Open Bernardo Dissertation - Final.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Bernardo Dissertation - Final.Pdf The Pennsylvania State University The Graduate School College of Information Sciences and Technology HARD/SOFT INFORMATION FUSION IN THE CONDITION MONITORING OF AIRCRAFT A Dissertation in Information Sciences and Technology by Joseph T. Bernardo 2014 Joseph T. Bernardo The U.S. Government has a copyright license in this work pursuant to a Cooperative Research and Development Agreement with Naval Air Warfare Center Aircraft Division Patuxent River. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2014 The dissertation of Joseph T. Bernardo was reviewed and approved* by the following: David L. Hall Professor, College of Information Sciences and Technology Dissertation Advisor Chair of Committee Michael D. McNeese Co-director, General Electric (GE) Center for Collaborative Research in Intelligent Gas Systems (CCRNGS) Research Center, Professor, College of Information Sciences and Technology, Affiliate Professor of Psychology, Affiliate Professor of Learning and Performance Systems Guoray Cai Associate Professor of Information Sciences and Technology, Affiliate Associate Professor of Geography Richard L. Tutwiler Deputy Director, Center for Network-Centric Cognition and Information Fusion (NC2IF), Professor of Acoustics, Affiliate Professor of Information Sciences and Technology Carleen Maitland Director of Graduate Programs, Interim Associate Dean for Undergraduate and Graduate Studies, Associate Professor of Information Sciences and Technology, Affiliate Professor of the School of International Affairs *Signatures are on file in the Graduate School iii ABSTRACT The synergistic integration of information from electronic sensors and human sources is called hard/soft information fusion. In the condition monitoring of aircraft, the addition of the multisensory capability of human cognition to traditional condition monitoring may create a more complete picture of aircraft condition. A large data set from Naval Air Systems Command (NAVAIR) on maintenance of multi-mission vertical takeoff and landing (VTOL) 22 series B (MV-22B) aircraft provided the opportunity to explore the value of hard/soft information fusion in aviation maintenance. First, cognitive and functional frameworks were applied to hard/soft information fusion in the condition monitoring of aircraft. The steps of the Orasanu decision process model were applied to the macrocognitive functions and processes of the aviation maintainer. Emerging literature on hard/soft information fusion in condition monitoring was organized into the levels of the Joint Directors of Laboratories (JDL) data fusion process model, and the levels were applied to the process functions of aviation maintenance. Second, a research design was created for a retrospective analysis of sensor readings, human observations, and choices made in the maintenance of MV-22B aircraft. The data set from Decision Knowledge Programming for Logistics Analysis and Technical Evaluation (DECKPLATE), a NAVAIR database, provided information collected without the interference of interviewer bias. Third, a research methodology was created for studying hard/soft information fusion in aviation maintenance. Content analysis of the descriptive and corrective action narratives showed faults and aircraft components chosen for repair, replacement, fabrication, or calibration. Problem complexity was found to be an important factor. Additionally, expertise level also had an effect, and it was described through longitudinal trending. iv Fourth, the addition of human observation to sensor data was highly associated with the aircraft components chosen for action. Additionally, for complex problems, the addition of human observation to sensor data was significantly associated with improved outcomes. Descriptive statistics showed reduced diagnostic effort with human observation in complex problems. The improved outcomes and reduced diagnostic effort with human observation in complex problems may reduce operational maintenance cost, increase mission readiness, and increase flight safety. Keywords: hard/soft information fusion, condition-based maintenance, condition monitoring, aircraft maintenance, human factors, and decision-making v TABLE OF CONTENTS Contents LIST OF FIGURES ................................................................................................................. viii LIST OF TABLES ................................................................................................................... x LIST OF EQUATIONS ........................................................................................................... xi ACKNOWLEDGEMENTS ..................................................................................................... xii Chapter 1 Introduction ............................................................................................................ 1 Definitions ........................................................................................................................ 1 Sociotechnical Systems .................................................................................................... 2 Failure Modes and Effects Analysis (FMEA) and Failure Modes, Effects, and Criticality Analysis (FMECA) ....................................................................................... 5 FMEA and the JDL Model ............................................................................................... 8 Motivation ........................................................................................................................ 9 Research Questions .......................................................................................................... 10 Findings and Implications ................................................................................................ 11 Research Goal and Contributions ..................................................................................... 12 Roadmap for this Dissertation .......................................................................................... 13 Chapter 2 Background: The Context of Maintenance Work on MV-22B Aircraft ................ 16 Introduction to Naval Aviation ........................................................................................ 16 MV-22B Bell Boeing Osprey .......................................................................................... 19 How Aircraft Work .......................................................................................................... 24 Flight Crew ...................................................................................................................... 32 Pilots ................................................................................................................................ 33 Warrant Officers .............................................................................................................. 34 Maintainers....................................................................................................................... 35 Aviation Maintenance ...................................................................................................... 36 Chapter 3 Literature Review ................................................................................................... 40 Macrocognition ................................................................................................................ 40 Machines Need People to ... but People Need Machines to ... ......................................... 42 Condition-Based Maintenance Plus ................................................................................. 44 Hard/Soft Information Fusion .......................................................................................... 47 JDL Data Fusion Process Model ...................................................................................... 49 The JDL Model and CBM+ ...................................................................................... 50 Organizing the Literature on Hard/Soft Fusion in Condition Monitoring into Levels of the JDL Data Fusion Process Model .............................................................. 53 Level 2/3 Human-Influenced Diagnostics and Prognostics ..................................... 53 vi Level 2/3/5 Integrated Machine- and Human-Based Diagnostics and Prognostics ........................................................................................................... 54 Level 5 Human Information Processing ................................................................... 55 Alternative Information Fusion Frameworks ................................................................... 56 Summary .......................................................................................................................... 58 Chapter 4 Cognitive and Functional Frameworks .................................................................. 61 Cognitive Framework for Hard/Soft Information Fusion in the Condition Monitoring of Aircraft.................................................................................................... 61 Functional Framework for Hard/Soft Information Fusion in the Condition Monitoring of Aircraft.................................................................................................... 64 Chapter 5 Research Design ..................................................................................................... 68 Philosophy .......................................................................................................................
Recommended publications
  • E. Runway Length Analysis
    JOSLIN FIELD, MAGIC VALLEY REGIONAL AIRPORT DECEMBER 2012 E. Runway Length Analysis This appendix describes the runway length analysis conducted for the Airport. Runway 7-25, the Airport’s primary runway, has a length of 8,700 feet and the existing crosswind runway (Runway 12-30) has a length of 3,207 feet. A runway length analysis was conducted to determine if additional runway length is required to meet the needs of aircraft forecasted to operate at the Airport through the planning period. The analysis was conducted according to Federal Aviation Administration (FAA) guidance contained in Advisory Circular (AC) 150/5325-4B, Runway Length Requirements for Airport Design. The runway length analysis set forth in AC 150/5325-4B relates to both arrivals and departures, although departures typically require more runway length. Runway length requirements were determined separately for Runway 7-25 and Runway 12-30. E.1 Primary Runway Length Requirements According to AC 150/5325-4B, the design objective for the primary runway is to provide a runway length for all aircraft without causing operational weight restrictions. The methodology used to determine required runway lengths is based on the MTOW of the aircraft types to be evaluated, which are grouped into the following categories: Small aircraft (MTOW of 12,500 pounds or less) – Aircraft in this category range in size from ultralight aircraft to small turboprop aircraft. Within this category, aircraft are broken out by approach speeds (less than 30 knots, at least 30 knots but less than 50 knots, and more than 50 knots). Aircraft with approach speeds of more than 50 knots are further broken out by passenger seat capacity (less than 10 passenger seats and 10 or more passenger seats).
    [Show full text]
  • Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis
    NASA Contractor Report 4700 Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis Steven L. Baughcum, Terrance G. Tritz, Stephen C. Henderson, and David C. Pickett Contract NAS1-19360 Prepared for Langley Research Center April 1996 NASA Contractor Report 4700 Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis Steven L. Baughcum, Terrance G. Tritz, Stephen C. Henderson, and David C. Pickett Boeing Commercial Airplane Group • Seattle Washington National Aeronautics and Space Administration Prepared for Langley Research Center Langley Research Center • Hampton, Virginia 23681-0001 under Contract NAS1-19360 April 1996 Printed copies available from the following: NASA Center for AeroSpace Information National Technical Information Service (NTIS) 800 Elkridge Landing Road 5285 Port Royal Road Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171 (301) 621-0390 (703) 487-4650 Executive Summary This report describes the development of a database of aircraft fuel burned and emissions from scheduled air traffic for each month of 1992. In addition, the earlier results (NASA CR-4592) for May 1990 scheduled air traffic have been updated using improved algorithms. These emissions inventories were developed under the NASA High Speed Research Systems Studies (HSRSS) contract NAS1-19360, Task Assignment 53. They will be available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. A detailed database of fuel burned and emissions [NOx, carbon monoxide(CO), and hydrocarbons (HC)] for scheduled air traffic has been calculated for each month of 1992. In addition, the emissions for May 1990 have been recalculated using the same methodology. The data are on a 1° latitude x 1° longitude x 1 km altitude grid.
    [Show full text]
  • (EU) 2018/336 of 8 March 2018 Amending Regulation
    13.3.2018 EN Official Journal of the European Union L 70/1 II (Non-legislative acts) REGULATIONS COMMISSION REGULATION (EU) 2018/336 of 8 March 2018 amending Regulation (EC) No 748/2009 on the list of aircraft operators which performed an aviation activity listed in Annex I to Directive 2003/87/EC on or after 1 January 2006 specifying the administering Member State for each aircraft operator (Text with EEA relevance) THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/ EC (1), and in particular Article 18a(3)(b) thereof, Whereas: (1) Directive 2008/101/EC of the European Parliament and of the Council (2) amended Directive 2003/87/EC to include aviation activities in the scheme for greenhouse gas emission allowance trading within the Union. (2) Commission Regulation (EC) No 748/2009 (3) establishes a list of aircraft operators which performed an aviation activity listed in Annex I to Directive 2003/87/EC on or after 1 January 2006. (3) That list aims to reduce the administrative burden on aircraft operators by providing information on which Member State will be regulating a particular aircraft operator. (4) The inclusion of an aircraft operator in the Union’s emissions trading scheme is dependent upon the performance of an aviation activity listed in Annex I to Directive 2003/87/EC and is not dependent on the inclusion in the list of aircraft operators established by the Commission on the basis of Article 18a(3) of that Directive.
    [Show full text]
  • Jul O 1 2004 Libraries
    Evaluation of Regional Jet Operating Patterns in the Continental United States by Aleksandra L. Mozdzanowska Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of MASSACHUSETTS INSTIfUTE OF TECHNOLOGY Master of Science in Aerospace Engineering JUL O 1 2004 at the LIBRARIES MASSACHUSETTS INSTITUTE OF TCHNOLOGY AERO May 2004 @ Aleksandra Mozdzanowska. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. A uthor.............. ....... Ale andawMozdzanowska Department of Aeronautics and Astronautics A I ,,May 7, 2004 Certified by.............................................. R. John Hansman Professor of Aeronautics and Astronautics Thesis Supervisor Accepted by.......................................... Edward M. Greitzer H.N. Slater Professor of Aeronautics and Astronautics Chair, Department Committee on Graduate Students 1 * t eWe I 4 w 4 'It ~tI* ~I 'U Evaluation of Regional Jet Operating Patterns in the Continental United States by Aleksandra Mozdzanowska Submitted to the Department of Aeronautics and Astronautics on May 7th 2004, in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering Abstract Airlines are increasingly using regional jets to better match aircraft size to high value, but limited demand markets. The increase in regional jet usage represents a significant change from traditional air traffic patterns. To investigate the possible impacts of this change on the air traffic management and control systems, this study analyzed the emerging flight patterns and performance of regional jets compared to traditional jets and turboprops. This study used ASDI data, which consists of actual flight track data, to analyze flights between January 1998 and January 2003.
    [Show full text]
  • Raytheon, UTC Merger to Create a ‘Giant’ by David Donald
    PUBLICATIONS Vol.50 | No.7 $9.00 JULY 2019 | ainonline.com Paris Air Show 2019 The 737 Max program received a huge vote of confidence at the Paris Air Show last month. International Airlines Group (IAG) inked a letter of intent covering 200 Max 8s and Max 10s worth more than $24 billion at list prices. CFM also signed a significant engine deal—valued at $20 billion— during the show (see page 6). For more Paris Air Show news, also see pages 8 and 10. Aircraft Quest buy expands Daher line. page 8 Airports SMO operator bulldozing excess runway. page 14 INTOSH c Avionics DAVID M DAVID Universal developing a new FMS style. page 46 Raytheon, UTC merger to create a ‘giant’ by David Donald Citing “less than 1 percent overlap” between competing against [UTC].” combined company value is $166 billion the two companies, Raytheon International Upon completion of the Raytheon/UTC and, based on 2019 sales, the new company CEO John Harris spoke at the Paris Air Show, merger, the company will become the world’s will generate $74 billion in annual revenue. dismissing concern expressed by President second-largest defense/aerospace company The company’s first CEO will be Greg Hayes, Donald Trump over the merger of his com- after Boeing, and the second largest U.S. UTC chairman and CEO, with Raytheon’s pany and United Technologies Corp. (UTC). defense contractor behind Lockheed Mar- CEO, Thomas Kennedy, becoming executive Announced on June 9, the all-stock “merger tin. Revenue will be divided roughly equally chairman. Hayes is due to become chairman of equals” will create an industrial defense/ between defense and commercial sectors.
    [Show full text]
  • Development of the Minimum Equipment List: Current Practice and the Need for Standardisation
    aerospace Review Development of the Minimum Equipment List: Current Practice and the Need for Standardisation Solomon O. Obadimu 1, Nektarios Karanikas 2 and Kyriakos I. Kourousis 1,* 1 School of Engineering, University of Limerick, V94 T9PX Limerick, Ireland; [email protected] 2 School of Public Health and Social Work, Queensland University of Technology, Brisbane QLD 4000, Australia; [email protected] * Correspondence: [email protected]; Tel.: +353-61-202-217 Received: 10 December 2019; Accepted: 15 January 2020; Published: 17 January 2020 Abstract: As part of the airworthiness requirements, an aircraft cannot be dispatched with an inoperative equipment or system unless this is allowed by the Minimum Equipment List (MEL) under any applicable conditions. Commonly, the MEL mirrors the Master MEL (MMEL), which is developed by the manufacturer and approved by the regulator. However, the increasing complexity of aircraft systems and the diversity of operational requirements, environmental conditions, fleet configuration, etc. necessitates a tailored approach to developing the MEL. While it is the responsibility of every aircraft operator to ensure the airworthiness of their aircraft, regulators are also required to publish guidelines to help operators develop their MELs. Currently, there is no approved standard to develop a MEL, and this poses a challenge to both aviation regulators and aircraft operators. This paper reviews current MEL literature, standards and processes as well as MEL related accidents/incidents to offer an overview of the present state of the MEL development and use and reinstate the need for a systematic approach. Furthermore, this paper exposes the paucity of MEL related literature and the ambiguity in MEL regulations.
    [Show full text]
  • The History of One-Hundred Thirteen P-38 Lightning Aircraft Constructed
    The History of One-Hundred Thirteen P-38 Lightning Aircraft Constructed by Consolidated-Vultee Aviation Corporation of Nashville Tennessee, 1945 George Bitzer A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science in Aviation Administration Middle Tennessee State University December 2015 Thesis Committee: Dr. Wendy Beckman, Chair Dr. Ron Ferrara This thesis is dedicated to the many men and women that spent hours in factories, day and night throughout the United States during the years 1939 – 1945, building airplanes and the many other military equipment needed for the support of our troops. Thousands of human beings died to preserve our freedom from aggression. Here it is seventy years later and we are still at war. Let the pride of the United States Military Forces continue to be strong for our grandchildren and keep us free of tyranny and social injustice. If we could only practice what Jesus, the Christ said: “Love one another as I have loved you.” John 13:34 “Love your enemy and pray for those who persecute you.” Matthew 5:44 ii ABSTRACT The purpose of this research project was to trace and locate 113 P- 38 Lightning Aircraft that were constructed by Consolidated-Vultee Aviation Corporation of Nashville-Tennessee. A determination as to where they were located at the end of World War II, along with their subsequent location, was attempted. This project utilized historical research with a qualitative approach where data was accumulated, evaluated and formulated based on events that happened 70 years ago. A triangulation practice is the process of collecting data, not from just one source, but from several sources.
    [Show full text]
  • Updated List of Noisy Aircraft Types
    List of Noisy Aircraft Types The following list addresses the requirement of Proposed Town Code §75- 38 A.(4)(a) for the Airport Director to maintain on the Town website a current list of “noisy aircraft” defined to be “any airplane or rotorcraft for which there is a published Effective Perceived Noise in Decibels (EPNdB) approach (AP) level of 91.0 or greater.” 1 The list is presented in terms of International Civil Aviation Organization (ICAO) aircraft type codes and an accompanying commonplace aircraft type description. Commonplace Aircraft Description ICAO Aircraft Note: Published data for shaded aircraft types include ranges of noise levels that extend across the 91.0 EPNdB threshold. These ranges result from multiple published noise levels for varying aircraft configurations (e.g., Type differing powerplants, maximum operating weights, etc.). For these types, aircraft owners must provide the Code Airport Director with noise level information from the individual aircraft’s flight manual, if the owner believes the aircraft in question should not be classified as noisy. A109 Agusta A-109 AW119 Agusta AW119 MKII A124 Antonov An-124 A139 Agusta AB-139 A189 AgustaWestland AW189 A306 Airbus A300B4-600/A300C4-600 A30B Airbus A300B2/A300B4-100/A300B4-200 A310 Airbus A310-200/A310-300 A318 Airbus A318-100 A319 Airbus A319-100 A320 Airbus A320-100/A320-200/A320-200neo A321 Airbus A321-100/A321-200/A321-200neo A332 Airbus A330-200 A333 Airbus A330-300 A342 Airbus A340-200 A343 Airbus A340-300 A345 Airbus A340-500 A346 Airbus A340-600 A359 Airbus A350-900 A388 Airbus A380-800 A3ST Airbus A300-600ST Beluga A400 Airbus A400M A748 BAe HS748 AN26 Antonov An-26 AN72 Antonov An-72, An-74 Updated September 30, 2015 List of Noisy Aircraft Types Page 2 Commonplace Aircraft Description ICAO Aircraft Note: Published data for shaded aircraft types include ranges of noise levels that extend across the 91.0 EPNdB threshold.
    [Show full text]
  • Choice of Aircraft Size - Explanations and Implications
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Givoni, Moshe; Rietveld, Piet Working Paper Choice of Aircraft Size - Explanations and Implications Tinbergen Institute Discussion Paper, No. 06-113/3 Provided in Cooperation with: Tinbergen Institute, Amsterdam and Rotterdam Suggested Citation: Givoni, Moshe; Rietveld, Piet (2006) : Choice of Aircraft Size - Explanations and Implications, Tinbergen Institute Discussion Paper, No. 06-113/3, Tinbergen Institute, Amsterdam and Rotterdam This Version is available at: http://hdl.handle.net/10419/86235 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu TI 2006-113/3 Tinbergen Institute Discussion Paper Choice of Aircraft Size - Explanations and Implications Moshe Givoni1 Piet Rietveld1,2 1 Vrije Universiteit Amsterdam; 2 Tinbergen Institute.
    [Show full text]
  • FAA AC 90-114B (ADS-B Operations)
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Automatic Dependent Date: 12/30/19 AC No: 90-114B Surveillance-Broadcast Operations Initiated by: AFS-400 Change: In May 2010, the Federal Aviation Administration (FAA) issued Title 14 of the Code of Federal Regulations (14 CFR) part 91, §§ 91.225 and 91.227. This rule requires Automatic Dependent Surveillance-Broadcast (ADS-B) Out performance when operating in designated classes of airspace within the U.S. National Airspace System (NAS) after January 1, 2020, unless authorized by air traffic control (ATC). This advisory circular (AC) provides users of the NAS guidance regarding how to conduct operations in accordance with §§ 91.225 and 91.227. The appendices in this AC provide guidance for additional operations enabled by ADS-B, including ADS-B In. Robert C. Carty Deputy Executive Director, Flight Standards Service 12/30/19 AC 90-114B CONTENTS Paragraph Page Chapter 1. Automatic Dependent Surveillance-Broadcast Operations ........................................ 1-1 1.1 Purpose of This Advisory Circular (AC) ...................................................................... 1-1 1.2 Audience ....................................................................................................................... 1-1 1.3 Where You Can Find This AC...................................................................................... 1-1 1.4 What This AC Cancels.................................................................................................
    [Show full text]
  • FAQ's of Idaho Aircraft Owners & Dealers
    FAQ’s of Idaho Aircraft Owners & Dealers Idaho Division of Aeronautics is regulated by Title 21-114 and IDAPA 39.04.05 Owner’s Who, What If’s, Where, & Why’s 1. Who has to register their aircraft? According to Title 21-114: "Every aircraft operating within this state shall be registered with the department prior to or during each annual registration year (January 1 to December 31) in which the aircraft is operated within the state.” 2. Why does Idaho charge an aircraft registration fee? And, what do you do with fees collected? Aeronautics receives funding from two sources: aviation fuel tax and aircraft registrations. This funding enables our department to maintain 31 backcountry airstrips, provide grants for airport upgrades, support the search and rescue program and provide funding for educational programs. 3. What are the cost of aircraft registration fees? Three cents (3¢) per pound of the manufacturer’s maximum certified gross weight authorized in the aircraft specification or type certificate data sheet of said aircraft issued by the Federal Aviation Administration. In the case that your aircraft does not have a manufacturer’s maximum certified gross weight, please use maximum takeoff weight as indicated in your Pilot’s Operating Handbook. This also includes “kit planes and home-builds”. In no case will the fee be less than twenty dollars ($20) on one aircraft. In no case will the fee exceed six hundred dollars ($600) on one aircraft. Aircraft registration is in lieu of personal property taxes. (Not to be confused with State Sales Tax). Idaho does not require registration of UAS/Drones at this time.
    [Show full text]
  • Business & Commercial Aviation
    BUSINESS & COMMERCIAL AVIATION REJECTED TAKEOFF AUTHORITY TRAGICALLY MIS-SET TRIM JUNE 2019 $10.00 www.bcadigital.com 2019 PURCHASE PLANNING HANDBOOK Production Aircraft Comparison Performance Tables and a Look at the Trends and New Developments in Avionics Business & Commercial Aviation HURRICANES AND AVIATION JUNE 2019 VOL. 115 NO. 6 Rejected Takeoff Authority Tragically Mis-set Trim Hurricanes and Aviation Charter, Fractional, Ownership and/or Managed? Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent.
    [Show full text]