The JPEG XR Image Coding Standard

Total Page:16

File Type:pdf, Size:1020Kb

The JPEG XR Image Coding Standard [standards in a NUTSHELL] Frédéric Dufaux, Gary J. Sullivan, and Touradj Ebrahimi The JPEG XR Image Coding Standard PEG XR is the newest image cod- baseline JPEG, but raw encoding has imaging and other flexible image inter- ing standard from the JPEG com- very high storage capacity requirements, action usage scenarios. mittee. It primarily targets the is generally camera specific, and typically JPEG XR’s architecture reflects the representation of continuous-tone lacks interoperability and published for- new requirements specific to high/ still images such as photographic mat documentation. extended dynamic range functionalities. Jimages and achieves high image quality, JPEG XR (ITU-T T.832 | ISO/IEC The traditional baseline JPEG coding on par with JPEG 2000, while requiring 29199-2) is a new image coding system format uses a bit depth of eight for each low computational resources and storage primarily targeting the representation of the three red green blue (RGB) color capacity. Moreover, it effectively address- of continuous-tone still images such as channels, resulting in 256 values per es the needs of emerging high dynamic photographic images. It is designed to channel or 16,777,216 color values. range imagery applications by including address the limitations of today’s for- However, more demanding applications support for a wide range of image repre- mats and to simultaneously achieve may require a bit depth of 16, providing sentation formats. high image quality while limiting com- 65,536 representable values for each putational resource and storage capacity channel or over 2.8 * 1014 color values BACKGROUND requirements. Moreover, it aims at pro- for a three-channel RGB image. viding a new set of useful image coding Additional scenarios may necessitate MOTIVATION capabilities focused around high/extend- even greater bit depths and sample rep- Fast-evolving digital imaging technolo- ed dynamic range imagery. The “XR” resentation formats. Conversely, when gies have made digital photography a part of the JPEG XR name evokes the memory or processing power is at a tremendous success with consumers and intent of the design to apply to an premium, as few as five or six bits per professionals. At the heart of this success “extended range” of applications beyond channel may be used. To fulfill these story, the baseline JPEG image coding the capabilities of the original baseline needs and others for a very broad vari- standard (ITU-T T.81 | ISO/IEC 10918-1) JPEG standard. JPEG XR is based on the ety of applications, JPEG XR has been has played a key enabling role. However, “HD Photo” technology developed by designed to include support for a wide while it has become one of the most Microsoft to address the demands of range of image representation pixel for- widely used standards in the world, the consumer and professional digital pho- mats, even including support for the nearly 20-year-old JPEG technology is tography. It is expected that JPEG XR floating-point and “radiance” formats reaching its limits and has begun to hin- will help pioneer inventive and ground- sometimes used in the most demanding der the development of innovative fea- breaking products and services in the HDR applications. tures and performance enhancements in marketplace, and will bring widespread Besides this special focus on HDR digital photography. More recently, the added value for consumers and profes- imagery applications, other major JPEG JPEG committee produced the sionals alike. XR design objectives include better com- JPEG 2000 standard (ITU-T T.800 | ISO/ pression for enhanced quality, a unified IEC 15444-1), introducing a number of OBJECTIVES system for lossless and lossy compres- novelties and new functionalities. JPEG XR is a new compression format sion, cost-effective computational per- However, it has notably higher computa- supporting high dynamic range (HDR) formance, and new progressive decod- tional resource requirements and has formats for a new generation of digital ing features for more powerful image not made a notable impact in mobile and cameras and other imaging appli- access and manipulation. embedded environments such as the dig- cations to bring a new level of success- Finally, the JPEG committee has en- ital photography market. Serious pho- ful user experience. It is designed to couraged patent holders to allow JPEG tographers have been switching to using give cost and compression benefits for XR to be implementable free of royalty “raw” image encoding for many purposes consumer, “pro-sumer,” and profes- and license fees to foster widespread to avoid the technology limitations of sional digital photography. On top of adoption of the specification and help en- that, it also has core code stream fea- sure that it can be implemented by the Digital Object Identifier 10.1109/MSP.2009.934187 tures that support interactive Web widest number of organizations. 1053-5888/09/$26.00©2009IEEE IEEE SIGNAL PROCESSING MAGAZINE [195] NOVEMBER 2009 standards in a NUTSHELL continued [ ] ISSUING BODY, STRUCTURE OF final standard in both ITU-T (where it TARGET APPLICATIONS THE STANDARD AND SCHEDULE is known as ITU-T Recommendation JPEG XR is intended for broad use in a The Joint Photographic Experts Group T.832) in March 2009 and in ISO/IEC very wide range of digital image han- (JPEG) is a working group that produces (as ISO/IEC 29199-2) in June 2009. dling and digital photography applica- joint standards of three major internatio- ■ Part 3: Motion JPEG XR: This part tions. Key application target areas nal standardization organizations: specifies the use of JPEG XR encod- include the following: the International Organization for ing for stored sequences of moving ■ Robust and high-fidelity image Standardization (ISO), the International images with associated timing infor- acquisition technologies, such as a Electrotechnical Commission (IEC), and mation. The Motion JPEG XR file wide range of camera applications. the International Telecommunication format is based on the ISO Base Using JPEG XR, a more accurate rep- Union Telecom Sector (ITU-T). JPEG is Media File Format standard. It is cur- resentation of the full range of cap- universally recognized as the leading rently a committee draft (CD) in the tured image signal fidelity can be committee for compressed image for- ISO/IEC approval process, and it is retained, avoiding the bottleneck mats, and it is responsible for the popular scheduled to reach final approval sta- introduced by the older baseline JPEG, JBIG, JPEG-LS, and JPEG 2000 tus in 2010. JPEG standard and avoiding the high families of imaging standards. ■ Part 4: Conformance testing: This storage capacity and interoperability The JPEG committee began the stan- part specifies a set of tests designed to difficulties associated with camera dardization of JPEG XR technology in verify whether code streams, files, raw image formats. July 2007. The initial design proposal encoders, and decoders meet the nor- ■ High dynamic range imaging was submitted by Microsoft, based on its mative requirements specified in Part workflows, including editing soft- HD photo technology, while the subse- 2. The tests specified provide methods ware suites and high-capability quent development and future evolution to (nonexhaustively) verify whether image processing pipelines. The abil- of JPEG XR as a standard has been the encoders and decoders meet these ity of JPEG XR to retain an extended responsibility of the JPEG committee. requirements. This part has currently dynamic range with a high degree of Under the general title “Information reached the status of final committee signal fidelity can help prevent loss Technology – JPEG XR Image Coding draft (FCD) in the ISO/IEC approval of quality in end-to-end workflow System,” the JPEG XR image coding sys- process and is on target to reach final environments. tem suite of standards (ISO/IEC 29199) approval in 2010. ■ Computationally constrained sig- consists of the following current and ■ Part 5: Reference software: This nal processing environments, such planned parts: part provides reference software for as mobile and embedded applica- ■ Part 1: System architecture: This Part 2. The reference software can aid tions. As the computational de - part is a nonnormative technical adoption of standard by providing an mands associated with JPEG XR report (TR), describing an overview of example implementation that can be images are substantially lower than different parts of the specifications used as a basis for making encoder with other coding systems such as and providing some guidelines on best and decoder products and can be used JPEG 2000 that also provide high encoding and decoding practices. It is to test conformance and interopera- quality capability. now a working draft (WD), and it is bility as well as to demonstrate the The use of JPEG XR for HDR imag- expected to become a formally pub- capabilities of the associated standard. ing is illustrated in Figure 1, as well as lished TR in 2010. It includes both encoder and decoder a comparison with JPEG and “raw” ■ Part 2: Image coding specification: functionality. This part is now at FCD encoding. When using JPEG, tone This part specifies the JPEG XR image status and is scheduled to reach final mapping or other image adjustments coding format. It was approved as a approval in 2010. must properly be applied prior to encoding, as the encoding results in a substantial irreversible loss of infor- Tone JPEG JPEG Low-Quality mation. If image adjustments are Mapping Encoding Decoding Image Rendering applied to an image after encoding and decoding it using the baseline JPEG format, serious quality degradation Tone High-Quality HDR Source Raw Mapping Image Rendering will often be evident. Raw encoding effectively supports HDR, but at the cost of high storage requirements and JPEG XR JPEG XR Tone High-Quality interoperability problems. JPEG XR Encoding Decoding Mapping Image Rendering successfully overcomes these short- comings, enabling HDR while keeping [FIG1] JPEG XR for high dynamic range imaging.
Recommended publications
  • The Microsoft Office Open XML Formats New File Formats for “Office 12”
    The Microsoft Office Open XML Formats New File Formats for “Office 12” White Paper Published: June 2005 For the latest information, please see http://www.microsoft.com/office/wave12 Contents Introduction ...............................................................................................................................1 From .doc to .docx: a brief history of the Office file formats.................................................1 Benefits of the Microsoft Office Open XML Formats ................................................................2 Integration with Business Data .............................................................................................2 Openness and Transparency ...............................................................................................4 Robustness...........................................................................................................................7 Description of the Microsoft Office Open XML Format .............................................................9 Document Parts....................................................................................................................9 Microsoft Office Open XML Format specifications ...............................................................9 Compatibility with new file formats........................................................................................9 For more information ..............................................................................................................10
    [Show full text]
  • Why ODF?” - the Importance of Opendocument Format for Governments
    “Why ODF?” - The Importance of OpenDocument Format for Governments Documents are the life blood of modern governments and their citizens. Governments use documents to capture knowledge, store critical information, coordinate activities, measure results, and communicate across departments and with businesses and citizens. Increasingly documents are moving from paper to electronic form. To adapt to ever-changing technology and business processes, governments need assurance that they can access, retrieve and use critical records, now and in the future. OpenDocument Format (ODF) addresses these issues by standardizing file formats to give governments true control over their documents. Governments using applications that support ODF gain increased efficiencies, more flexibility and greater technology choice, leading to enhanced capability to communicate with and serve the public. ODF is the ISO Approved International Open Standard for File Formats ODF is the only open standard for office applications, and it is completely vendor neutral. Developed through a transparent, multi-vendor/multi-stakeholder process at OASIS (Organization for the Advancement of Structured Information Standards), it is an open, XML- based document file format for displaying, storing and editing office documents, such as spreadsheets, charts, and presentations. It is available for implementation and use free from any licensing, royalty payments, or other restrictions. In May 2006, it was approved unanimously as an International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) standard. Governments and Businesses are Embracing ODF The promotion and usage of ODF is growing rapidly, demonstrating the global need for control and choice in document applications. For example, many enlightened governments across the globe are making policy decisions to move to ODF.
    [Show full text]
  • MPEG-21 Overview
    MPEG-21 Overview Xin Wang Dept. Computer Science, University of Southern California Workshop on New Multimedia Technologies and Applications, Xi’An, China October 31, 2009 Agenda ● What is MPEG-21 ● MPEG-21 Standards ● Benefits ● An Example Page 2 Workshop on New Multimedia Technologies and Applications, Oct. 2009, Xin Wang MPEG Standards ● MPEG develops standards for digital representation of audio and visual information ● So far ● MPEG-1: low resolution video/stereo audio ● E.g., Video CD (VCD) and Personal music use (MP3) ● MPEG-2: digital television/multichannel audio ● E.g., Digital recording (DVD) ● MPEG-4: generic video and audio coding ● E.g., MP4, AVC (H.24) ● MPEG-7 : visual, audio and multimedia descriptors MPEG-21: multimedia framework ● MPEG-A: multimedia application format ● MPEG-B, -C, -D: systems, video and audio standards ● MPEG-M: Multimedia Extensible Middleware ● ● MPEG-V: virtual worlds MPEG-U: UI ● (29116): Supplemental Media Technologies ● ● (Much) more to come … Page 3 Workshop on New Multimedia Technologies and Applications, Oct. 2009, Xin Wang What is MPEG-21? ● An open framework for multimedia delivery and consumption ● History: conceived in 1999, first few parts ready early 2002, most parts done by now, some amendment and profiling works ongoing ● Purpose: enable all-electronic creation, trade, delivery, and consumption of digital multimedia content ● Goals: ● “Transparent” usage ● Interoperable systems ● Provides normative methods for: ● Content identification and description Rights management and protection ● Adaptation of content ● Processing on and for the various elements of the content ● ● Evaluation methods for determining the appropriateness of possible persistent association of information ● etc. Page 4 Workshop on New Multimedia Technologies and Applications, Oct.
    [Show full text]
  • Free Lossless Image Format
    FREE LOSSLESS IMAGE FORMAT Jon Sneyers and Pieter Wuille [email protected] [email protected] Cloudinary Blockstream ICIP 2016, September 26th DON’T WE HAVE ENOUGH IMAGE FORMATS ALREADY? • JPEG, PNG, GIF, WebP, JPEG 2000, JPEG XR, JPEG-LS, JBIG(2), APNG, MNG, BPG, TIFF, BMP, TGA, PCX, PBM/PGM/PPM, PAM, … • Obligatory XKCD comic: YES, BUT… • There are many kinds of images: photographs, medical images, diagrams, plots, maps, line art, paintings, comics, logos, game graphics, textures, rendered scenes, scanned documents, screenshots, … EVERYTHING SUCKS AT SOMETHING • None of the existing formats works well on all kinds of images. • JPEG / JP2 / JXR is great for photographs, but… • PNG / GIF is great for line art, but… • WebP: basically two totally different formats • Lossy WebP: somewhat better than (moz)JPEG • Lossless WebP: somewhat better than PNG • They are both .webp, but you still have to pick the format GOAL: ONE FORMAT THAT COMPRESSES ALL IMAGES WELL EXPERIMENTAL RESULTS Corpus Lossless formats JPEG* (bit depth) FLIF FLIF* WebP BPG PNG PNG* JP2* JXR JLS 100% 90% interlaced PNGs, we used OptiPNG [21]. For BPG we used [4] 8 1.002 1.000 1.234 1.318 1.480 2.108 1.253 1.676 1.242 1.054 0.302 the options -m 9 -e jctvc; for WebP we used -m 6 -q [4] 16 1.017 1.000 / / 1.414 1.502 1.012 2.011 1.111 / / 100. For the other formats we used default lossless options. [5] 8 1.032 1.000 1.099 1.163 1.429 1.664 1.097 1.248 1.500 1.017 0.302� [6] 8 1.003 1.000 1.040 1.081 1.282 1.441 1.074 1.168 1.225 0.980 0.263 Figure 4 shows the results; see [22] for more details.
    [Show full text]
  • 2018-07-11 and for Information to the Iso Member Bodies and to the Tmb Members
    Sergio Mujica Secretary-General TO THE CHAIRS AND SECRETARIES OF ISO COMMITTEES 2018-07-11 AND FOR INFORMATION TO THE ISO MEMBER BODIES AND TO THE TMB MEMBERS ISO/IEC/ITU coordination – New work items Dear Sir or Madam, Please find attached the lists of IEC, ITU and ISO new work items issued in June 2018. If you wish more information about IEC technical committees and subcommittees, please access: http://www.iec.ch/. Click on the last option to the right: Advanced Search and then click on: Documents / Projects / Work Programme. In case of need, a copy of an actual IEC new work item may be obtained by contacting [email protected]. Please note for your information that in the annexed table from IEC the "document reference" 22F/188/NP means a new work item from IEC Committee 22, Subcommittee F. If you wish to look at the ISO new work items, please access: http://isotc.iso.org/pp/. On the ISO Project Portal you can find all information about the ISO projects, by committee, document number or project ID, or choose the option "Stages search" and select "Search" to obtain the annexed list of ISO new work items. Yours sincerely, Sergio Mujica Secretary-General Enclosures ISO New work items 1 of 8 2018-07-11 Alert Detailed alert Timeframe Reference Document title Developing committee VA Registration dCurrent stage Stage date Guidance for multiple organizations implementing a common Warning Warning – NP decision SDT 36 ISO/NP 50009 (ISO50001) EnMS ISO/TC 301 - - 10.60 2018-06-10 Warning Warning – NP decision SDT 36 ISO/NP 31050 Guidance for managing
    [Show full text]
  • Quadtree Based JBIG Compression
    Quadtree Based JBIG Compression B. Fowler R. Arps A. El Gamal D. Yang ISL, Stanford University, Stanford, CA 94305-4055 ffowler,arps,abbas,[email protected] Abstract A JBIG compliant, quadtree based, lossless image compression algorithm is describ ed. In terms of the numb er of arithmetic co ding op erations required to co de an image, this algorithm is signi cantly faster than previous JBIG algorithm variations. Based on this criterion, our algorithm achieves an average sp eed increase of more than 9 times with only a 5 decrease in compression when tested on the eight CCITT bi-level test images and compared against the basic non-progressive JBIG algorithm. The fastest JBIG variation that we know of, using \PRES" resolution reduction and progressive buildup, achieved an average sp eed increase of less than 6 times with a 7 decrease in compression, under the same conditions. 1 Intro duction In facsimile applications it is desirable to integrate a bilevel image sensor with loss- less compression on the same chip. Suchintegration would lower p ower consumption, improve reliability, and reduce system cost. To reap these b ene ts, however, the se- lection of the compression algorithm must takeinto consideration the implementation tradeo s intro duced byintegration. On the one hand, integration enhances the p os- sibility of parallelism which, if prop erly exploited, can sp eed up compression. On the other hand, the compression circuitry cannot b e to o complex b ecause of limitations on the available chip area. Moreover, most of the chip area on a bilevel image sensor must b e o ccupied by photo detectors, leaving only the edges for digital logic.
    [Show full text]
  • (L3) - Audio/Picture Coding
    Committee: (L3) - Audio/Picture Coding National Designation Title (Click here to purchase standards) ISO/IEC Document L3 INCITS/ISO/IEC 9281-1:1990:[R2013] Information technology - Picture Coding Methods - Part 1: Identification IS 9281-1:1990 INCITS/ISO/IEC 9281-2:1990:[R2013] Information technology - Picture Coding Methods - Part 2: Procedure for Registration IS 9281-2:1990 INCITS/ISO/IEC 9282-1:1988:[R2013] Information technology - Coded Representation of Computer Graphics Images - Part IS 9282-1:1988 1: Encoding principles for picture representation in a 7-bit or 8-bit environment :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 7: IS 13522-7:2001 Interoperability and conformance testing for ISO/IEC 13522-5 (MHEG-7) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 5: IS 13522-5:1997 Support for Base-Level Interactive Applications (MHEG-5) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 3: IS 13522-3:1997 MHEG script interchange representation (MHEG-3) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 6: IS 13522-6:1998 Support for enhanced interactive applications (MHEG-6) :[] Information technology - Coding of Multimedia and Hypermedia Information - Part 8: IS 13522-8:2001 XML notation for ISO/IEC 13522-5 (MHEG-8) Created: 11/16/2014 Page 1 of 44 Committee: (L3) - Audio/Picture Coding National Designation Title (Click here to purchase standards) ISO/IEC Document :[] Information technology - Coding
    [Show full text]
  • OASIS CGM Open Webcgm V2.1
    WebCGM Version 2.1 OASIS Standard 01 March 2010 Specification URIs: This Version: XHTML multi-file: http://docs.oasis-open.org/webcgm/v2.1/os/webcgm-v2.1-index.html (AUTHORITATIVE) PDF: http://docs.oasis-open.org/webcgm/v2.1/os/webcgm-v2.1.pdf XHTML ZIP archive: http://docs.oasis-open.org/webcgm/v2.1/os/webcgm-v2.1.zip Previous Version: XHTML multi-file: http://docs.oasis-open.org/webcgm/v2.1/cs02/webcgm-v2.1-index.html (AUTHORITATIVE) PDF: http://docs.oasis-open.org/webcgm/v2.1/cs02/webcgm-v2.1.pdf XHTML ZIP archive: http://docs.oasis-open.org/webcgm/v2.1/cs02/webcgm-v2.1.zip Latest Version: XHTML multi-file: http://docs.oasis-open.org/webcgm/v2.1/latest/webcgm-v2.1-index.html PDF: http://docs.oasis-open.org/webcgm/v2.1/latest/webcgm-v2.1.pdf XHTML ZIP archive: http://docs.oasis-open.org/webcgm/v2.1/latest/webcgm-v2.1.zip Declared XML namespaces: http://www.cgmopen.org/schema/webcgm/ System Identifier: http://docs.oasis-open.org/webcgm/v2.1/webcgm21.dtd Technical Committee: OASIS CGM Open WebCGM TC Chair(s): Stuart Galt, The Boeing Company Editor(s): Benoit Bezaire, PTC Lofton Henderson, Individual Related Work: This specification updates: WebCGM 2.0 OASIS Standard (and W3C Recommendation) This specification, when completed, will be identical in technical content to: WebCGM 2.1 W3C Recommendation, available at http://www.w3.org/TR/webcgm21/. Abstract: Computer Graphics Metafile (CGM) is an ISO standard, defined by ISO/IEC 8632:1999, for the interchange of 2D vector and mixed vector/raster graphics.
    [Show full text]
  • Use Adobe Reader to Read PDF Documents to You
    HOW TO MAKE YOUR COMPUTER READ DOCUMENTS TO YOU Use Adobe Reader to Read PDF Documents to You Adobe Reader is the default choice for many people for viewing PDF files. While it used to be a lot more bloated in the past, it’s improved — although you do need to disable the browser plugin it will install. One of the really nice features is that it can read documents to you. If you don’t already have it installed, head to the Adobe Reader download page and make sure to uncheck their “Free Offer” before clicking on the Install Now button. Note: Adobe Reader’s own settings menu no longer has any option for disabling its browser integration, so you’ll need to disable the Adobe Reader plugin in the browsers you use. Follow these steps for disabling plug-ins in your web browser of choice, disabling the “Adobe Acrobat” plug-in. Once you’ve installed the application, and follow the installation process to completion and then open up a PDF file that you’d like the computer to read to you. Once it is open click on the “View” drop down menu, move your mouse over the “Read Out Loud” option then click on “Activate Read Out Loud.” Alternatively, you can click “Ctrl,” “Shift,” and “Y” (Ctrl+Shift+Y) on your keyboard to activate the feature. Once the feature is activated, you can click on a single paragraph to make windows read it back to you. Another option would be to navigate to the “View” menu, then “Read Out Loud” and select an option that fits your needs as shown in the Image below.
    [Show full text]
  • MPEG Compression Is Based on Processing 8 X 8 Pixel Blocks
    MPEG-1 & MPEG-2 Compression 6th of March, 2002, Mauri Kangas Contents: • MPEG Background • MPEG-1 Standard (shortly) • MPEG-2 Standard (shortly) • MPEG-1 and MPEG-2 Differencies • MPEG Encoding and Decoding • Colour sub-sampling • Motion Compensation • Slices, macroblocks, blocks, etc. • DCT • MPEG-2 bit stream syntax • MPEG-2 • Supported Features • Levels • Profiles • DVB Systems 1 © Mauri Kangas 2002 MPEG-1,2.PPT/ 24.02.2002 / Mauri Kangas MPEG Background • MPEG = Motion Picture Expert Group • ISO/IEC JTC1/SC29 • WG11 Motion Picture Experts Group (MPEG) • WG10 Joint Photographic Experts Group (JPEG) • WG7 Computer Graphics Experts Group (CGEG) • WG9 Joint Bi-level Image coding experts Group (JBIG) • WG12 Multimedia and Hypermedia information coding Experts Group (MHEG) • MPEG-1,2 Standardization 1988- • Requirement • System • Video • Audio • Implementation • Testing • Latest MPEG Standardization: MPEG-4, MPEG-7, MPEG-21 2 © Mauri Kangas 2002 MPEG-1,2.PPT/ 24.02.2002 / Mauri Kangas MPEG-1 Standard ISO/IEC 11172-2 (1991) "Coding of moving pictures and associated audio for digital storage media" Video • optimized for bitrates around 1.5 Mbit/s • originally optimized for SIF picture format, but not limited to it: • 352x240 pixels a 30 frames/sec [ NTSC based ] • 352x288 pixels at 25 frames/sec [ PAL based ] • progressive frames only - no direct provision for interlaced video applications, such as broadcast television Audio • joint stereo audio coding at 192 kbit/s (layer 2) System • mainly designed for error-free digital storage media •
    [Show full text]
  • Iso/Iec 14496-14
    INTERNATIONAL ISO/IEC STANDARD 14496-14 First edition 2003-11-15 Information technology — Coding of audio-visual objects — Part 14: MP4 file format Technologies de l'information — Codage des objets audiovisuels — Partie 14: Format de fichier MP4 Reference number ISO/IEC 14496-14:2003(E) Licensed to WIMOBILIS DIGITAL TECHNOLOGIES/MARCOS MANENTE ISO Store order #:850777/Downloaded:2007-09-27 Single user licence only, copying and networking prohibited © ISO/IEC 2003 ISO/IEC 14496-14:2003(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. © ISO/IEC 2003 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.
    [Show full text]
  • CISC 3635 [36] Multimedia Coding and Compression
    Brooklyn College Department of Computer and Information Sciences CISC 3635 [36] Multimedia Coding and Compression 3 hours lecture; 3 credits Media types and their representation. Multimedia coding and compression. Lossless data compression. Lossy data compression. Compression standards: text, audio, image, fax, and video. Course Outline: 1. Media Types and Their Representations (Week 1-2) a. Text b. Analog and Digital Audio c. Digitization of Sound d. Musical Instrument Digital Interface (MIDI) e. Audio Coding: Pulse Code Modulation (PCM) f. Graphics and Images Data Representation g. Image File Formats: GIF, JPEG, PNG, TIFF, BMP, etc. h. Color Science and Models i. Fax j. Video Concepts k. Video Signals: Component, Composite, S-Video l. Analog and Digital Video: NTSC, PAL, SECAM, HDTV 2. Lossless Compression Algorithms (Week 3-4) a. Basics of Information Theory b. Run-Length Coding c. Variable Length Coding: Huffman Coding d. Basic Fax Compression e. Dictionary Based Coding: LZW Compression f. Arithmetic Coding g. Lossless Image Compression 3. Lossy Compression Algorithms (Week 5-6) a. Distortion Measures b. Quantization c. Transform Coding d. Wavelet Based Coding e. Embedded Zerotree of Wavelet (EZW) Coefficients 4. Basic Audio Compression (Week 7-8) a. Differential Coders: DPCM, ADPCM, DM b. Vocoders c. Linear Predictive Coding (LPC) d. CELP e. Audio Standards: G.711, G.726, G.723, G.728. G.729, etc. 5. Image Compression Standards (Week 9) a. The JPEG Standard b. JPEG 2000 c. JPEG-LS d. Bilevel Image Compression Standards: JBIG, JBIG2 6. Basic Video Compression (Week 10) a. Video Compression Based on Motion Compensation b. Search for Motion Vectors c.
    [Show full text]