Light Engines for XR Smartglasses by Jonathan Waldern, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Light Engines for XR Smartglasses by Jonathan Waldern, Ph.D August 28, 2020 Light Engines for XR Smartglasses By Jonathan Waldern, Ph.D. The near-term obstacle to meeting an elegant form factor for Extended Reality1 (XR) glasses is the size of the light engine2 that projects an image into the waveguide, providing a daylight-bright, wide field-of-view mobile display For original equipment manufacturers (OEMs) developing XR smartglasses that employ diffractive wave- guide lenses, there are several light engine architectures contending for the throne. Highly transmissive daylight-bright glasses demanded by early adopting customers translate to a level of display efficiency, 2k-by-2k and up resolution plus high contrast, simply do not exist today in the required less than ~2cc (cubic centimeter) package size. This thought piece examines both Laser and LED contenders. It becomes clear that even if MicroLED (µLED) solutions do actually emerge as forecast in the next five years, fundamentally, diffractive wave- guides are not ideally paired to broadband LED illumination and so only laser based light engines, are the realistic option over the next 5+ years. Bottom Line Up Front • µLED, a new emissive panel technology causing considerable excitement in the XR community, does dispense with some bulky refractive illumination optics and beam splitters, but still re- quires a bulky projection lens. Yet an even greater fundamental problem of µLEDs is that while bright compared with OLED, the technology falls short of the maximum & focused brightness needed for diffractive and holographic waveguides due to the fundamental inefficiencies of LED divergence. • A laser diode (LD) based light engine has a pencil like beam of light which permits higher effi- ciency at a higher F#. This in turn results in a much improved Liquid Crystal on Silicon (LCoS) microdisplay panel contrast when compared with traditional LED LCoS designs. • Looking to the future and miniaturizing still further, the projection lens itself may be integrat- ed into the waveguide using diffractive metasurfaces containing sub-wavelength structures or “metalenses,” which are better suited to laser illumination compared to LED illumination. • By leveraging the benefits of lasers and its holographic switchable optics platform, DigiLens is using its extensive experience with diffractive optical waveguides to create a new class of light engines referred to as Waveguide Integrated Laser Display (WILD). The WILD category of light engines offer OEMs more immediate time to market and is a lower-risk alternative to µLED based light engines. • Laser coherence and phase also provide added efficiency gains in holographic thin film wave- guides. 1 Extended Reality (XR) is a term that encompasses Augmented Reality (AR), Mixed Reality (MR), and Virtual Reality (VR) 2 Also referred to as a Picture Generation Unit or “PGU” © 2020 DIGILENS INC. | ALL RIGHTS RESERVED | TWITTER: @DIGILENSINC The Need for a Compact Light Engine for XR Glasses Delivering a wide field-of-view (FoV), color, day- light-bright device in a spectacle-like form factor at an acceptable price continues to prove to be a major development hurdle for consumer XR displays. The form factor challenge is only par- tially met using thin diffractive and holographic waveguides. Current light engines comprising of the microdisplay beam splitter and projection DigiLens’ Visualize Design v1 lens are increasingly seen as too bulky to satisfy the aesthetic requirements of glasses. speckle and other illumination non-uniformities. In addition, misunderstanding also prevails with Let’s dig deeper into the leading light engine respect to outdoor contrast requirements which options on the market today illuminated by ei- has an oversized impact on brightness and bat- ther Light Emitting Diodes (LED) or Laser Diode tery life. Here, ambient light can wash out the (LD). content and render the image unrecognizable. Under generally accepted guidelines, an Am- LIGHT EMITTING DIODES bient Contrast Ratio (ACR) of 3:1 is required for recognizable images, 5:1 for adequate readabil- µLEDs Engines ity, and 10:1 for appealing quality.3 µLED is a thin emissive panel technology that Given a 90% transparent waveguide and in- dispenses with beam splitting and illumination door office lighting condition (150nits), the XR optics, thereby offering higher brightness and display target luminance level should have at much smaller size. There is consequently great least 550nits for ACR 5:1 – which is considerably interest in this technology. Yole, a leading indus- less brightness than that required to overcome try analyst, believes that µLED technology could outdoor lighting condition of 300-3000nits (so match or exceed OLEDs for most key display 4 2-20x). It is notable that the HoloLens 2 display attributes, especially brightness and efficiency. is 1000nits and that all current XR displays use However, as Yole points out, there is no sign of a sunshades, which longterm are unwelcome for color µLED light engine for XR applications. The consumers. Ultimately, even assuming a dan- reasons for this can be attributed to both basic gerously darkened room, the waveguide display device physics and technological obstacles to contrast is likely perfectly acceptable at 30-40:1, achieving process maturity. so well short of and not to be confused with the LCD, µLED or µOLED native display panel con- As µLEDs get small enough to satisfy the trast, irrelevant for an XR display application. 2k-by-2k resolution ideal for XR, the pixels suffer from surface recombination, etching- The low etendue and the narrow band of laser related defects on the side walls of the chip, emitters makes them the ideal choice for deliv- current crowding, and other thermal effects ering excellent color gamut and high brightness which all impact the external quantum effi- with high transmissivity that can meet the large ciency. number of outdoor use cases requiring compact form factors. However, laser emitters have tradi- Driving the LED pixels in the panel brighter to tionally brought new problems including laser overcome low efficiency is limited by higher 3 Dobrowolski J A, Sullivan B T, Bajcar R C. Optical interference, contrast-enhanced electroluminescent device. Applied, Optics, 1992, 31(28): 5988–5996 DOI:10.1364/AO.31.005988; and Chen H, Tan G, Wu S T. Ambient contrast ratio of LCDs and OLED displays. Optics Express, 2017, 25(26): 33643–33656 4 µLED Displays 2018, Yole Development, July 2018 © 2020 DIGILENS INC. | ALL RIGHTS RESERVED | TWITTER: @DIGILENSINC PAGE 2 power consumption, current drop and heat dis- MOCVD reactor suppliers also have credible sipation requirements. Solutions to the efficiency roadmaps to deliver cost-effective tooling. De- problem have been identified (e.g. thermal an- spite these advances, there are still significant nealing, side wall passivation and improvements challenges to developing a consumer µLED to LED structures and materials). Reducing the based light engine to match diffractive wave- sheet resistance of the current-spreading layer guide requirements. of the µLED chip has also been shown to give a uniform current distribution and alleviate current Current Commercial Activity and Status of crowding. µLED Displays Another effect that appears as the pixel size is In recent years the market has seen significant reduced, is a gradual increase in the light emis- µLED business development, with Facebook sion through the side wall leading to a far field (Oculus) taking a lead by acquiring two Univer- deviation from the normal Lambertian character- sity spinoffs: Irish µLED developer InfiLED (2016) istic of the µLED. This side emission depends on and a UK company mLED (2017). Apple is also the semiconductor material index and the de- reportedly considering investing a further $330 vice structure, but can certainly be a problem in million into a Taiwanese factory to manufacture color displays as different materials are used for both LED and µLED displays for future iPhones, different colors. The combined side emissions iPads, MacBooks, and other devices, so µLED can lead to an angular color shift that can also display technology must be seen in the context distort the color balance of the final image, re- as being enabling to a broad range of display sulting in a subpar experience for enterprise and product categories. consumer use cases. Additionally, Facebook has demonstrated a green (520 nm) nHD (640x360) µLED array with 6-micron pixels on a 20-micron pitch.6 Pixel siz- es down to 2-4 microns may be in the cards. Improvements to circuit complexity, efficiency drop at low pixel sizes and wall plug efficiency resulting from reduced specific contact resistivity (<10-4 ohm/cm2) and sheet resistance of ~100k Plessey and Compound Photonics’ ohms square are also claimed. 0.26”diagonal display module Facebook and Plessey Efficiency is not the only challenge for µLEDs. An integration technology for active matrix driving, A partnership between Facebook and Plessey technologies for full-color realization, and defec- announced in March 2020 will leverage Plessey’s tive pixel control all still remain major develop- LED manufacturing expertise to help Facebook ment hurdles. Driving µLEDs is more complex prototype and develop new technologies. than OLEDs and using standard low tempera- ture polysilicon or oxide TFT backplanes might Plessey is increasing investment in their fab to not be as straightforward as expected. Full color improve volume and yield. It is notable that with also requires integration of phosphors or QDs to Oculus, Facebook can use µLED panels in both the µLEDs, a process that is in its infancy. VR headsets and AR transparent glasses, so they are likely taking a long term view into several On a positive note, Yole reports that leaders are sub-categories of XR displays, both handheld achieving 99% yields, and small die efficiency and head mounted, with VR likely being earlier is approaching or exceeding that of OLEDs.5 to market. 5 µLED Displays 2018, Yole Development, July 2018 6 www.mled-ltd.com © 2020 DIGILENS INC.
Recommended publications
  • Augmented Reality Glasses State of the Art and Perspectives
    Augmented Reality Glasses State of the art and perspectives Quentin BODINIER1, Alois WOLFF2, 1(Affiliation): Supelec SERI student 2(Affiliation): Supelec SERI student Abstract—This paper aims at delivering a comprehensive and detailled outlook on the emerging world of augmented reality glasses. Through the study of diverse technical fields involved in the conception of augmented reality glasses, it will analyze the perspectives offered by this new technology and try to answer to the question : gadget or watershed ? Index Terms—augmented reality, glasses, embedded electron- ics, optics. I. INTRODUCTION Google has recently brought the attention of consumers on a topic that has interested scientists for thirty years : wearable technology, and more precisely ”smart glasses”. Howewer, this commercial term does not fully take account of the diversity and complexity of existing technologies. Therefore, in these lines, we wil try to give a comprehensive view of the state of the art in different technological fields involved in this topic, Fig. 1. Different kinds of Mediated Reality for example optics and elbedded electronics. Moreover, by presenting some commercial products that will begin to be released in 2014, we will try to foresee the future of smart augmented reality devices and the technical challenges they glasses and their possible uses. must face, which include optics, electronics, real time image processing and integration. II. AUGMENTED REALITY : A CLARIFICATION There is a common misunderstanding about what ”Aug- III. OPTICS mented Reality” means. Let us quote a generally accepted defi- Optics are the core challenge of augmented reality glasses, nition of the concept : ”Augmented reality (AR) is a live, copy, as they need displaying information on the widest Field Of view of a physical, real-world environment whose elements are View (FOV) possible, very close to the user’s eyes and in a augmented (or supplemented) by computer-generated sensory very compact device.
    [Show full text]
  • Interaction Methods for Smart Glasses: a Survey
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2831081, IEEE Access Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Digital Object Identifier 10.1109/ACCESS.2018.Doi Number Interaction Methods for Smart Glasses: A survey Lik-Hang LEE1, and Pan HUI1&2 (Fellow, IEEE). 1The Hong Kong University of Science and Technology, Department of Computer Science and Engineering 2The University of Helsinki, Department of Computer Science Corresponding author: Pan HUI (e-mail: panhui@ cse.ust.hk). ABSTRACT Since the launch of Google Glass in 2014, smart glasses have mainly been designed to support micro-interactions. The ultimate goal for them to become an augmented reality interface has not yet been attained due to an encumbrance of controls. Augmented reality involves superimposing interactive computer graphics images onto physical objects in the real world. This survey reviews current research issues in the area of human-computer interaction for smart glasses. The survey first studies the smart glasses available in the market and afterwards investigates the interaction methods proposed in the wide body of literature. The interaction methods can be classified into hand-held, touch, and touchless input. This paper mainly focuses on the touch and touchless input. Touch input can be further divided into on-device and on-body, while touchless input can be classified into hands-free and freehand. Next, we summarize the existing research efforts and trends, in which touch and touchless input are evaluated by a total of eight interaction goals.
    [Show full text]
  • Pinhole Microled Array As Point Source Illumination for Miniaturized Lensless Cell Monitoring Systems †
    Proceedings Pinhole microLED Array as Point Source Illumination for Miniaturized Lensless Cell Monitoring Systems † Shinta Mariana 1,*, Gregor Scholz 1, Feng Yu 1, Agus Budi Dharmawan 1,2, Iqbal Syamsu 1,3, Joan Daniel Prades 4, Andreas Waag 1 and Hutomo Suryo Wasisto 1,* 1 Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany; gregor.scholz@tu‐braunschweig.de (G.S.); f.yu@tu‐braunschweig.de (F.Y.); a.dharmawan@tu‐braunschweig.de (A.B.D.); i.syamsu@tu‐braunschweig.de (I.S.); a.waag@tu‐braunschweig.de (A.W.) 2 Faculty of Information Technology, Universitas Tarumanagara, 11440 Jakarta, Indonesia 3 Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (LIPI), 40135 Bandung, Indonesia 4 MIND, Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] * Correspondence: s.mariana@tu‐braunschweig.de (S.M.); h.wasisto@tu‐braunschweig.de (H.S.W.) † Presented at the Eurosensors 2018 Conference, Graz, Austria, 9–12 September 2018. Published: 21 November 2018 Abstract: Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.
    [Show full text]
  • An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and Caregiver Report of Safety and Lack of Negative Effects
    bioRxiv preprint doi: https://doi.org/10.1101/164335; this version posted July 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and caregiver report of safety and lack of negative effects. An Augmented Reality Social Communication Aid for Children and Adults with Autism: User and caregiver report of safety and lack of negative effects. Ned T. Sahin1,2*, Neha U. Keshav1, Joseph P. Salisbury1, Arshya Vahabzadeh1,3 1Brain Power, 1 Broadway 14th Fl, Cambridge MA 02142, United States 2Department of Psychology, Harvard University, United States 3Department of Psychiatry, Massachusetts General Hospital, Boston * Corresponding Author. Ned T. Sahin, PhD, Brain Power, 1 Broadway 14th Fl, Cambridge, MA 02142, USA. Email: [email protected]. Abstract Background: Interest has been growing in the use of augmented reality (AR) based social communication interventions in autism spectrum disorders (ASD), yet little is known about their safety or negative effects, particularly in head-worn digital smartglasses. Research to understand the safety of smartglasses in people with ASD is crucial given that these individuals may have altered sensory sensitivity, impaired verbal and non-verbal communication, and may experience extreme distress in response to changes in routine or environment. Objective: The objective of this report was to assess the safety and negative effects of the Brain Power Autism System (BPAS), a novel AR smartglasses-based social communication aid for children and adults with ASD. BPAS uses emotion-based artificial intelligence and a smartglasses hardware platform that keeps users engaged in the social world by encouraging “heads-up” interaction, unlike tablet- or phone-based apps.
    [Show full text]
  • The Use of Smartglasses in Everyday Life
    University of Erfurt Faculty of Philosophy The Use of Smartglasses in Everyday Life A Grounded Theory Study Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Dr. phil.) at the Faculty of Philosophy of the University of Erfurt submitted by Timothy Christoph Kessler from Munich November 2015 URN: urn:nbn:de:gbv:547-201600175 First Assessment: Prof. Dr. Joachim R. Höflich Second Assessment: Prof. Dr. Dr. Castulus Kolo Date of publication: 18th of April 2016 Abstract We live in a mobile world. Laptops, tablets and smartphones have never been as ubiquitous as they have been today. New technologies are invented on a daily basis, lead- ing to the altering of society on a macro level, and to the change of the everyday life on a micro level. Through the introduction of a new category of devices, wearable computers, we might experience a shift away from the traditional smartphone. This dissertation aims to examine the topic of smartglasses, especially Google Glass, and how these wearable devices are embedded into the everyday life and, consequently, into a society at large. The current research models which are concerned with mobile communication are only partly applicable due to the distinctive character of smartglasses. Furthermore, new legal and privacy challenges for smartglasses arise, which are not taken into account by ex- isting theories. Since the literature on smartglasses is close to non-existent, it is argued that new models need to be developed in order to fully understand the impact of smart- glasses on everyday life and society as a whole.
    [Show full text]
  • Factors Influencing Consumer Attitudes Towards M-Commerce AR Apps
    “I see myself, therefore I purchase”: factors influencing consumer attitudes towards m-commerce AR apps Mafalda Teles Roxo and Pedro Quelhas Brito Faculdade de Economia da Universidade do Porto and LIAAD-INESC TEC, Portugal [email protected]; [email protected] Abstract Mobile commerce (m-commerce) is starting to represent a significant share of e-commerce. The use of Augmented Reality (AR) by brands to convey information about their products - within the store and mainly as mobile apps – makes it possible for researchers and managers to understand consumer reactions. Although attitudes towards AR have been studied, the overall effect of distinct aspects such as the influence of others, the imagery, projection and perceived presence, has not been tackled as far as we know. Therefore, we conducted a study on 218 undergraduate students, using a pre-test post-test experimental design to address the following questions: (1) Do AR media characteristics affect consumer attitudes towards the medium in a mobile shopping context? Also, (2) Do the opinion and physical presence of people influence the attitude towards an m-commerce AR app? It found that AR characteristics such as projection and imagery positively influence attitudes towards m-commerce AR apps, whereas social variables did not have any influence. Keywords: MAR; m-commerce; consumer psychology; AR-consumer relationship. 1 Introduction Simultaneously with the increasing percentage of e-commerce sales resulting from mobile retail commerce (m-commerce), it is estimated that in the U.S., by 2020, 49.2% of online sales will be made using mobile apps (Statista, 2019b). Also, in 2018, approximately 57% of internet users purchased fashion-related products online (Statista, 2019a).
    [Show full text]
  • A Survey of Augmented Reality Technologies, Applications and Limitations
    The International Journal of Virtual Reality, 2010, 9(2):1-20 1 A Survey of Augmented Reality Technologies, Applications and Limitations D.W.F. van Krevelen and R. Poelman Systems Engineering Section, Delft University of Technology, Delft, The Netherlands1 Abstract— We are on the verge of ubiquitously adopting shino [107] (Fig. 1), AR is one part of the general area of Augmented Reality (AR) technologies to enhance our percep- mixed reality. Both virtual environments (or virtual reality) tion and help us see, hear, and feel our environments in new and and augmented virtuality, in which real objects are added to enriched ways. AR will support us in fields such as education, virtual ones, replace the surrounding environment by a vir- maintenance, design and reconnaissance, to name but a few. tual one. In contrast, AR provides local virtuality. When This paper describes the field of AR, including a brief definition considering not just artificiality but also user transportation, and development history, the enabling technologies and their characteristics. It surveys the state of the art by reviewing some Benford et al. [28] classify AR as separate from both VR and recent applications of AR technology as well as some known telepresence (see Fig. 2). Following [17, 19], an AR system: limitations regarding human factors in the use of AR systems combines real and virtual objects in a real environment; that developers will need to overcome. registers (aligns) real and virtual objects with each other; Index Terms— Augmented Reality, Technologies, Applica- and tions, Limitations. runs interactively, in three dimensions, and in real time.
    [Show full text]
  • Advanced Assistive Maintenance Based on Augmented Reality and 5G Networking
    sensors Article Advanced Assistive Maintenance Based on Augmented Reality and 5G Networking Sebastiano Verde 1 , Marco Marcon 2,* , Simone Milani 1 and Stefano Tubaro 2 1 Department of Information Engineering, University of Padova, 35131 Padua, Italy; [email protected] (S.V.); [email protected] (S.M.) 2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy; [email protected] * Correspondence: [email protected] Received: 13 November 2020; Accepted: 9 December 2020; Published: 14 December 2020 Abstract: Internet of Things (IoT) applications play a relevant role in today’s industry in sharing diagnostic data with off-site service teams, as well as in enabling reliable predictive maintenance systems. Several interventions scenarios, however, require the physical presence of a human operator: Augmented Reality (AR), together with a broad-band connection, represents a major opportunity to integrate diagnostic data with real-time in-situ acquisitions. Diagnostic information can be shared with remote specialists that are able to monitor and guide maintenance operations from a control room as if they were in place. Furthermore, integrating heterogeneous sensors with AR visualization displays could largely improve operators’ safety in complex and dangerous industrial plants. In this paper, we present a complete setup for a remote assistive maintenance intervention based on 5G networking and tested at a Vodafone Base Transceiver Station (BTS) within the Vodafone 5G Program. Technicians’ safety was improved by means of a lightweight AR Head-Mounted Display (HDM) equipped with a thermal camera and a depth sensor to foresee possible collisions with hot surfaces and dangerous objects, by leveraging the processing power of remote computing paired with the low latency of 5G connection.
    [Show full text]
  • A Two-Level Approach to Characterizing Human Activities from Wearable Sensor Data Sébastien Faye, Nicolas Louveton, Gabriela Gheorghe, Thomas Engel
    A Two-Level Approach to Characterizing Human Activities from Wearable Sensor Data Sébastien Faye, Nicolas Louveton, Gabriela Gheorghe, Thomas Engel To cite this version: Sébastien Faye, Nicolas Louveton, Gabriela Gheorghe, Thomas Engel. A Two-Level Approach to Characterizing Human Activities from Wearable Sensor Data. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, Innovative Information Science & Technology Research Group (ISYOU), 2016, 7 (3), pp.1-21. 10.22667/JOWUA.2016.09.31.001. hal-02306640 HAL Id: hal-02306640 https://hal.archives-ouvertes.fr/hal-02306640 Submitted on 6 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Two-Level Approach to Characterizing Human Activities from Wearable Sensor Data Sebastien´ Faye∗, Nicolas Louveton, Gabriela Gheorghe, and Thomas Engel Interdisciplinary Centre for Security, Reliability and Trust (SnT) University of Luxembourg 4 rue Alphonse Weicker, L-2721 Luxembourg, Luxembourg Abstract The rapid emergence of new technologies in recent decades has opened up a world of opportunities for a better understanding of human mobility and behavior. It is now possible to recognize human movements, physical activity and the environments in which they take place. And this can be done with high precision, thanks to miniature sensors integrated into our everyday devices.
    [Show full text]
  • The Future of Smart Glasses
    The Future of Smart Glasses Forward-looking areas of research Prepared for Synoptik Foundation May 2014 Brian Due, PhD. Nextwork A/S Contents Smart&Glasses&and&Digitised&Vision&.....................................................................................................&3! 1.0&The&basis&of&the&project&...............................................................................................................................&4! 1.1!Contents!of!the!project!................................................................................................................................................!4! 2.0&The&historic&development&of&smart&glasses&..........................................................................................&5! 3.0&The&technological&conditions&and&functionalities,&and&various&products&..................................&8! 4.0&The&likely&scope&of&smart&glasses&within&the&next&3H5&years&...........................................................&9! 5.0&Likely&applications&of&smart&glasses&.....................................................................................................&12! 5.1!Specific!work6related!applications!......................................................................................................................!12! 5.2!Specific!task6related!applications!........................................................................................................................!12! 5.3!Self6tracking!applications!........................................................................................................................................!13!
    [Show full text]
  • Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020
    From Technologies to Markets Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020 Sample © 2020 TABLE OF CONTENTS • Glossary and definition • Industry trends 154 • Table of contents o Established technologies players 156 • Report objectives o Emerging technologies players 158 • Report scope o Ecosystem analysis 160 • Report methodology o Noticeable collaborations and partnerships 170 • About the authors o Company profiles 174 • Companies cited in this report • Who should be interested by this report • Yole Group related reports • Technology trends 187 o Competition benchmarking 189 • Executive Summary 009 o Technology description 191 o Technology roadmaps 209 • Context 048 o Examples of products and future launches 225 • Market forecasts 063 • Outlooks 236 o End-systems 088 o AR headsets 104 • About Yole Group of Companies 238 o Automotive HUDs 110 o Others 127 • Market trends 077 o Focus on AR headsets 088 o A word about VR 104 o Focus on Auto HUDs 110 o Focus on 3D Displays 127 o Summary of other small SLM applications 139 Microdisplays - Market, Industry and Technology Trends 2020 | Sample | www.yole.fr | ©2020 2 ACRONYMS AMOLED: Active Matrix OLED HMD: Head mounted Device/Display PPI: Pixel Per Inch AR: Augmented Reality HOE: Holographic Optical Element PWM: Pulse Width Modulation BLU: Back Lighting Unit HRI: High Refractive Index QD: Quantum Dot CF LCOS: Color Filter LCOS HVS: Human Vision System RGB: Red-Green-Blue CG: Computer Generated IMU: Inertial measurement Unit RMLCM: Reactive Monomer
    [Show full text]
  • HONGXING JIANG Edward E
    HONGXING JIANG Edward E. Whitacre, Jr. Endowed Chair and Horn Professor Department of Electrical and Computer Engineering Center for Nanophotonics Texas Tech University [email protected] http://www.depts.ttu.edu/ece/Nanophotonics/ Appointments Edward E. Whitacre, Jr. Endowed Chair and Horn Professor, Electrical and Computer Engineering, Texas Tech University, 2013 – present (Horn Professorships, the highest honor Texas Tech University may bestow on members of its faculty: http://www.swco.ttu.edu/university_archive/uacollections11.html) Edward E. Whitacre, Jr. Endowed Chair and Professor, Electrical and Computer Engineering, Texas Tech University, 2008 - 2013 Co-Director, Center for Nanophotonics, Texas Tech University (Center formed in Sept. 2010) University Distinguished Professor, Kansas State University, 2004-2008 Professor of Physics, Kansas State University, 1998-2004 Director, Kansas Advanced Semiconductor Coordinated Laboratory, 1998-2008 Visiting Scientist, Sandia National Lab (Albuquerque, NM), 1/99-6/99 Associate Professor of Physics, Kansas State University, 1993-1998 Assistant Professor of Physics, Kansas State University, 1988-1993 Education B. S., Fudan University, Shanghai, China, 1977-1981 M. S. in Physics, Syracuse University, Syracuse, New York, 1981-1983 Ph. D. in Physics, Syracuse University, Syracuse, New York, 1983-1986 Hongxing Jiang Honors/Awards Elected Fellow of the American Association for the Advancement of Science, 2017 Elected Fellow of SPIE - the international society for optics and photonics, 2016 Elected Fellow of the Optical Society of America, 2014 Elected Fellow of the American Physical Society, 2010 Horn Distinguished Professor, Texas Tech University (TTU) University Distinguished Professor, Kansas State University, 2004-2008 Barnie E. Rushing, Jr. Faculty Distinguished Research Award, TTU, 2011 Named the Kan Tong Po Visiting Professor by the Royal Society of London, 2011 Edward E.
    [Show full text]