Disease Incubation Period Mode of Transmission

Total Page:16

File Type:pdf, Size:1020Kb

Disease Incubation Period Mode of Transmission Nevada Division of Public and Behavioral Health, Office of Public Health Informatics and Epidemiology 4150 Technology Way, Carson City, Nevada 89706 Main: (775) 684-5911 After Hours, Emergency Only: (775) 400-0333 Email: [email protected] Website: http://health.nv.gov/Epidemiology.htm DISEASE INCUBATION MODE OF PERIOD OF CONTROL PUBLIC HEALTH PERIOD TRANSMISSION COMMUNICABILITY MEASURES RESPONSE AIDS/HIV* HIV Infection: 14 Person-to-person by Persons with HIV should be considered Education of those who are infected, and Patient interview by Public Health days (1) sexual contact, infectious for life. Risk of transmission those who are at risk of becoming infected (PH). Education and counseling in AIDS (Stage 3 HIV (2) exposure to blood, may be higher in first months after about how to prevent transmission of HIV conjunction with HIV testing. Referral Infection): 7 to 10 years (3) mother to infant during pregnancy or at time infection. (i.e., safer sexual practices, stop injecting of sexual and needle sharing partners (when HIV infection of birth, or via breast feeding. drug use and needle sharing, etc). for testing, counseling, and untreated) treatment. Campylobacter* 1-10 days, average 2-5 days By ingestion of contaminated food – particularly Throughout course of disease; usually Always wash hands thoroughly after bowel Education on prevention of spread, undercooked poultry, water, or unpasteurized several days to up to seven weeks. movements or diapering, before eating and including avoiding cross milk; from contact with infected animals or preparing food. Exclude symptomatic contamination of foods by washing persons by fecal-oral route. persons from food-handling and child care cutting boards and other food until diarrhea had ceased. Avoid preparation items between raw unpasteurized milk and unpasteurized dairy poultry or meats and other food products. Thoroughly cook all meat, products such as vegetables. especially poultry. Chickenpox: Varicella 10-21 days, average 14-16 Person-to-person by droplet or airborne spread As long as 5, but usually 1-2 days Exclude from school or child care and avoid Recommend vaccination for all days of respiratory secretions; direct contact with before onset of rash until all blisters contact with susceptible persons until appropriate susceptible persons. drainage from blisters or indirectly through have crusted. blisters are crusted. articles contaminated by secretions from Exposed susceptible people eligible for blisters. immunization should receive vaccine within 3-5 days to protect from their recent exposure. Chlamydia* 1-3 weeks; often Contact with infected person through sexual Duration of infection. Reinfection is Examine and treat all persons with sexual For higher priority cases, patient asymptomatic, especially in activity; neonatal infections by contact with common if partners are not treated in contact that occurred within the last 60 days, interview with PH and notification of females birth canal. a timely manner. Without treatment, regardless of their test results. Annual sexual contacts for referral to medical infection may persist indefinitely, screening for sexually active females aged < care. Education on abstinence, leading to infections of the upper 25 or at high risk. monogamy and use of barrier reproductive tract and other serious, protection such as latex condoms. long-term complications in both females and males. Conjunctivitis, with a 24-72 hours Contact with discharges from the eyes, nose, or During the course of active infection. Persons should not attend school or child Education of family and classmates fever and behavioral throat of infected people, from contaminated care during the acute stage. on prevention of spread by practicing change, purulence or fingers, clothing, and other articles. good hand washing and not sharing hemorrhage towels or other items soiled with discharge from eyes or nose. Enterohemorrhagic 2-10 days, average 3-4 days Ingestion of contaminated foods, directly from Duration of excretion of the pathogen Exclude from high-risk settings (food- Patient interview and contact Esherichia coli Includes person-to-person by fecal-oral route, or contact in the stool, which is usually 1 week or handling, patient care, child care) until 2 investigation by PH. If high-risk E. coli O157:H7 and with infected animals. Linked to eating under- less in adults but 3 weeks in 1 out of 3 negative stool cultures taken 24 hours of setting involved, contact the Nevada other Shinga toxin cooked, contaminated ground beef, children. more apart and no sooner than 48 hours Division of Public and Behavioral producing E. coli* unpasteurized milk and juices. following discontinuation of antibiotics. Health (DPBH). Education on Symptomatic contacts should be excluded importance of hand washing and from high-risk settings until 2 negative stool proper disposal of feces and diapers. cultures are obtained. Fifth disease, 4-20 days Contact with infected Greatest before onset of rash. Probably Frequent hand washing. Cover nose and Student, teacher, and family Human parvovirus respiratory secretions; also not communicable after onset of rash. mouth with disposable tissue when coughing education about hand washing and B19 infection, from mother to fetus; and People with aplastic crisis are and sneezing and proper disposal of tissue. standard precautions. Susceptible Erythema by transfusion of blood and communicable up to 1 week after Or cough and sneeze into your upper arm. women who are pregnant or who infectiosum blood products. onset of symptoms. Do not share eating utensils. Exclusion is not might become pregnant, and have necessary. continued close contact to people with parvovirus B19 infection should consult with their healthcare provider. Giardia* 3-25 days or longer, Person-to-person spread b fecal-oral route, Entire period of infection, often Exclude symptomatic persons from food Education on prevention of spread to average 7-10 days especially in child care centers. Rarely by months. handling and child care until effective families, teachers and classmates. ingestion of contaminated food or water, or by treatment has been initiated and diarrhea Surveillance for additional cases. contact with infected animals. has ceased. Good hand washing by staff and child after bowel movements or diapering, and before eating or preparing food. Gonorrhea* 2-5 days, sometimes Contact with infected person through sexual Duration of infection. Re- infection is Examine and treat all persons with sexual For higher priority cases, patient longer; often asymptomatic activity; neonatal infections by contact with common if partners are not treated in contact that occurred within the last 60 days, interview by PH and notification of especially in females birth canal. a timely manner. Without treatment, regardless of their test results. Annual sexual contacts for referral to medical infection may persist indefinitely, screening for sexually active women age <25 care. Education on abstinence, leading to infections of the upper or at high risk. monogamy and use of barrier reproductive tract and other serious, protection such as latex condoms. long-term complications in both females and males. Hand, foot, and 3-5 days Direct contact with nose and throat discharges During acute stage of illness, perhaps Prompt hand washing after handling Education of families, teachers, and mouth disease: and feces of infected people and by droplet longer; viruses persist in stool for discharges, feces, and soiled articles. Wash classmates about proper hand Coxsackievirus spread. several weeks. or discard articles soiled with nose and washing. (Not related to throat discharges. Cover nose and mouth animal foot and mouth with disposable tissue when coughing and disease) sneezing and proper disposal of tissue. Or cough and sneeze into your upper arm. Exclusion may not prevent additional cases as virus is excreted after symptoms are gone. Hepatitis A** 15-50 days, average 28-30 Person-to-person spread by fecal-oral route; Approximately 2 weeks before and 1 Hand washing. Exclude from high-risk Immediate patient interview and days ingestion of contaminated food or water, or week after onset of jaundice. situations (food handling, child care, and assessment by PH. Contact sharing of drug paraphernalia. patient care) for 1 week after onset of investigation. Counseling. If case is in jaundice. Give household, child care and high-risk situation, contact DPBH other intimate contacts immune globulin (IG) immediately. Recommend 0.02ml/kg body weight and or vaccine within vaccination to appropriate 14 days of last exposure. susceptible persons. Hepatitis B* 45-180 days, average 60-90 Sexual, IV drug use, close household contact, Blood and other body fluids are Follow Standard and Blood Borne Pathogen Patient interview and assessment by days perinatal mother-to-infant. Rarely occupational infectious during late incubation Precautions. Cover open cuts and sores. PH. Contact investigation. Counseling. percutaneous or mucus membrane exposure to period, clinical disease, and for variable Wear gloves when in contact with blood or Education on prevention of further blood, saliva or semen period after recovery (as long as HBsAg body fluids. Immediate cleanup of objects spread and hepatitis B. Screen all positive). Chronic carriers are contaminated with blood or body fluid. For women during each pregnancy. infectious for life. blood or needle exposure to known HBsAg Recommend vaccination to positive persons, and not vaccinated,
Recommended publications
  • REALM Research Briefing: Vaccines, Variants, and Venitlation
    Briefing: Vaccines, Variants, and Ventilation A Briefing on Recent Scientific Literature Focused on SARS-CoV-2 Vaccines and Variants, Plus the Effects of Ventilation on Virus Spread Dates of Search: 01 January 2021 through 05 July 2021 Published: 22 July 2021 This document synthesizes various studies and data; however, the scientific understanding regarding COVID-19 is continuously evolving. This material is being provided for informational purposes only, and readers are encouraged to review federal, state, tribal, territorial, and local guidance. The authors, sponsors, and researchers are not liable for any damages resulting from use, misuse, or reliance upon this information, or any errors or omissions herein. INTRODUCTION Purpose of This Briefing • Access to the latest scientific research is critical as libraries, archives, and museums (LAMs) work to sustain modified operations during the continuing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. • As an emerging event, the SARS-CoV-2 pandemic continually presents new challenges and scientific questions. At present, SARS-CoV-2 vaccines and variants in the US are two critical areas of focus. The effects of ventilation-based interventions on the spread of SARS-CoV-2 are also an interest area for LAMs. This briefing provides key information and results from the latest scientific literature to help inform LAMs making decisions related to these topics. How to Use This Briefing: This briefing is intended to provide timely information about SARS-CoV-2 vaccines, variants, and ventilation to LAMs and their stakeholders. Due to the evolving nature of scientific research on these topics, the information provided here is not intended to be comprehensive or final.
    [Show full text]
  • STI Screening Timetable
    Patient Education Information from University Health Center’s STI Screening Clinic Page 1 of 1 STI Screening Timetable How long until STI (sexually transmitted infection) screening tests turn positive? How long until STI symptoms might show up? The time between infection and a positive test, or between infection and symptoms, is variable and depends on many factors, including the behavior of the infectious agent, how and where the body is infected, and the state of a person’s immune system and personal health. Many STIs don’t have any symptoms. The incubation period times listed in the chart below are averages only. If you have further questions or concerns, you can schedule an appointment with a clinician at 541-346-2770. STI screening test Window period (time from exposure until Incubation period (time between exposure and screening test turns positive) when symptoms appear) Chlamydia (urine specimen or swab of 1 week most of the time Often no symptoms vagina, rectum, throat) 2 weeks catches almost all 1-3 weeks on average Gonorrhea (urine specimen on swab of 1 week most of the time Often no symptoms, especially vaginal vagina, rectum, throat) 2 weeks catches almost all infections usually within 2-8 days but can be up to 2 weeks Syphilis (blood test, RPR) 1 month catches most Often symptoms too mild to notice 3 months catches almost all 10-90 days average 21 days HIV (oral cheek swab) 1 month catches most Sometimes mild body aches and fever within 1-2 3 months catches almost all weeks then can be months to years HIV (blood test, antigen/antibody
    [Show full text]
  • Incubation Period and Other Epidemiological
    Journal of Clinical Medicine Article Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data 1, 1, 1 1 Natalie M. Linton y , Tetsuro Kobayashi y, Yichi Yang , Katsuma Hayashi , Andrei R. Akhmetzhanov 1 , Sung-mok Jung 1 , Baoyin Yuan 1, Ryo Kinoshita 1 and Hiroshi Nishiura 1,2,* 1 Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan; [email protected] (N.M.L.); [email protected] (T.K.); [email protected] (Y.Y.); katsuma5miff[email protected] (K.H.); [email protected] (A.R.A.); [email protected] (S.-m.J.); [email protected] (B.Y.); [email protected] (R.K.) 2 Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan * Correspondence: [email protected]; Tel.: +81-11-706-5066 These authors contributed equally to this work. y Received: 25 January 2020; Accepted: 10 February 2020; Published: 17 February 2020 Abstract: The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the incubation period and other time intervals that govern the epidemiological dynamics of COVID-19 infections. Our results show that the incubation period falls within the range of 2–14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution.
    [Show full text]
  • Period of Presymptomatic Transmission
    PERIOD OF PRESYMPTOMATIC TRANSMISSION RAG 17/09/2020 QUESTION Transmission of SARS-CoV-2 before onset of symptoms in the index is known, and this is supported by data on viral shedding. Based on the assumption that the viral load in the upper respiratory tract is highest one day before and the days immediately after onset of symptoms, current procedures for contact tracing (high and low risk contacts), go back two days before start of symptoms in the index (or sampling date in asymptomatic persons) (1), (2), (3). This is in line with the ECDC and WHO guidelines to consider all potential contacts of a case starting 48h before symptom onset (4) (5). The question was asked whether this period should be extended. BACKGROUND Viral load According to ECDC and WHO, viral RNA can be detected from one to three days before the onset of symptoms (6,7). The highest viral loads, as measured by RT-PCR, are observed around the day of symptom onset, followed by a gradual decline over time (1,3,8–10) . Period of transmission A much-cited study by He and colleagues and published in Nature used publicly available data from 77 transmission pairs to model infectiousness, using the reported serial interval (the period between symptom onset in infector-infectee) and combining this with the median incubation period. They conclude that infectiousness peaks around symptom onset. The initial article stated that the infectious period started at 2.3 days before symptom onset. However, a Swiss team spotted an error in their code and the authors issued a correction, stating the infectious period can start from as early as 12.3 days before symptom onset (11).
    [Show full text]
  • A Predictive Modelling Framework for COVID-19 Transmission to Inform the Management of Mass Events
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.13.21256857; this version posted May 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . A Predictive Modelling Framework for COVID-19 Transmission to Inform the Management of Mass Events Claire Donnat Freddy Bunbury Department of Statistics Department of Plant Biology University of Chicago, Chicago, USA Carnegie Institution for Science, Stanford, USA [email protected] [email protected] Jack Kreindler Filippos T. Filippidis School of Public Health School of Public Health Imperial College, London, UK Imperial College, London, UK [email protected] [email protected] Austen El-Osta Tõnu Esko Matthew Harris School of Public Health Institute of Genomics School of Public Health Imperial College, London, UK University of Tartu, Tartu, Estonia Imperial College, London, UK [email protected] [email protected] [email protected] Abstract Modelling COVID-19 transmission at live events and public gatherings is essential to evaluate and control the probability of subsequent outbreaks. Model estimates can be used to inform event organizers about the possibility of super-spreading and the predicted efficacy of safety protocols, as well as to communicate to participants their personalised risk so that they may choose whether to attend. Yet, despite the fast-growing body of literature on COVID transmission dynamics, current risk models either neglect contextual information on vaccination rates or disease prevalence or do not attempt to quantitatively model transmission, thus limiting their potential to provide insightful estimates.
    [Show full text]
  • From the COCCI Syndemic to the COVID-19 Pandemic
    Scholars Insight Publishers Journal of Epidemiology and Global Health Research Research Article Open Access From the COCCI Syndemic to the COVID-19 Pandemic: A Cautionary Tale Interaction of Metabolic Syndrome, Obesity, Particulate Matter (PM), SARS-CoV-2 and the inflammatory response Clearfield M*, Gayer G, Wagner A, Stevenson T, Shubrook J and Gugliucci A Touro University College of Osteopathic Medicine, California, USA Corresponding Author: Dr. Clearfield M, Touro University Abstract College of Osteopathic Medicine, California, USA. A narrative review of the literature was conducted to determine E-mail id: [email protected] associations between cardiovascular (CV) risk factors associated with the COCCI syndemic (Cardiovascular disease as a result of the Received Date: March 15, 2021; interactions between obesity, climate change and inflammation) and Accepted Date: May 19, 2021; COVID-19. Published Date: May 21, 2021; The COCCI syndemic consists of two health conditions Publisher: Scholars Insight Online Publishers (dysmetabolic obesity and air pollution) that interact via biologic Citation: Clearfield M*, Gayer G, Wagner A, Stevenson T, pathways admixed with social, economic and ecologic drivers Shubrook J and Gugliucci A “From the COCCI Syndemic to augmenting adverse clinical outcomes in excess of either of these the COVID-19 Pandemic: A Cautionary Tale Interaction of health conditions individually. Metabolic Syndrome, Obesity, Particulate Matter (PM), SARS- The comorbidities noted with COVID-19 are in large part aligned CoV-2 and the inflammatory response”. J Epidemiol Glob Health with those traditional risk factors associated with CVD. In addition, Res. 2021; 1:102 when the traditional CV comorbidities are combined with the Copyright: ©2021 Clearfield M.
    [Show full text]
  • Measles: Chapter 7.1 Chapter 7: Measles Paul A
    VPD Surveillance Manual 7 Measles: Chapter 7.1 Chapter 7: Measles Paul A. Gastanaduy, MD, MPH; Susan B. Redd; Nakia S. Clemmons, MPH; Adria D. Lee, MSPH; Carole J. Hickman, PhD; Paul A. Rota, PhD; Manisha Patel, MD, MS I. Disease Description Measles is an acute viral illness caused by a virus in the family paramyxovirus, genus Morbillivirus. Measles is characterized by a prodrome of fever (as high as 105°F) and malaise, cough, coryza, and conjunctivitis, followed by a maculopapular rash.1 The rash spreads from head to trunk to lower extremities. Measles is usually a mild or moderately severe illness. However, measles can result in complications such as pneumonia, encephalitis, and death. Approximately one case of encephalitis2 and two to three deaths may occur for every 1,000 reported measles cases.3 One rare long-term sequelae of measles virus infection is subacute sclerosing panencephalitis (SSPE), a fatal disease of the central nervous system that generally develops 7–10 years after infection. Among persons who contracted measles during the resurgence in the United States (U.S.) in 1989–1991, the risk of SSPE was estimated to be 7–11 cases/100,000 cases of measles.4 The risk of developing SSPE may be higher when measles occurs prior to the second year of life.4 The average incubation period for measles is 11–12 days,5 and the average interval between exposure and rash onset is 14 days, with a range of 7–21 days.1, 6 Persons with measles are usually considered infectious from four days before until four days after onset of rash with the rash onset being considered as day zero.
    [Show full text]
  • Possible Modes of Transmission of Novel Coronavirus SARS-Cov-2
    Acta Biomed 2020; Vol. 91, N. 3: e2020036 DOI: 10.23750/abm.v91i3.10039 © Mattioli 1885 Reviews / Focus on Possible modes of transmission of Novel Coronavirus SARS-CoV-2: a review Richa Mukhra1, Kewal Krishan1, Tanuj Kanchan2 1 Department of Anthropology (UGC Centre of Advanced Study), Panjab University, Sector-14, Chandigarh, India 2 Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India. Abstract: Introduction: The widespread outbreak of the novel SARS-CoV-2 has raised numerous questions about the origin and transmission of the virus. Knowledge about the mode of transmission as well as assess- ing the effectiveness of the preventive measures would aid in containing the outbreak of the coronavirus. Presently, respiratory droplets, physical contact and aerosols/air-borne have been reported as the modes of SARS-CoV-2 transmission of the virus. Besides, some of the other possible modes of transmission are being explored by the researchers, with some studies suggesting the viral spread through fecal-oral, conjunctival secretions, flatulence (farts), sexual and vertical transmission from mother to the fetus, and through asymp- tomatic carriers, etc. Aim: The primary objective was to review the present understanding and knowledge about the transmission of SARS-CoV-2 and also to suggest recommendations in containing and preventing the novel coronavirus. Methods: A review of possible modes of transmission of the novel SARS-CoV-2 was conducted based on the reports and articles available in PubMed and ScienceDirect.com that were searched using keywords, ‘transmission’, ‘modes of transmission’, ‘SARS-CoV-2’, ‘novel coronavirus’, and ‘COVID-19’. Articles refer- ring to air-borne, conjunctiva, fecal-oral, maternal-fetal, flatulence (farts), and breast milk transmission were included, while the remaining were excluded.
    [Show full text]
  • Superspreading of Airborne Pathogens in a Heterogeneous World Julius B
    www.nature.com/scientificreports OPEN Superspreading of airborne pathogens in a heterogeneous world Julius B. Kirkegaard*, Joachim Mathiesen & Kim Sneppen Epidemics are regularly associated with reports of superspreading: single individuals infecting many others. How do we determine if such events are due to people inherently being biological superspreaders or simply due to random chance? We present an analytically solvable model for airborne diseases which reveal the spreading statistics of epidemics in socio-spatial heterogeneous spaces and provide a baseline to which data may be compared. In contrast to classical SIR models, we explicitly model social events where airborne pathogen transmission allows a single individual to infect many simultaneously, a key feature that generates distinctive output statistics. We fnd that diseases that have a short duration of high infectiousness can give extreme statistics such as 20% infecting more than 80%, depending on the socio-spatial heterogeneity. Quantifying this by a distribution over sizes of social gatherings, tracking data of social proximity for university students suggest that this can be a approximated by a power law. Finally, we study mitigation eforts applied to our model. We fnd that the efect of banning large gatherings works equally well for diseases with any duration of infectiousness, but depends strongly on socio-spatial heterogeneity. Te statistics of an on-going epidemic depend on a number of factors. Most directly: How easily is it transmit- ted? And how long are individuals afected and infectious? Scientifc papers and news paper articles alike tend to summarize the intensity of epidemics in a single number, R0 . Tis basic reproduction number is a measure of the average number of individuals an infected patient will successfully transmit the disease to.
    [Show full text]
  • Using Proper Mean Generation Intervals in Modeling of COVID-19
    ORIGINAL RESEARCH published: 05 July 2021 doi: 10.3389/fpubh.2021.691262 Using Proper Mean Generation Intervals in Modeling of COVID-19 Xiujuan Tang 1, Salihu S. Musa 2,3, Shi Zhao 4,5, Shujiang Mei 1 and Daihai He 2* 1 Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China, 3 Department of Mathematics, Kano University of Science and Technology, Wudil, Nigeria, 4 The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China, 5 Shenzhen Research Institute of Chinese University of Hong Kong, Shenzhen, China In susceptible–exposed–infectious–recovered (SEIR) epidemic models, with the exponentially distributed duration of exposed/infectious statuses, the mean generation interval (GI, time lag between infections of a primary case and its secondary case) equals the mean latent period (LP) plus the mean infectious period (IP). It was widely reported that the GI for COVID-19 is as short as 5 days. However, many works in top journals used longer LP or IP with the sum (i.e., GI), e.g., >7 days. This discrepancy will lead to overestimated basic reproductive number and exaggerated expectation of Edited by: infection attack rate (AR) and control efficacy. We argue that it is important to use Reza Lashgari, suitable epidemiological parameter values for proper estimation/prediction. Furthermore, Institute for Research in Fundamental we propose an epidemic model to assess the transmission dynamics of COVID-19 Sciences, Iran for Belgium, Israel, and the United Arab Emirates (UAE).
    [Show full text]
  • Mumps Public Information
    Louisiana Office of Public Health Infectious Disease Epidemiology Section Phone: 1-800-256-2748 www.infectiousdisease.dhh.louisiana.gov Mumps What is mumps? How is mumps diagnosed? Mumps is a disease that is caused by the mumps virus. It spreads Mumps is diagnosed by a combination of symptoms and physical easily through coughing and sneezing. Mumps can cause fever, signs and laboratory confirmation of the virus, as not all cases headache, body aches, fatigue and inflammation of the salivary develop characteristic parotitis, and not all cases of parotitis are (spit) glands, which can lead to swelling of the cheeks and jaws. caused by mumps. Who gets mumps? What is the treatment for mumps? Mumps is a common childhood disease, but adults can also get There is no “cure” for mumps, only supportive treatment (bed mumps. While vaccination reduces the chances of getting ill rest, fluids and fever reduction). Most cases will recover on their considerably, even those fully immunized can get the disease. own. How do people get mumps? If someone becomes very ill, he/she should seek medical Mumps is spread from person to person. When an infected attention. The ill person should call the doctor in advance so that person talks, coughs or sneezes, the virus is released into the air he/she doesn’t have to sit in the waiting room for a long time and and enters another person’s body through the nose, mouth or possibly infect other patients. throat. People can also become sick if they eat food or use utensils, cups or other objects that have come into contact with How can mumps be prevented? the mucus or saliva (spit) from an infected person.
    [Show full text]
  • Malaria and COVID-19: Common and Different Findings
    Tropical Medicine and Infectious Disease Viewpoint Malaria and COVID-19: Common and Different Findings Francesco Di Gennaro 1 , Claudia Marotta 1,*, Pietro Locantore 2, Damiano Pizzol 3 and Giovanni Putoto 1 1 Operational Research Unit, Doctors with Africa CUAMM, 35121 Padova, Italy; [email protected] (F.D.G.); [email protected] (G.P.) 2 Institute of Endocrinology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; [email protected] 3 Italian Agency for Development Cooperation, Khartoum 79371, Sudan; [email protected] * Correspondence: [email protected] or [email protected] Received: 31 July 2020; Accepted: 3 September 2020; Published: 6 September 2020 Abstract: Malaria and COVID-19 may have similar aspects and seem to have a strong potential for mutual influence. They have already caused millions of deaths, and the regions where malaria is endemic are at risk of further suffering from the consequences of COVID-19 due to mutual side effects, such as less access to treatment for patients with malaria due to the fear of access to healthcare centers leading to diagnostic delays and worse outcomes. Moreover, the similar and generic symptoms make it harder to achieve an immediate diagnosis. Healthcare systems and professionals will face a great challenge in the case of a COVID-19 and malaria syndemic. Here, we present an overview of common and different findings for both diseases with possible mutual influences of one on the other, especially in countries with limited resources. Keywords: malaria; SARS-CoV-2; COVID-19; preparedness; Africa; emergency; pandemic 1. Background On 11 March 2020, the WHO declared the outbreak of SARS-CoV-2 to be a pandemic infection.
    [Show full text]