(A) Sample Contribution to the PLS Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstracts Genome 10K & Genome Science 29 Aug - 1 Sept 2017 Norwich Research Park, Norwich, Uk
Genome 10K c ABSTRACTS GENOME 10K & GENOME SCIENCE 29 AUG - 1 SEPT 2017 NORWICH RESEARCH PARK, NORWICH, UK Genome 10K c 48 KEYNOTE SPEAKERS ............................................................................................................................... 1 Dr Adam Phillippy: Towards the gapless assembly of complete vertebrate genomes .................... 1 Prof Kathy Belov: Saving the Tasmanian devil from extinction ......................................................... 1 Prof Peter Holland: Homeobox genes and animal evolution: from duplication to divergence ........ 2 Dr Hilary Burton: Genomics in healthcare: the challenges of complexity .......................................... 2 INVITED SPEAKERS ................................................................................................................................. 3 Vertebrate Genomics ........................................................................................................................... 3 Alex Cagan: Comparative genomics of animal domestication .......................................................... 3 Plant Genomics .................................................................................................................................... 4 Ksenia Krasileva: Evolution of plant Immune receptors ..................................................................... 4 Andrea Harper: Using Associative Transcriptomics to predict tolerance to ash dieback disease in European ash trees ............................................................................................................ -
Gene Expression Studies: from Case-Control to Multiple-Population-Based Studies
From the Institute of Human Genetics, Helmholtz Zentrum Munchen,¨ Deutsches Forschungszentrum fur¨ Gesundheit und Umwelt (GmbH) Head: Prof. Dr. Thomas Meitinger Gene expression studies: From case-control to multiple-population-based studies Thesis Submitted for a Doctoral Degree in Natural Sciences at the Faculty of Medicine, Ludwig-Maximilians-Universitat¨ Munchen¨ Katharina Schramm Dachau, Germany 2016 With approval of the Faculty of Medicine Ludwig-Maximilians-Universit¨atM ¨unchen Supervisor/Examiner: Prof. Dr. Thomas Illig Co-Examiners: Prof. Dr. Roland Kappler Dean: Prof. Dr. med. dent. Reinhard Hickel Date of oral examination: 22.12.2016 II Dedicated to my family. III Abstract Recent technological developments allow genome-wide scans of gene expression levels. The reduction of costs and increasing parallelization of processing enable the quantification of 47,000 transcripts in up to twelve samples on a single microarray. Thereby the data collec- tion of large population-based studies was improved. During my PhD, I first developed a workflow for the statistical analyses of case-control stu- dies of up to 50 samples. With large population-based data sets generated I established a pipeline for quality control, data preprocessing and correction for confounders, which re- sulted in substantially improved data. In total, I processed more than 3,000 genome-wide expression profiles using the generated pipeline. With 993 whole blood samples from the population-based KORA (Cooperative Health Research in the Region of Augsburg) study we established one of the largest population-based resource. Using this data set we contributed to a number of transcriptome-wide association studies within national (MetaXpress) and international (CHARGE) consortia. -
The LRRC8A:C Heteromeric Channel Is a Cgamp Transporter and the Dominant
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948273; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The LRRC8A:C Heteromeric Channel Is a cGAMP Transporter and the Dominant cGAMP Importer in Human Vasculature Cells Lauren J. Lahey1,2, Xianlan Wen3, Rachel E. Mardjuki2,4, Volker Böhnert2,5, Christopher Ritchie2,5, Jacqueline A. Carozza2,4, Gaelen T. Hess2,6, Merritt Maduke3, Michael C. Bassik2,6, and Lingyin Li2,5,7,* 1Biophysics Program, 2Stanford ChEM-H, 3Department of Molecular and Cellular Physiology, 4Department of Chemistry, 5Department of Biochemistry, 6Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA. 7Lead Contact *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948273; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Extracellular 2'3'-cyclic-GMP-AMP (cGAMP) is an immunotransmitter secreted by cancer cells and taken up by host cells to activate the anti-cancer STING pathway. No cGAMP exporter has been identified, and SLC19A1, a recently identified cGAMP importer, does not account for the import actiVity in most cell types. Here, we identify the LRRC8A:C heteromeric channel, a volume-regulated anion channel (VRAC), as a cGAMP transporter. This channel mediates cGAMP import or export depending on the cGAMP chemical gradient. cGAMP influences anion influx through VRAC, indicating it is likely a direct substrate of the channel. -
Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence After Radical Prostatectomy
Int. J. Mol. Sci. 2015, 16, 3856-3869; doi:10.3390/ijms16023856 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy Chinyere Ibeawuchi 1, Hartmut Schmidt 2, Reinhard Voss 3, Ulf Titze 4, Mahmoud Abbas 5, Joerg Neumann 6, Elke Eltze 7, Agnes Marije Hoogland 8, Guido Jenster 9, Burkhard Brandt 10 and Axel Semjonow 1,* 1 Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 2 Center for Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 3 Interdisciplinary Center for Clinical Research, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude D3, Domagkstrasse 3, Muenster D-48149, Germany; E-Mail: [email protected] 4 Pathology, Lippe Hospital Detmold, Röntgenstrasse 18, Detmold D-32756, Germany; E-Mail: [email protected] 5 Institute of Pathology, Mathias-Spital-Rheine, Frankenburg Street 31, Rheine D-48431, Germany; E-Mail: [email protected] 6 Institute of Pathology, Klinikum Osnabrueck, Am Finkenhuegel 1, Osnabrueck D-49076, Germany; E-Mail: [email protected] 7 Institute of Pathology, Saarbrücken-Rastpfuhl, Rheinstrasse 2, Saarbrücken D-66113, Germany; E-Mail: [email protected] 8 Department -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Selective Transport of Neurotransmitters and Modulators by Distinct Volume-Regulated LRRC8 Anion Channels Darius Lutter1,2,3, Florian Ullrich1,2, Jennifer C
© 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1122-1133 doi:10.1242/jcs.196253 RESEARCH ARTICLE Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels Darius Lutter1,2,3, Florian Ullrich1,2, Jennifer C. Lueck1,2,3, Stefan Kempa2 and Thomas J. Jentsch1,2,4,* ABSTRACT volume regulation (Jentsch, 2016; Nilius et al., 1997; Pedersen In response to swelling, mammalian cells release chloride and et al., 2016). This plasma membrane channel, which appears to be organic osmolytes through volume-regulated anion channels expressed in all cells, is normally closed but can be activated by cell swelling or other cellular signaling cascades. In most cells, VRAC (VRACs). VRACs are heteromers of LRRC8A and other LRRC8 − isoforms (LRRC8B to LRRC8E), which are co-expressed in HEK293 opening leads to an efflux of Cl , which, together with an efflux of + + and most other cells. The spectrum of VRAC substrates and its K through independent K channels, lowers the intracellular dependence on particular LRRC8 isoforms remains largely unknown. osmolarity and, by secondarily driving water efflux, results in We show that, besides the osmolytes taurine and myo-inositol, regulatory volume decrease. Cell swelling also stimulates an efflux ‘ ’ myo LRRC8 channels transport the neurotransmitters glutamate, of organic osmolytes such as -inositol, taurine and glutamate. aspartate and γ-aminobutyric acid (GABA) and the co-activator It was controversial whether this release occurs through VRAC or D-serine. HEK293 cells engineered to express defined subsets of through a distinct channel named VSOAC (for volume-sensitive LRRC8 isoforms were used to elucidate the subunit-dependence organic osmolyte/anion channel) (Jackson and Strange, 1993; of transport. -
Vracs Swallow Platinum Drugs
News & Views VRACs swallow platinum drugs Thomas Voets, Bernd Nilius & Rudi Vennekens Platinum-based drugs such as cisplatin react covalently with the N7 nitrogen in essential structural component of VRACs and carboplatin are on the WHO model list guanines (Galluzzi et al, 2012). This causes (Qiu et al, 2014; Voss et al, 2014). LRRC8 of essential medicines, as highly effective distortions in the DNA, which can provoke proteins form a small family of integral chemotherapeutic drugs for the treatment cell cycle arrest and ultimately programmed membrane proteins with four transmem- of various solid tumors. These drugs react cell death (Kelland, 2007; Galluzzi et al, brane helices and include five homologues with purine residues in DNA, thereby caus- 2012). However, before cisplatin and related (LRRC8A-E) in mammals and most other ing DNA damage, inhibition of cell division, drugs can exert their antiproliferative effects, chordates (Abascal & Zardoya, 2012). and eventually cell death. However, the they first need to be taken up by the targeted Current evidence indicates that functional mechanisms whereby platinum-based cells (Galluzzi et al, 2012). Cisplatin and VRAC channels are heteromultimers that drugs enter cancer cells remained poorly carboplatin are relatively polar, compared to contain the obligatory LRRC8A subunit understood. In this issue, Planells-Cases other classes of small-molecule (anticancer) supplemented with at least one of the other et al (2015) provide evidence that cells drugs. Consequently, their passive diffusion four isoforms (Voss et al, 2014). Based on take up cisplatin and carboplatin via through the plasma membrane is slow, and limited homology with pannexins, a hexam- volume-regulated anion channels (VRACs), other transport pathways, including trans- eric architecture has been proposed, but this more specifically VRACs composed of porters and channels, have been postulated. -
Ck1δ Over-Expressing Mice Display ADHD-Like Behaviors, Frontostriatal Neuronal Abnormalities and Altered Expressions of ADHD-Candidate Genes
Molecular Psychiatry (2020) 25:3322–3336 https://doi.org/10.1038/s41380-018-0233-z ARTICLE CK1δ over-expressing mice display ADHD-like behaviors, frontostriatal neuronal abnormalities and altered expressions of ADHD-candidate genes 1 1 1 2 1 1 1 Mingming Zhou ● Jodi Gresack ● Jia Cheng ● Kunihiro Uryu ● Lars Brichta ● Paul Greengard ● Marc Flajolet Received: 8 November 2017 / Revised: 4 July 2018 / Accepted: 18 July 2018 / Published online: 19 October 2018 © Springer Nature Limited 2018 Abstract The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D- amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine- induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as 1234567890();,: 1234567890();,: well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model. -
Dematin (18): Sc-135881
SAN TA C RUZ BI OTEC HNOL OG Y, INC . Dematin (18): sc-135881 BACKGROUND APPLICATIONS Caldesmon, Filamin 1, Nebulin, Villin, Plastin, ADF, Gelsolin, Dematin and Dematin (18) is recommended for detection of Dematin of mouse, rat and Cofilin are differentially expressed Actin binding proteins. Dematin is a human origin by Western Blotting (starting dilution 1:200, dilution range bundling protein of the erythrocyte membrane skeleton. Dematin is localized 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein to the spectrin-Actin junctions and its Actin-bundling activity is abolished (1 ml of cell lysate)] and immunofluorescence (starting dilution 1:50, dilution upon phosphorylation by cAMP-dependent protein kinase. It may also play a range 1:50-1:500). role in the regulation of cell shape, implying a role in tumorigenesis. Dematin Suitable for use as control antibody for Dematin siRNA (h): sc-105286, is a trimeric protein containing two identical subunits and a larger subunit. Dematin siRNA (m): sc-142992, Dematin shRNA Plasmid (h): sc-105286-SH, It is localized to the heart, brain, lung, skeletal muscle and kidney. The Dematin shRNA Plasmid (m): sc-142992-SH, Dematin shRNA (h) Lentiviral Dematin gene is located on human chromosome 8p21, a region frequently Particles: sc-105286-V and Dematin shRNA (m) Lentiviral Particles: delet ed in prostate cancer, and mouse chromosome 14. sc-142992-V. REFERENCES Molecular Weight of Dematin: 52/48 kDa. 1. Rana, A.P., et al. 1993. Cloning of human erythroid Dematin reveals Positive Controls: Hep G2 cell lysate: sc-2227. -
The LRRC8A:C Heteromeric Channel Is a Cgamp Transporter and the Dominant Cgamp Importer in Human Vasculature Cells
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948273; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The LRRC8A:C Heteromeric Channel Is a cGAMP Transporter and the Dominant cGAMP Importer in Human Vasculature Cells Lauren J. Lahey1,2, Xianlan Wen3, Rachel E. Mardjuki2,4, Volker Böhnert2,5, Gaelen T. Hess2,6, Christopher Ritchie2,5, Jacqueline A. Carozza2,4, Merritt Maduke3, Michael C. Bassik2,6, and Lingyin Li2,5,7,* 1Biophysics Program, 2Stanford ChEM-H, 3Department of Molecular and Cellular Physiology, 4Department of Chemistry, 5Department of Biochemistry, 6Department of Genetics, Stanford University, School of Medicine, Stanford, CA 94305 USA. 7Lead Contact *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948273; this version posted March 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Extracellular 2'3'-cyclic-GMP-AMP (cGAMP) is an immunotransmitter secreted by cancer cells and taken up by host cells to activate the anti-cancer STING pathway. No cGAMP exporter has been identified, and SLC19A1, a recently identified cGAMP importer, does not account for the import actiVity in most cell types. Here, we identify the LRRC8A:C heteromeric channel, a volume-regulated anion channel (VRAC), as a cGAMP transporter. This channel mediates cGAMP import or export depending on the cGAMP chemical gradient, and channel activation or inhibition modulates cGAMP transport. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.