborative research, and ultimately pursue a terminal degree in their home departments with a concentration in Materials Science. In terms of infrastructure, our program is almost unrecognizable from where it stood just a few years ago. We now have a first-class nano-fabrication and characterization lab that includes key pieces of equipment such as an electron-beam evaporator, X-ray diffractometer, reactive ion etcher, chemical vapor deposition systems, mask aligner, etc. Our newest faculty member, TeYu Chien, is building up a lab centered around Spring Graduates a state-of-the-art scanning tunneling microscope. Our observatory WIRO is also continuing to see upgrades. The control system and internet connection for our telescope at WIRO have been completely revamped, making the facility far more reliable. A new large-format optical camera will come online later this year. Three new courses were offered last year: Prof. Myers developed a graduate course on how to “mine” large astronomical data surveys and Prof. Jang-Condell developed a new graduate course on exoplanets. Prof. Pierce developed a new course in electronics and digital instrumentation involving arduino microcontrollers. Students designed several interesting final projects, including a theremin, a dirigible, a hovercraft, and a virtual keyboard enabled by a Wii remote sensor. Thanks to a gift of $875k from the Windy Ridge Foundation, we are planning for a Historical student numbers Summer 2014 make-over of our planetarium. Besides a fancy new digital projector, we’ll upgrade the dome, flooring, lighting, audio, seating, and entryway. Finally, we had several fun vidoes made about our program, mostly for the purposes of recruiting new students. You can check them out on our department homepage. COLLEGE OF ARTS & SCIENCES Department of Physics & Astronomy All the best, (307) 766-6150 Danny Dale [email protected] Department Head UWYO.EDU/PHYSICS NEW IN THE DEPARTMENT Dr. TeYu Chien Professor TeYu Chien received his Ph. D degree in physics from the University of Tennessee, Knoxville in 2009. He worked as a postdoctoral researcher in Argonne National Laboratory (2009-2011) and at Northwestern University (2011-2013) before he arrived in Laramie in 2013. His research area is focused on electronic properties and many-body effects of low-dimensional materials and devices, such as metal surfaces, interfaces of complex oxide systems and interfaces in next generation solar cell devices. The goals are to understand fundamental physics in these low-dimensional environments and to seek out novel applications. Beth Clement Beth Clement joined the Physics & Astronomy department as an Office Associate in August, 2013. She spent the previous 10 years at a financial planning office in Denver -fol lowing her graduation from the University of Colorado, Colorado Springs with a degree in Marketing. When not in the office, Beth enjoys traveling, playing volleyball, spending time with her family and friends, cheering on the Broncos, and trying to get her puppy to stop destroying her yard. She was recently engaged to UW chemist Brian Leonard and is having fun planning their upcoming wedding. We welcomed quite a few new graduate students this year, from both near and far. (pictured from left to right) Jyoti Pandey - U. Wyoming, Nepal Uma Poudyal - Tribhuvan U., Nepal Tika Neupane - Tribhuvan U., Nepal Ravi Neupane - Tribhuvan U., Nepal Subash Kattel - Tribhuvan U., Nepal Dylan Kloster - W. Washington David Kasper - U. Minnesota Joseph Gutierrez - Adamson U., Philippines (not pictured) Michelle Mason - UC Berkeley Cody Minns - Indiana U. Chris Garcia 2 STUDENT PROFILES Beau Yeik I was fortunate to have the opportunity to work with Dr. Zhang and Dr. Lowell Burnett (UW 1970 Physics Ph.D.) at Quasar Federal Systems in San Diego. Several years back they created passive sensors that utilize E and B fields, and are currently exploring biological, geological, and meteorological applications. I spent the first half of the summer performing experiments to determine the boundaries of a metal detection portals. The experiments entailed ascertaining the effects of an object’s size, composition and velocity as it passed through Sabit Horoz the portal. I also performed market research on current metal detection portals and stray voltage detection, as well as their Sabit is studying synthesis of CdSe Quantum Dots by laser ablation market viability. of a bulk target in water using a nanosecond pulsed laser. The as-prepared CdSe QDs were subsequently used to make ligand- I then spent time building simple circuit boards but soon free QD-sensitized ZnO nanowire solar cells. The preparation, moved on to the detection of electrical fields in thunderstorms. photoluminescent properties and device performance of the QDs To achieve the latter, we mounted electrical sensors onto and cells were investigated and analyzed. The performance of the a “drone” or Unmanned Aerial Vehicle (UAV). I made cells suggests promising potential of this liquid-based synthesis minor modifications to their on-board sensors (CPUs, GPS, method for QD-sensitized photovoltaic solar cells. antennae) to achieve acceptable reception, and worked on the data collection infrastructure. A highlight of the summer experience was traveling to Socorro, New Mexico to test the UAVs in an actual thunderstorm. After some preliminary tests, we conducted two flights in and near a thunderstorm. The summer wrapped with analysis of the data taken in New Mexico. The experience, burritos, my mentors, and the general platform of the company itself were exceptional. Scott Maloney Scott’s research involves the study of semiconducting metal- oxide nanowires and their use as transistors and active layers in solar cells. Nanowires have many interesting properties that make them good candidates for high-efficiency electronic devices. They are single crystal structures with a high electron diffusion length, and their linearity allows current to transfer more directly than it would in a bulk material. They are also cheaper (i.e. require less energy) to make than bulk pure crystalline silicon. His group can study the properties of these wires by printing microscopic Beau (far left) with his San Diego crew contacts over them using photolithography. 3 ALUMNI NEWS Infrared Explorer (WIRE). After WIRE malfunctioned upon enter- ing Earth-orbit, David took his extensive infrared instrumentation David Klassen (Ph.D. 1993) After graduating from UW I had a experience obtained at UW and joined the infrared instrumenta- one-year post-doc at Cornell University working with Jim Bell. I tion group at UF where he designed the spectroscopic modes for the then accepted a tenure-track faculty position in Physics & Astron- mid-infrared instruments T-ReCS (Gemini) and CanariCam (GTC). omy at Rowan University in Glassboro, NJ. Rowan is a compre- David left for the NASA Exoplanet Science Institute at Caltech in hensive state school that had just recently started up an engineering 2003; since arriving at Caltech, David has been involved in various program and was expanding its science faculty in support of that. I exoplanet searches from both the ground and space and is currently have continued my planetary science research, both ground-based a science team member of both the CoRoT and Kepler exoplanet and working with MRO spacecraft data, as well as teaching a multi- missions. tude of undergraduate courses. For the past several years I have been Brannon McCullough (B.S. 2004) entered the Biological and the Associate Chair of the department, and this year was promoted to Biomedical Science PhD program at Yale University in 2005 full professor. In 2000 I married Mary Ann Hickman, another UW and in 2008 he received an MPhil. in Molecular Biophysics and grad, who had accepted a position at nearby Swarthmore College and Biochemistry. He has been investigating the mechanics of how we enjoy living in the outskirts of historic Philadelphia. When not actin filaments are severed by cofilin, a process that is central to cell working we enjoy traveling (usually tacking a week or so onto the motility. He is finishing his dissertation research and will defend beginning or end of the summer American Association of Physics early next year. Brannon will then start a postdoc at the University Teachers conference), working in the garden, and I’ve lately taken up of Minnesota to investigate the mechanochemistry of brain cancer the grand puzzle of genealogy. cell motility and migration by testing computational models with David Ciardi (Ph.D. 1997) is currently an Associate Research Scien- quantitative microscopy experiments. tist at the NASA Exoplanet Science Institute located at the California Institute of Technology in Pasadena, CA. After UW, David went to Jeff Sudol (Ph.D. 2000) I am a tenured, assistant professor in the the University of Florida in 1998 as a postdoctoral scholar work- Department of Physics at West Chester University. I am currently ing with Elizabeth Lada on star formation utilizing the Wide-Field modeling the dynamical evolution of the HR 8799 planetary system.
Recommended publications
  • Near-Resonance in a System of Sub-Neptunes from TESS
    Near-resonance in a System of Sub-Neptunes from TESS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Quinn, Samuel N., et al.,"Near-resonance in a System of Sub- Neptunes from TESS." Astronomical Journal 158, 5 (November 2019): no. 177 doi 10.3847/1538-3881/AB3F2B ©2019 Author(s) As Published 10.3847/1538-3881/AB3F2B Publisher American Astronomical Society Version Final published version Citable link https://hdl.handle.net/1721.1/124708 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astronomical Journal, 158:177 (16pp), 2019 November https://doi.org/10.3847/1538-3881/ab3f2b © 2019. The American Astronomical Society. All rights reserved. Near-resonance in a System of Sub-Neptunes from TESS Samuel N. Quinn1 , Juliette C. Becker2 , Joseph E. Rodriguez1 , Sam Hadden1 , Chelsea X. Huang3,45 , Timothy D. Morton4 ,FredC.Adams2 , David Armstrong5,6 ,JasonD.Eastman1 , Jonathan Horner7 ,StephenR.Kane8 , Jack J. Lissauer9, Joseph D. Twicken10 , Andrew Vanderburg11,46 , Rob Wittenmyer7 ,GeorgeR.Ricker3, Roland K. Vanderspek3 , David W. Latham1 , Sara Seager3,12,13,JoshuaN.Winn14 , Jon M. Jenkins9 ,EricAgol15 , Khalid Barkaoui16,17, Charles A. Beichman18, François Bouchy19,L.G.Bouma14 , Artem Burdanov20, Jennifer Campbell47, Roberto Carlino21, Scott M. Cartwright22, David Charbonneau1 , Jessie L. Christiansen18 , David Ciardi18, Karen A. Collins1 , Kevin I. Collins23,DennisM.Conti24,IanJ.M.Crossfield3, Tansu Daylan3,48 , Jason Dittmann3 , John Doty25, Diana Dragomir3,49 , Elsa Ducrot17, Michael Gillon17 , Ana Glidden3,12 , Robert F.
    [Show full text]
  • KELT-25 B and KELT-26 B: a Hot Jupiter and a Substellar Companion Transiting Young a Stars Observed by TESS
    Swarthmore College Works Physics & Astronomy Faculty Works Physics & Astronomy 9-1-2020 KELT-25 B And KELT-26 B: A Hot Jupiter And A Substellar Companion Transiting Young A Stars Observed By TESS R. R. Martínez R. R. Martínez Follow this and additional works at: https://works.swarthmore.edu/fac-physics B. S. Gaudi Part of the Astrophysics and Astronomy Commons J.Let E. us Rodriguez know how access to these works benefits ouy G. Zhou Recommended Citation See next page for additional authors R. R. Martínez, R. R. Martínez, B. S. Gaudi, J. E. Rodriguez, G. Zhou, J. Labadie-Bartz, S. N. Quinn, K. Penev, T.-G. Tan, D. W. Latham, L. A. Paredes, J. F. Kielkopf, B. Addison, D. J. Wright, J. Teske, S. B. Howell, D. Ciardi, C. Ziegler, K. G. Stassun, M. C. Johnson, J. D. Eastman, R. J. Siverd, T. G. Beatty, L. Bouma, T. Bedding, J. Pepper, J. Winn, M. B. Lund, S. Villanueva Jr., D. J. Stevens, Eric L.N. Jensen, C. Kilby, J. D. Crane, A. Tokovinin, M. E. Everett, C. G. Tinney, M. Fausnaugh, David H. Cohen, D. Bayliss, A. Bieryla, P. A. Cargile, K. A. Collins, D. M. Conti, K. D. Colón, I. A. Curtis, D. L. Depoy, P. Evans, D. L. Feliz, J. Gregorio, J. Rothenberg, D. J. James, M. D. Joner, R. B. Kuhn, M. Manner, S. Khakpash, J. L. Marshall, K. K. McLeod, M. T. Penny, P. A. Reed, H. M. Relles, D. C. Stephens, C. Stockdale, M. Trueblood, P. Trueblood, X. Yao, R. Zambelli, R. Vanderspek, S.
    [Show full text]
  • Full Curriculum Vitae
    Jason Thomas Wright—CV Department of Astronomy & Astrophysics Phone: (814) 863-8470 Center for Exoplanets and Habitable Worlds Fax: (814) 863-2842 525 Davey Lab email: [email protected] Penn State University http://sites.psu.edu/astrowright University Park, PA 16802 @Astro_Wright US Citizen, DOB: 2 August 1977 ORCiD: 0000-0001-6160-5888 Education UNIVERSITY OF CALIFORNIA, BERKELEY PhD Astrophysics May 2006 Thesis: Stellar Magnetic Activity and the Detection of Exoplanets Adviser: Geoffrey W. Marcy MA Astrophysics May 2003 BOSTON UNIVERSITY BA Astronomy and Physics (mathematics minor) summa cum laude May 1999 Thesis: Probing the Magnetic Field of the Bok Globule B335 Adviser: Dan P. Clemens Awards and fellowships NASA Group Achievement Award for NEID 2020 Drake Award 2019 Dean’s Climate and Diversity Award 2012 Rock Institute Ethics Fellow 2011-2012 NASA Group Achievement Award for the SIM Planet Finding Capability Study Team 2008 University of California Hewlett Fellow 1999-2000, 2003-2004 National Science Foundation Graduate Research Fellow 2000-2003 UC Berkeley Outstanding Graduate Student Instructor 2001 Phi Beta Kappa 1999 Barry M. Goldwater Scholar 1997 Last updated — Jan 15, 2021 1 Jason Thomas Wright—CV Positions and Research experience Associate Department Head for Development July 2020–present Astronomy & Astrophysics, Penn State University Director, Penn State Extraterrestrial Intelligence Center March 2020–present Professor, Penn State University July 2019 – present Deputy Director, Center for Exoplanets and Habitable Worlds July 2018–present Astronomy & Astrophysics, Penn State University Acting Director July 2020–August 2021 Associate Professor, Penn State University July 2015 – June 2019 Associate Department Head for Diversity and Equity August 2017–August 2018 Astronomy & Astrophysics, Penn State University Visiting Associate Professor, University of California, Berkeley June 2016 – June 2017 Assistant Professor, Penn State University Aug.
    [Show full text]
  • Recommendations for NASA/NSF Investment in Precise Radial Velocity Hardware and Facilities
    Recommendations for NASA/NSF Investment in Precise Radial Velocity Hardware and Facilities William Cochran, Dawn Gelino, Sara Heap, John Johnson, David Latham On behalf of the Precision Radial Velocity Community Penn State University and the NASA Exoplanet Science Institute recently hosted a workshop on precision radial velocity (PRV) for the detection and characterization of exoplanets. The workshop was attended by more than 100 researchers from around the world (http://exoplanets.astro.psu.edu/workshop/program.html) and coincided with the release of the ASTRO2010 Decadal report that laid great emphasis on the importance of radial velocity measurements. The US PRV community, many of whom attended this conference, have prepared this series of recommendations for new PRV instrumentation and observing opportunities that will maintain US competitiveness and leadership in a field identified as critical by the ASTRO2010 decadal report. National Research Council 2010 Decadal Survey Report One of the top three scientific objectives of the National Research Council’s 2010 Decadal Survey of Astronomy and Astrophysics is “New Worlds: Seeking Nearby, Habitable Planets.” The report describes a “New Worlds Technology Development Program” in which “NASA and NSF should support an aggressive program of ground-based high-precision radial velocity surveys of nearby stars to identify potential candidates.” Two sets of quotes from the report are particularly relevant: “…The first task on the ground is to improve the precision radial velocity method by which
    [Show full text]
  • Architecture and Dynamics of Kepler's Candidate
    The Astrophysical Journal Supplement Series, 197:8 (26pp), 2011 November doi:10.1088/0067-0049/197/1/8 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ARCHITECTURE AND DYNAMICS OF KEPLER’S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS Jack J. Lissauer1, Darin Ragozzine2, Daniel C. Fabrycky3,14, Jason H. Steffen4, Eric B. Ford5,JonM.Jenkins1,6, Avi Shporer7,8, Matthew J. Holman2, Jason F. Rowe6, Elisa V. Quintana6, Natalie M. Batalha9, William J. Borucki1, Stephen T. Bryson1, Douglas A. Caldwell6, Joshua A. Carter2,14, David Ciardi10, Edward W. Dunham11, Jonathan J. Fortney3, Thomas N. Gautier, III12, Steve B. Howell1, David G. Koch1, David W. Latham3, Geoffrey W. Marcy13, Robert C. Morehead6, and Dimitar Sasselov2 1 NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 3 Department of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95064, USA 4 Fermilab Center for Particle Astrophysics, Batavia, IL 60510, USA 5 211 Bryant Space Science Center, University of Florida, Gainesville, FL 32611, USA 6 SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035, USA 7 Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117, USA 8 Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106, USA 9 Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192, USA 10 Exoplanet Science Institute/Caltech, Pasadena, CA 91125, USA 11 Lowell Observatory, Flagstaff, AZ 86001, USA 12 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 13 Astronomy Department, University of California, Berkeley, CA 94720, USA Received 2011 February 24; accepted 2011 July 20; published 2011 October 13 ABSTRACT About one-third of the ∼1200 transiting planet candidates detected in the first four months of Kepler data are members of multiple candidate systems.
    [Show full text]
  • Deep Exploration of Ε Eridani with Keck Ms-Band Vortex
    The Astronomical Journal, 157:33 (20pp), 2019 January https://doi.org/10.3847/1538-3881/aaef8a © 2019. The American Astronomical Society. All rights reserved. Deep Exploration of ò Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet* Dimitri Mawet1,2 , Lea Hirsch3,4 , Eve J. Lee5 , Jean-Baptiste Ruffio6 , Michael Bottom2 , Benjamin J. Fulton7 , Olivier Absil8,20 , Charles Beichman2,9,10, Brendan Bowler11 , Marta Bryan1 , Elodie Choquet1,21 , David Ciardi7, Valentin Christiaens8,12,13, Denis Defrère8 , Carlos Alberto Gomez Gonzalez14 , Andrew W. Howard1 , Elsa Huby15, Howard Isaacson4 , Rebecca Jensen-Clem4,22 , Molly Kosiarek16,23 , Geoff Marcy4 , Tiffany Meshkat17 , Erik Petigura1 , Maddalena Reggiani8 , Garreth Ruane1,24 , Eugene Serabyn2, Evan Sinukoff18 , Ji Wang1 , Lauren Weiss19 , and Marie Ygouf17 1 Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 3 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4 University of California, Berkeley, 510 Campbell Hall, Astronomy Department, Berkeley, CA 94720, USA 5 TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125, USA 6 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 7 NASA Exoplanet Science Institute, Caltech/IPAC-NExScI, 1200 East California Boulevard, Pasadena, CA 91125, USA 8 Space sciences, Technologies & Astrophysics Research (STAR) Institute, Université de Liège, Allée du Six Août 19c, B-4000 Sart Tilman, Belgium 9 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 10 NASA Exoplanet Science Institute, 770 S.
    [Show full text]
  • Arxiv:1903.08017V2 [Astro-Ph.EP] 28 May 2019
    Draft version May 30, 2019 Typeset using LATEX twocolumn style in AASTeX62 The L 98-59 System: Three Transiting, Terrestrial-Sized Planets Orbiting a Nearby M-dwarf Veselin B. Kostov,1, 2 Joshua E. Schlieder,1 Thomas Barclay,1, 3 Elisa V. Quintana,1 Knicole D. Colon´ ,1 Jonathan Brande,1, 4, 5 Karen A. Collins,6 Adina D. Feinstein,7 Samuel Hadden,6 Stephen R. Kane,8 Laura Kreidberg,6 Ethan Kruse,1 Christopher Lam,1 Elisabeth Matthews,9 Benjamin T. Montet,7, ∗ Francisco J. Pozuelos,10, 11 Keivan G. Stassun,12 Jennifer G. Winters,6 George Ricker,13 Roland Vanderspek,13 David Latham,6 Sara Seager,13, 14, 15 Joshua Winn,16 Jon M. Jenkins,17 Dennis Afanasev,18 James J. D. Armstrong,19 Giada Arney,1 Patricia Boyd,1 Geert Barentsen,20 Khalid Barkaoui,11, 21 Natalie E. Batalha,22 Charles Beichman,23 Daniel Bayliss,24 Christopher Burke,9 Artem Burdanov,11 Luca Cacciapuoti,25 Andrew Carson,1 David Charbonneau,6 Jessie Christiansen,26 David Ciardi,26 Mark Clampin,1 Kevin I. Collins,27 Dennis M. Conti,28 Jeffrey Coughlin,2 Giovanni Covone,25 Ian Crossfield,13 Laetitia Delrez,29 Shawn Domagal-Goldman,1 Courtney Dressing,30 Elsa Ducrot,11 Zahra Essack,14 Mark E. Everett,31 Thomas Fauchez,32, 5 Daniel Foreman-Mackey,33 Tianjun Gan,34 Emily Gilbert,7 Michael¨ Gillon,11 Erica Gonzales,22 Aaron Hamann,7 Christina Hedges,35 Hannah Hocutt,36 Kelsey Hoffman,2 Elliott P. Horch,36 Keith Horne,37 Steve Howell,17 Shane Hynes,1 Michael Ireland,38 Jonathan M.
    [Show full text]
  • Ground Based, Space Based, Infrastructure, Technological Development, and State of the Profession Activities
    Ground Based, Space Based, Infrastructure, Technological Development, and State of the Profession Activities Ground Based, Space Based, Technological Development, and State of the Profession Activities Ground Based, Space Based, and Technological Development Activities Ground Based and Space Based Activities Ground Based, Infrastructure, Technological Development, and State of the Profession Activities Ground Based, Infrastructure, Technological Development, State of the Profession, and Other Activities Ground Based, Infrastructure, and Technological Development Activities Ground Based, Infrastructure, and State of the Profession Activities Ground Based and Infrastructure Activities Ground Based, Technological Development, and State of the Profession Activities Ground Based and Technological Development Activities Ground Based Projects Space Based, Infrastructure, Technological Development, and State of the Profession Activities Space Based, Infrastructure, Technological Development Activities Space Based and Infrastructure Activities Space Based, Technological Development, and State of the Profession Activities Space Based and Technological Development Activities Space Based and State of the Profession Activities Space Based Projects Infrastructure, Technological Development, and State of the Profession Activities Infrastructure, Technological Development, and Other Activities Infrastructure and Technological Development Activities Infrastructure, State of the Profession, and Other Activities Infrastructure and State of the Profession
    [Show full text]
  • Maximizing Science in the Era of LSST: a Community-Based Study of Needed US OIR Capabilities a Report on the Kavli Futures Symposium Organized by NOAO and LSST
    Maximizing Science in the Era of LSST: A Community-Based Study of Needed US OIR Capabilities A report on the Kavli Futures Symposium organized by NOAO and LSST Joan Najita (NOAO) and Beth Willman (LSST) Douglas P. Finkbeiner (Harvard University) Ryan J. Foley (University of California, Santa Cruz) Suzanne Hawley (University of Washington) Jeffrey Newman (University of Pittsburgh) Gregory Rudnick (University of Kansas) Joshua D. Simon (Carnegie Observatories) David Trilling (Northern Arizona University) Rachel Street (Las Cumbres Observatory Global Telescope Network) Adam Bolton (NOAO) Ruth Angus (University of Oxford) Eric F. Bell (University of Michigan) Derek Buzasi (Florida Gulf Coast University) David Ciardi (IPAC, Caltech) James R. A. Davenport (Western Washington University) Will Dawson ((Lawrence Livermore National Laboratory) Mark Dickinson (NOAO) Alex Drlica-Wagner (Fermilab) Jay Elias (NOAO) Dawn Erb (University of Wisconsin-Milwaukee) Lori Feaga (University of Maryland) Wen-fai Fong (University of Arizona) Eric Gawiser (The State University of New Jersey, Rutgers) Mark Giampapa (National Solar Observatory) Puragra Guhathakurta (University of California, Santa Cruz) Jennifer L. Hoffman (University of Denver) Henry Hsieh (Planetary Science Institute) Elise Jennings (Fermilab) Kathryn V. Johnston (Columbia University) Vinay Kashyap (Harvard-Smithsonian CfA) Ting S. Li (Texas A&M University) Eric Linder (Lawrence Berkeley National Laboratory) Rachel Mandelbaum (Carnegie Mellon University) Phil Marshall (SLAC National Accelerator Laboratory) Thomas Matheson (National Optical Astronomy Observatory) Søren Meibom (Harvard-Smithsonian CfA) Bryan W. Miller (Gemini Observatory) 1 John O’Meara (Saint Michael's College) Vishnu Reddy (University of Arizona) Steve Ridgway (NOAO) Constance M. Rockosi (University of California, Santa Cruz) David J. Sand (Texas Tech University) Chad Schafer (Carnegie Mellon University) Sam Schmidt (UC Davis) Branimir Sesar (Max Planck Institute for Astronomy) Scott S.
    [Show full text]
  • REBECCA OPPENHEIMER 1999 Ph.D., Astronomy, California
    REBECCA OPPENHEIMER CURATOR AND PROFESSOR DEPARTMENT OF ASTROPHYSICS AMERICAN MUSEUM OF NATURAL HISTORY 79TH STREET AT CENTRAL PARK WEST NEW YORK, NY 10024-5192, USA http://orcid.org/0000-0001-7130-7681 [email protected] research.amNh.org/users/bro EDUCATION 1999 Ph.D., Astronomy, California Institute of Technology, “Brown Dwarf Companions of Nearby Stars,” Advisor: S. R. Kulkarni 1994 B.A., Physics, Columbia College, Columbia University AWARDS AND HONORS 2009 BlavatNik Award for YouNg ScieNtists, New York Academy of ScieNces 2003 Carter Memorial Lecturer, Carter Observatory, WelliNgtoN, New ZealaNd 2002-2004 Kalbfleisch Research Fellowship, AmericaN Museum of Natural History 2002 NatioNal Academies of ScieNce, BeckmaN FroNtiers of ScieNce, INvited ParticipaNt 1999-2002 Hubble Postdoctoral Research Fellowship 1994-1997 NatioNal ScieNce FouNdatioN Graduate Research Fellowship 1990-1994 I. I. Rabi ScieNce Scholar, Columbia University 1990 WestiNghouse ScieNce CompetitioN, HoNorable MeNtioN 1989 New York Academy of ScieNces ScieNce WritiNg CompetitioN, First Place EMPLOYMENT 2013-present Curator, DepartmeNt of Astrophysics, AmericaN Museum of Natural History 2008-2013 Associate Curator, DepartmeNt of Astrophysics, AmericaN Museum of Natural History 2004-2008 AssistaNt Curator, DepartmeNt of Astrophysics, AmericaN Museum of Natural History 2002-2004 Research Fellow, AmericaN Museum of Natural History 1999-2002 Hubble Research Fellow, University of CaliforNia-Berkeley, AMNH 1994-1997 Graduate Research Fellow, CaliforNia INstitute of TechNology, with Kulkarni 1993-1994 Instructor, Barnard College Physics DepartmeNt, History of Physics 1993-1995 Instructor, Columbia UNiversity Summer Program for High School StudeNts 1993 Summer Research Student, Nat’l Astronomy and Ionosphere Center, Arecibo, PR 1992 Summer Research StudeNt, Nat’l Radio AstroNomy Obs., Very Large Array 1991-1994 Research AssistaNt, Columbia Astrophysics Laboratory, Advisor: D.
    [Show full text]
  • Exoplanet Exploration Program Updates
    Exoplanet Exploration Program Updates Dr. Gary H. Blackwood, Program Manager Dr. Karl R. Stapelfeldt, Program Chief Scientist Jet Propulsion Laboratory California Institute of Technology July 29, 2018 ExoPAG 18, Cambridge MA © 2018 All rights reserved Artist concept of Kepler-16b Program Updates Program Investments LBTI Science Results and Implications Science Gap List NASA Exoplanet Exploration Program Astrophysics Division, NASA Science Mission Directorate NASA's search for habitable planets and life beyond our solar system Program purpose described in 2014 NASA Science Plan 1. Discover planets around other stars 2. Characterize their properties 3. Identify candidates that could harbor life ExEP serves the science community and NASA by implementing NASA’s space science vision for exoplanets https://exoplanets.nasa.gov WFIRST JWST2 PLATO Missions TESS Kepler LUVOIR5 CHEOPS 4 Spitzer Gaia Hubble1 Starshade HabEx5 CoRoT3 Rendezvous5 OST5 NASA Non-NASA Missions Missions W. M. Keck Observatory Large Binocular 1 NASA/ESA Partnership Telescope Interferometer NN-EXPLORE 2 NASA/ESA/CSA Partnership 3 CNES/ESA Ground Telescopes with NASA participation 5 4 ESA/Swiss Space Office 2020 Decadal Survey Studies NASA Exoplanet Exploration Program Space Missions and Mission Studies Communications K2 Probe-Scale Studies Starshade Coronagraph Supporting Research & Technology Key NASA Exoplanet Science Institute Sustaining Occulting Technology Development Research Masks Deformable Mirrors NN-EXPLORE Keck Single Archives, Tools, Sagan Fellowships, Aperture Professional Engagement Imaging & RV High-Contrast Imaging Deployable Starshades Large Binocular Telescope Interferometer https://exoplanets.nasa.gov 4 5 NASA Exoplanet Exploration Program Astrophysics Division, Science Mission Directorate Program Office (JPL) Changes since PM- Dr. G. Blackwood DPM- K. Short Chief Scientist – Dr.
    [Show full text]
  • Observations of Transiting Exoplanets with the JWST
    Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) Charles Beichman NASA Exoplanet Science Institute, California Institute of Technology, Jet Propulsion Laboratory Bjoern Benneke, Heather Knutson, Roger Smith California Institute of Technology Pierre-Olivier Lagage CEA, Saclay Courtney Dressing, David Latham Center for Astrophysics, Harvard University Jonathan Lunine Cornell University Stephan Birkmann, Pierre Ferruit, Giovanna Giardino European Space Agency Eliza Kempton Grinnell College arXiv:1411.1754v1 [astro-ph.IM] 6 Nov 2014 Sean Carey, Jessica Krick Infrared Procesing and Analysis Center, California Institute of Technology Pieter D. Deroo, Avi Mandell, Michael E. Ressler, Avi Shporer, Mark Swain, Gautam Vasisht Jet Propulsion Laboratory, California Institute of Technology { 2 { George Ricker Massachusetts Institute of Technology Jeroen Bouwman, Ian Crossfield Max Planck Institute of Astrophysics Tom Greene, Steve Howell NASA Ames Research Center Jessie Christiansen, David Ciardi NASA Exoplanet Science Institute, California Institute of Technology Mark Clampin, Matt Greenhouse NASA Goddard Spaceflight Center Alessandro Sozzetti Osservatorio Astronomico Di Torino Paul Goudfrooij, Dean Hines, Tony Keyes, Janice Lee, Peter McCullough, Massimo Robberto, John Stansberry, Jeff Valenti Space Telescope Science Institute Marcia Rieke, George Rieke University of Arizona Jonathan Fortney University of California, Santa Cruz Jacob Bean, Laura Kreidberg University of Chicago Drake Deming { 3 { University of Maryland Lo¨ıcAlbert, Ren´eDoyon Universit´ede Montr´eal David Sing University of Exeter Received ; accepted { 4 { Contents 1 Introduction 8 2 Key Science Opportunities 12 2.1 Transit and Secondary Eclipse Spectroscopy . 13 2.1.1 Giant Planet Spectroscopy . 13 2.1.2 Spectroscopy of super-Earths and mini-Neptunes . 16 2.1.3 Terrestrial Planet Spectroscopy .
    [Show full text]