Development of Micro LED Display and Future Opportunities

Total Page:16

File Type:pdf, Size:1020Kb

Development of Micro LED Display and Future Opportunities EPIC Online Technology Meeting – Mini/Micro LED Development of Micro LED Display and Future Opportunities Falcon Liu Marketing Director PlayNitride Display Co., Ltd. Roadmap for display technology emerging application MicroLED & ultimate performance better picture quality OLED LCD slimmer design PDP larger screen Rear Projection CRT 1990 2000 2010 2020 2 | © PlayNitride. All rights reserved. PixeLED MatrixTM tiling display technology PixeLED MatrixTM is the only achievable © PlayNitride Inc. technology of MicroLED on PCB PixeLED MatrixTM Applications • Consumer Product (ex. TV) • Commercial Product (ex. Digital Signage / Public Display) • Automotive Product (ex. Exterior Light / Smart Tail Light) 3 | © PlayNitride. All rights reserved. Flexible display announced in April 2020 2020 PlayNitride and AUO Team Up to Develop High Resolution Flexible MicroLED Display Technology 9.4" flexible MicroLED display © PlayNitride Inc. • more than 5.5 million MicroLED chips • less than 30µm MicroLED chip • LTPS plastic backplane • 228 ppi Development of MicroLED display is getting faster and faster! 4 | © PlayNitride. All rights reserved. Transparent & Wearable MicroLED displays SID Display Week 2019 1.25" high chip density & Best New Display Technology Award with Tianma high brightness MicroLED display © PlayNitride Inc. © PlayNitride Inc. 7.56" high transparency & frameless MicroLED display 5 | © PlayNitride. All rights reserved. What is MicroLED display from >1mm to <50µm MicroLED LED Chip LED Chip MicroLED 6 | © PlayNitride. All rights reserved. (images from internet) Advantages of MicroLED display Ultra-low Good Reliability Power Consumption 10% of LCD power consumption in theory As long as 100,000 hours of LEDs High Brightness Fast Response Readable under sunshine (>5000 nits) On/off switching within nano-seconds Flexible Display Ultra-high Resolution with Any Shape More than 2000 dpi with Si backplane Total thickness less than 30 micron 7 | © PlayNitride. All rights reserved. Simple is good ! LCD structure OLED structure MicroLED structure Linear Polarizer Circular Polarizer CF Glass Encap Glass / TFE TFT Backplane Glass TFT Backplane (Glass / PI) TFT Backplane (Glass / PI) Linear Polarizer OLED Materials MicroLEDs Backlight Simpler structure, more flexibility and higher transparency!! 8 | © PlayNitride. All rights reserved. Perfect for automotive applications Excellent Reliability High Transparency New Era for Automotive Applications 9 | © PlayNitride. All rights reserved. About PlayNitride 錼創顯示科技 About PlayNitride PlayNitride is a Taiwan-base company. Through the breakthrough innovations and diverse business models, PlayNitride has become a leading company of MicroLED technology § Founded in 2014 § Office and fab in Hsinchu Science Park, Taiwan § More than 350 employees § Completed the first fab for MicroLED in mid-2019 11 | © PlayNitride. All rights reserved. Awards of PlayNitride 2020 2020 2020 2019 2018 Innovative SID Special Gold Panel Best New Display Best Prototype Product Award Recognition Awards Technology & Best Honoree Award Small Booth Award in SID Display Week of HSP 40 Year in SID Display Week in Touch Taiwan in SID Display Week 2020 12 | © PlayNitride. All rights reserved. Role of PlayNitride at MicroLED ecosystem PlayNitride core technology Market available technology Chip Wafer Epitaxy PixeLED (chipProcess process) TransferMass ~ Display System TechnologyTechnology Module Tuning Active / Passive Matrix Backplane Mass Mass Mass Mass Transfer Inspection Testing Repair 13 | © PlayNitride. All rights reserved. Summary § MicroLED provides ultimate visual experience § A great opportunity with new challenges 14 | © PlayNitride. All rights reserved. .
Recommended publications
  • Pinhole Microled Array As Point Source Illumination for Miniaturized Lensless Cell Monitoring Systems †
    Proceedings Pinhole microLED Array as Point Source Illumination for Miniaturized Lensless Cell Monitoring Systems † Shinta Mariana 1,*, Gregor Scholz 1, Feng Yu 1, Agus Budi Dharmawan 1,2, Iqbal Syamsu 1,3, Joan Daniel Prades 4, Andreas Waag 1 and Hutomo Suryo Wasisto 1,* 1 Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany; gregor.scholz@tu‐braunschweig.de (G.S.); f.yu@tu‐braunschweig.de (F.Y.); a.dharmawan@tu‐braunschweig.de (A.B.D.); i.syamsu@tu‐braunschweig.de (I.S.); a.waag@tu‐braunschweig.de (A.W.) 2 Faculty of Information Technology, Universitas Tarumanagara, 11440 Jakarta, Indonesia 3 Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (LIPI), 40135 Bandung, Indonesia 4 MIND, Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] * Correspondence: s.mariana@tu‐braunschweig.de (S.M.); h.wasisto@tu‐braunschweig.de (H.S.W.) † Presented at the Eurosensors 2018 Conference, Graz, Austria, 9–12 September 2018. Published: 21 November 2018 Abstract: Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.
    [Show full text]
  • UV Cured Flexible Cholesteric Liquid Crystal Displays
    UV Cured Flexible Cholesteric Liquid Crystal Displays Tod Schneider, Erica Montbach, Don Davis, Sean Franklin, Diaz McDaniel, Mark Lightfoot, Nithya Venkataraman, Forrest Nicholson, Asad Khan, and J. William Doane Kent Displays, Inc. Kent, OH, USA Abstract Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as UV curing, and simultaneous laser-edge sealing/singulation enable high volume production, excellent quality control and non-traditional display geometries and formats. Keywords: UV Cure, Flexible Displays, Roll-to-Roll, Plastic Substrates, Cholesteric Liquid Crystals, Bistable Introduction Nearly every commercial liquid crystal display (LCD) manufactured and sold today is made from a sandwich of liquid crystal (LC) between two precisely spaced glass substrates coated with a transparent conductor. A few challenges remain for LCDs in the consumer market; namely, flexibility, durability, weight and power consumption. The first three issues can be addressed by using thin plastic substrates whereas the last issue can be solved using a bistable display, i.e. a display that is stable (with no power applied) in two states such as reflective or transmissive. Unfortunately, a problem arises when sandwiching liquid crystal between two flexible substrates: the fluid will flow! When the cell is flexed or pressed upon, the gap between the substrates becomes smaller displacing the LC and inducing flow. Cholesteric liquid crystal displays (ChLCDs) are bistable LCDs that have low power consumption and exhibit high reflectance under ambient lighting1.
    [Show full text]
  • Quantum Dot Displays to Spur Premium Display Market Growth
    Publication date: 09 Dec 2019 Author: Richard Son Principal Analyst, Display Chemical Materials [Display Dynamics] Quantum dot displays to spur premium display market growth Brought to you by Informa Tech [Display Dynamics] Quantum dot displays to 1 spur premium display market growth Table of Figures: michellewhitcombihsmarkitcom_2019_12_9_11_5_32_capturejpg1 ..............................................3 michellewhitcombihsmarkitcom_2019_12_9_11_6_23_capturejpg2 ..............................................3 © 2020 Omdia. All rights reserved. Unauthorized reproduction prohibited. [Display Dynamics] Quantum dot displays to 2 spur premium display market growth Key findings . Resolution, slim and bezel-less designs, and a wide color gamut are barometers of innovation in display technology as well as key marketing points of different display products. After the introduction of organic light-emitting diode (OLED), quantum dot (QD), and microLED display technologies that guarantee high definition and flexibility in design, a wide color gamut is now the key feature that determines the premium value of a display. QD displays, groomed to be the core display technology for Samsung Electronics and Samsung Display, are expected to boost the growth of the premium display market. Market for premium displays with various advanced features set to steadily grow Ever since the start of the digital display era, display size, design, and resolution have been used as barometers of innovation in display technology. Display makers marketed size and design as their distinctive features to lure consumers. To make a display slimmer, light-emitting diode backlight unit liquid-crystal displays (LED BLU LCDs) widely adopted edge BLU and bezel-less designs. Curved and bendable display technologies that enabled the production of super-large sized and flexible display designs also gained consumers’ attentions.
    [Show full text]
  • 00098OFC2.Qxp:SID Cover
    FLEXIBLE AND LOW-POWER DEVICES February 2010 Official Monthly Publication of the Society for Information Display • www.informationdisplay.org Vol. 26, No. 2 FEBRUARY 2010 Information VOL. 26, NO. 2 COVER: This flexible display module from Plastic Logic was made with plastic electronics and Vizplex display media provided by E Ink Corp. It has a resolution of 1280 × 960 and 150 ppi. Cover image courtesy of Plastic Logic Limited, DISPLAY 2009. 2 Editorial Now More than Ever Before: Flexible and Low-Power Technology Meets A Need Stephen P. Atwood 3 Industry News Prime View International, HYDIS Technologies, and LG Display Announce Comprehensive Cooperation Agreement Jenny Donelan 4 Guest Editorial A New Breed of Display Starts to Flex Its Muscles Robert Zehner 6 President’s Corner Getting Excited about Seattle Paul Drzaic 8 Frontline Technology: Flexible AMOLEDs for Low-Power, Rugged Applications Flexible AMOLEDs equipped with phosphorescent OLEDs are well-positioned for low-power, rugged, full-color video applications. Replacing glass with flexible substrates and thin-film encap- sulation makes displays thinner, lighter, and non-breakable – all attractive features for portable applications. With enhanced flexibility and low power consumption, a range of revolutionary opportunities are being created. CREDIT: Cover design by Acapella Studios, Inc. Ruiqing Ma, Mike Hack, and Julie J. Brown 16 Frontline Technology: Flexible Displays Made with Plastic Electronics Plastic Logic has designed and constructed a full-scale manufacturing facility for flexible display modules fabricated using organic semiconductors (“plastic electronics”). These display modules are lightweight, flexible, and robust and are used in the QUEproReader, an e-reader device for mobile business professionals that was introduced in January 2010.
    [Show full text]
  • Light Engines for XR Smartglasses by Jonathan Waldern, Ph.D
    August 28, 2020 Light Engines for XR Smartglasses By Jonathan Waldern, Ph.D. The near-term obstacle to meeting an elegant form factor for Extended Reality1 (XR) glasses is the size of the light engine2 that projects an image into the waveguide, providing a daylight-bright, wide field-of-view mobile display For original equipment manufacturers (OEMs) developing XR smartglasses that employ diffractive wave- guide lenses, there are several light engine architectures contending for the throne. Highly transmissive daylight-bright glasses demanded by early adopting customers translate to a level of display efficiency, 2k-by-2k and up resolution plus high contrast, simply do not exist today in the required less than ~2cc (cubic centimeter) package size. This thought piece examines both Laser and LED contenders. It becomes clear that even if MicroLED (µLED) solutions do actually emerge as forecast in the next five years, fundamentally, diffractive wave- guides are not ideally paired to broadband LED illumination and so only laser based light engines, are the realistic option over the next 5+ years. Bottom Line Up Front • µLED, a new emissive panel technology causing considerable excitement in the XR community, does dispense with some bulky refractive illumination optics and beam splitters, but still re- quires a bulky projection lens. Yet an even greater fundamental problem of µLEDs is that while bright compared with OLED, the technology falls short of the maximum & focused brightness needed for diffractive and holographic waveguides due to the fundamental inefficiencies of LED divergence. • A laser diode (LD) based light engine has a pencil like beam of light which permits higher effi- ciency at a higher F#.
    [Show full text]
  • Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020
    From Technologies to Markets Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020 Sample © 2020 TABLE OF CONTENTS • Glossary and definition • Industry trends 154 • Table of contents o Established technologies players 156 • Report objectives o Emerging technologies players 158 • Report scope o Ecosystem analysis 160 • Report methodology o Noticeable collaborations and partnerships 170 • About the authors o Company profiles 174 • Companies cited in this report • Who should be interested by this report • Yole Group related reports • Technology trends 187 o Competition benchmarking 189 • Executive Summary 009 o Technology description 191 o Technology roadmaps 209 • Context 048 o Examples of products and future launches 225 • Market forecasts 063 • Outlooks 236 o End-systems 088 o AR headsets 104 • About Yole Group of Companies 238 o Automotive HUDs 110 o Others 127 • Market trends 077 o Focus on AR headsets 088 o A word about VR 104 o Focus on Auto HUDs 110 o Focus on 3D Displays 127 o Summary of other small SLM applications 139 Microdisplays - Market, Industry and Technology Trends 2020 | Sample | www.yole.fr | ©2020 2 ACRONYMS AMOLED: Active Matrix OLED HMD: Head mounted Device/Display PPI: Pixel Per Inch AR: Augmented Reality HOE: Holographic Optical Element PWM: Pulse Width Modulation BLU: Back Lighting Unit HRI: High Refractive Index QD: Quantum Dot CF LCOS: Color Filter LCOS HVS: Human Vision System RGB: Red-Green-Blue CG: Computer Generated IMU: Inertial measurement Unit RMLCM: Reactive Monomer
    [Show full text]
  • HONGXING JIANG Edward E
    HONGXING JIANG Edward E. Whitacre, Jr. Endowed Chair and Horn Professor Department of Electrical and Computer Engineering Center for Nanophotonics Texas Tech University [email protected] http://www.depts.ttu.edu/ece/Nanophotonics/ Appointments Edward E. Whitacre, Jr. Endowed Chair and Horn Professor, Electrical and Computer Engineering, Texas Tech University, 2013 – present (Horn Professorships, the highest honor Texas Tech University may bestow on members of its faculty: http://www.swco.ttu.edu/university_archive/uacollections11.html) Edward E. Whitacre, Jr. Endowed Chair and Professor, Electrical and Computer Engineering, Texas Tech University, 2008 - 2013 Co-Director, Center for Nanophotonics, Texas Tech University (Center formed in Sept. 2010) University Distinguished Professor, Kansas State University, 2004-2008 Professor of Physics, Kansas State University, 1998-2004 Director, Kansas Advanced Semiconductor Coordinated Laboratory, 1998-2008 Visiting Scientist, Sandia National Lab (Albuquerque, NM), 1/99-6/99 Associate Professor of Physics, Kansas State University, 1993-1998 Assistant Professor of Physics, Kansas State University, 1988-1993 Education B. S., Fudan University, Shanghai, China, 1977-1981 M. S. in Physics, Syracuse University, Syracuse, New York, 1981-1983 Ph. D. in Physics, Syracuse University, Syracuse, New York, 1983-1986 Hongxing Jiang Honors/Awards Elected Fellow of the American Association for the Advancement of Science, 2017 Elected Fellow of SPIE - the international society for optics and photonics, 2016 Elected Fellow of the Optical Society of America, 2014 Elected Fellow of the American Physical Society, 2010 Horn Distinguished Professor, Texas Tech University (TTU) University Distinguished Professor, Kansas State University, 2004-2008 Barnie E. Rushing, Jr. Faculty Distinguished Research Award, TTU, 2011 Named the Kan Tong Po Visiting Professor by the Royal Society of London, 2011 Edward E.
    [Show full text]
  • Various Display Technologiess
    VARIOUS DISPLAY TECHNOLOGIESS Mr. Virat C. Gandhi1 1Computer Department, C. U. Shah Technical Institute of Diploma Studies Abstract—A lot has been invented from the past till now in regards with the display technologies. It gives an immense life to electronic device when good display technology are being used. Now a days displays are coming in various sizes for different portable devices like smart phones, tablets, smart watch, televisions, laptops etc. People are expecting better display no matter what device they use. In this paper I have given an overview of some of the past technologies to the technologies till now. Flat-panel displays use Liquid-crystal display (LCD) technology to make them much lighter and thinner when compared with a traditional monitor. A liquid crystal display consists of an array of tiny segments (called pixels) that can be manipulated to present information. Plasma panels, also called gas discharge displays, are constructed by filling the region between two glass plates with a mixture of gases that usually include neon. In LED, A matrix of diodes is arranged to form the pixel positions in the display, and picture definition is stored in refresh buffer. OLED (Organic Light Emitting Diode) technology relies on the organic materials. Keywords— Display Technology; LCD; LED; Flexible display; Curved display; I. INTRODUCTION In today’s smart world, people are carrying smart devices all over the places they visit. Wherever people are they are surrounded or accompanied by display devices, such as smart phones, tablets, notebooks and advertising screens. Different devices uses different display technologies to enrich devices facilities.
    [Show full text]
  • Flexible Display Patent Landscape and Implications from the America Invents Act
    Flexible Display Patent Landscape and Implications From the America Invents Act Donald J. Featherstone,* Raymond J. Werner,** Christian A. Camarce,*** and Susan E. Cullen**** Abstract Developments in flexible display technology are expected to create significant new market opportunities for consumer electronic and commercial products. The potential economic impact of these new products is evidenced by the rapid growth around the world in patent application filings directed to flexible display technology areas. At the same time, changes to U.S. patent law, practice, and strategies have been triggered by the enactment of the Smith-Leahy America Invents Act. This article describes the patent landscape for flexible displays and ways in which newly enacted changes in patent law can facilitate the development of flexible display patent portfolios. I. Overview of the Flexible Patent Display Landscape. a. What Are Flexible Displays? Flexible displays are displays that can be bent, rolled, folded and/or twisted in many different configurations. As early as the 1970s, flexible display technology was used in e-paper displays, which were used to mimic the pliant properties of paper but with the capacity to display digital images.1 Today, largely led by Asian companies, research and development has moved past early e- paper display technology and has rapidly evolved into new materials, manufacturing methods, control means and integration schemes. Today’s applications of flexible displays are predominately in consumer electronic products such as mobile devices, TV screens, and similar video and multimedia products. * Donald J. Featherstone is a Director at Washington DC-based intellectual property specialty law firm Sterne, Kessler, Goldstein & Fox P.L.L.C.
    [Show full text]
  • Sample Picture: Sony ©2017© 2017 SCOPE of the REPORT
    From Technologies to Market MicroLED Displays: Hype and reality, hopes and challenges Sample Picture: Sony ©2017© 2017 SCOPE OF THE REPORT Large video displays Smartwatches and TV wearables Sony The report LG provides an Apple The report does not Smartphones extensive review Virtual reality cover non-display of µLED display applications of technologies and µLED: AC-LEDs, LiFi, potential Optogenetics, applications as Samsung well as the Oculus Lithography, competitive Laptops and lighting… convertibles landscape and key Augmented/Mixed MicroLED TV prototype (Sony, CES 2012) players. Reality HP Microsoft Tablets Automotive HUD BMW Acer ©2017 | www.yole.fr | MicroLED Displays 2 OBJECTIVE OF THE REPORT Everything You Always Wanted to Know About µLED Displays! • Understand the Current Status of the µLED Display Technologies: • What are they? What are the key benefits? How do they differ from other display technologies? What are the cost drivers? • What are the remaining roadblocks? How challenging are they? • Detailed analysis of key technological nodes: epitaxy, die structure and manufacturing, front plane structure and display designs, Deep color conversion, backplanes, massively parallele pick and place and continuous assembly processes, hybridization, defect understanding management, light extraction and beam shaping. of the • Which applications could µLED display address and when? technology, current status • Detailed analysis of major display applications: TV, smartphones, wearables, augmented and virtual reality (AR/VR/MR), laptops and prospects, and tablets, monitors, large LED video displays... roadblocks • How disruptive for incumbent technologies: LCD, OLED, LCOS… and key • MicroLED display application roadmap, forecast and SWOT analysis players. • Competitive Landscape and Supply chain • Identify key players in technology development and manufacturing.Who owns the IP? • Potential impact on the LED supply chain: epimakers, MOCVD reactor and substrate suppliers.
    [Show full text]
  • Beyond Solid-State Lighting: Miniaturization, Hybrid Integration, and Applications of Gan Nano- and Micro-Leds
    Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs Cite as: Appl. Phys. Rev. 6, 041315 (2019); https://doi.org/10.1063/1.5096322 Submitted: 30 May 2019 . Accepted: 26 November 2019 . Published Online: 19 December 2019 Hutomo Suryo Wasisto, Joan Daniel Prades, Jan Gülink, and Andreas Waag COLLECTIONS This paper was selected as an Editor’s Pick ARTICLES YOU MAY BE INTERESTED IN Development of microLED Applied Physics Letters 116, 100502 (2020); https://doi.org/10.1063/1.5145201 Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter Applied Physics Letters 116, 071102 (2020); https://doi.org/10.1063/1.5144819 Publisher's Note: “Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs” [Appl. Phys. Rev. 6, 041315 (2019)] Applied Physics Reviews 7, 019901 (2020); https://doi.org/10.1063/5.0005787 Appl. Phys. Rev. 6, 041315 (2019); https://doi.org/10.1063/1.5096322 6, 041315 © 2019 Author(s). Applied Physics Reviews REVIEW scitation.org/journal/are Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs Cite as: Appl. Phys. Rev. 6, 041315 (2019); doi: 10.1063/1.5096322 Submitted: 30 May 2019 . Accepted: 26 November 2019 . Published Online: 19 December 2019 . Publisher error corrected: 20 December 2019 Hutomo Suryo Wasisto,1,2,a),b) Joan Daniel Prades,3,a) Jan Gulink,€ 1,2 and Andreas Waag1,2,b) AFFILIATIONS 1Institute of Semiconductor Technology (IHT), Technische Universitat€ Braunschweig, Hans-Sommer-Straße 66, D-38106 Braunschweig, Germany 2Laboratory for Emerging Nanometrology (LENA), Technische Universitat€ Braunschweig, Langer Kamp 6a, D-38106 Braunschweig, Germany 3MIND-IN2UB, Department of Electronic and Biomedical Engineering, Universitat de Barcelona, C/Martı i Franque`s1, E-08028 Barcelona, Spain a)Contributions: H.
    [Show full text]
  • Review of Display Technologies Focusing on Power Consumption
    Sustainability 2015, 7, 10854-10875; doi:10.3390/su70810854 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Review Review of Display Technologies Focusing on Power Consumption María Rodríguez Fernández 1,†, Eduardo Zalama Casanova 2,* and Ignacio González Alonso 3,† 1 Department of Systems Engineering and Automatic Control, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain; E-Mail: [email protected] 2 Instituto de las Tecnologías Avanzadas de la Producción, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain 3 Department of Computer Science, University of Oviedo, C/González Gutiérrez Quirós, 33600 Mieres, Spain; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-659-782-534. Academic Editor: Marc A. Rosen Received: 16 June 2015 / Accepted: 4 August 2015 / Published: 11 August 2015 Abstract: This paper provides an overview of the main manufacturing technologies of displays, focusing on those with low and ultra-low levels of power consumption, which make them suitable for current societal needs. Considering the typified value obtained from the manufacturer’s specifications, four technologies—Liquid Crystal Displays, electronic paper, Organic Light-Emitting Display and Electroluminescent Displays—were selected in a first iteration. For each of them, several features, including size and brightness, were assessed in order to ascertain possible proportional relationships with the rate of consumption. To normalize the comparison between different display types, relative units such as the surface power density and the display frontal intensity efficiency were proposed.
    [Show full text]