Calibrating Vascular Plant Abundance for Detecting Future Climate Changes in Oregon and Washington, USA

Total Page:16

File Type:pdf, Size:1020Kb

Calibrating Vascular Plant Abundance for Detecting Future Climate Changes in Oregon and Washington, USA Calibrating vascular plant abundance for detecting future climate changes in Oregon and Washington, USA a * b b Timothy J. Brady : , Vicente J. Monleon , Andrew N. Cray ABSTRACT We propose using future vascular plant abundances as indicators of future climate in a way analogous to the reconstruction of past environments by many palaeoecologists. To begin monitoring future short- term climate changes in the forests of Oregon and Washington. USA. we developed a set of transfer functions for a present-day calibration set consisting of climate parameters estimated. and species abundances measured. at 107 USDA Forest Service FIA(Forest Inventory and Analysis) Phase 3 plots. For each plot. we derived climate estimates from the Daymet model database. and we computed species abundance as quadrat frequency and subplot frequency. We submitted three climate variables (mean January temperature. MJAT; mean July temperature. MJUT; and mean annual precipitation transformed to natural logarithms. MANPt) to canonical correspondence analysis (CCA). and verified their importances in structuring the species frequency data. Weighted averaging-partial least squares regression (WA-PLS) provided the means for calculating six transfer functions. In all cases. based on performance statistics generated by leave-one-out cross-validation. we identified two-component WA- PLS models as the most desirable. The predictive abilities of our transfer functions are comparable to. or better than. those reported in the literature. probably due both data quality and statistical considerations. However. model overfitting as a result of spatial autocorrelation remains a possibility. The large errors associated with our MJAT transfer functions connote that even the highest amount of change in mean January temperature predicted for Oregon and Washington for 2010-2039 would be indistinguishable from current conditions. The higher predictions indicate that our MJAT transfer functions may be able to track climate changes by the 2040s. Our MJUT transfer functions can detect change in mean July temperature under the highest projection for 2010-2039. Our MANPt transfer functions will be of limited use until the 2070s. given the predictions of only slight changes in mean annual precipitation during the early part of the twenty-first century. Our MJAT and MANPt transfer functions may prove useful at the present time to verify relative climatic stability. Because the predicted climate values sometimes deviate substantially from the observed values for individual plots. our transfer functions are appropriate for monitoring climatic trends over the entire Pacific Northwest or large regions within it. not for assessing climate change at individual plots. © 2009 Elsevier Ltd. All rights reserved. 1. Introduction species as indicators potentially offers very high-resolution data on local climate where instrumentation is unavailable (e.g., in remote Climate Significantly affects the growth rates and equilibrium mountainous locations). Given the recent and expected future rapid abundances of populations of vascular plants. and therefore. it climate change (e.g ., IPCC, 2007). decision makers demand high influences their evolutionary histories through natural selection quality quantitative descriptions of local climate at successive time (Enright. 1976; Woodward, 1987, 1992; Woodward and Williams, intervals (Hartmann et al., 2002; Miles et al., 2006). Vascular plant 1987). In effect, the genomes of vascular plant species contain indicators may help meet this need, but they may also provide information about past and present climates. If properly calibrated, information regarding the biological impact of changing climate. an assemblage of vascular plants should provide a quantitative Outside of palaeoecology, few researchers have used vascular signal of site-specific climatic conditions. The use of vascular plant plants as indicators for obtaining quantitative estimates of local climate variables: Karlsen and Elvebakk (2003) mapped local temperature variations in East Greenland using an "Index of Therrnophily'', a combination of a plant species' summer temper- ature needs (determined by geographical distribution), its local abundance, local habitat diversity, and the local proportion of plots, which represent a systematic subset of the inventory plot unproductive land. More recently, Garbolino et al. (2007) grid that spans the forestlands of the USA. The density of Phase 3 determined the climate affinities of nearly 2000 vascular plant plots is about one per 390 km2. Each plot consists of a cluster of species in France based on correlations between the geographical four 168 m2 non-overlapping subplots, arranged within a 1 ha distributions of reIeves and meteorological stations. For each of six circle. Each subplot contains three 1 m2 quadrats. Field crews climate variables, they calculated an affinity as a function of a recorded the presence and cover of each species with heights of up species' maximum frequency and the dispersion of its frequencies to 1.8 m on each quadrat. They subsequently searched the subplots around the maximum. Using vascular plants as indicators, the for up to 45 min to find additional vascular plant species of any authors produced detailed climate maps of France. height that occur outside the quadrats. Vegetation sampling of Since the 1970s, many palaeoecologists have employed Phase 3 plots occurs during June, July, or August, and, if fully vascular plants as indicators to derive quantitative climatic implemented, remeasurement would take place on the standard information about local or regional late-Quaternary environments inventory cycle (10 years in the western USA). Stapanian et al. (recent examples include Finsinger et aI., 2007; Li et al., 2007; (1997) and Schulz et al. (2009) provide detailed information about Neumann et al., 2007; Wilmshurst et al., 2007; St.jacques et al., the design and sampling of FIA Phase 3 plots. 2008). These researchers have sought to develop transfer func- Cover values reflect the vagaries of phenology, weather tions, multivariate equations that permit the estimation of ancient conditions, field crew biases, and actual abundance (Gray and climate parameters from data on fossils (Birks, 1995, and Azuma, 2005; Smith et al., 1986; Schulz et al., 2009). As an references therein). Calibration sets, which include spatially alternative, we computed two frequency measures for each species correlated present-day climatic conditions and pollen grain/ present on a given plot. For species i, Fqi is quadrat frequency and pteridophyte spore/phytolith counts, specify the transfer func- FSi is subplot frequency: tions. Formally, C (a matrix of n standardized observations, one at each of n locations on q climate variables), X (the corresponding matrix of standardized observations on p biological variables at each ofthe same n locations), B (a matrix of transfer functions, one for each of the q climate variables, with each comprised of p elements), and 0 (a matrix of random noise, with n parts for each of the q climate variables) are related through a linear model: Both Fqi and FSi vary from 0 to 1. Quadrat frequency and subplot frequency provide rough yardsticks of abundance, not just distribution, of a species within an FIAPhase 3 plot. Adult survival, B acts as a set of transfer functions, because observations on the p fecundity, within-plot dispersal, and the survival of recruits dictate biological variables render estimates of the q climate variables. the frequency of a vascular plant species. While they are not The use of vascular plants to monitor climate carries the synonymous with population density, Fqi and FSi convey informa- assumption that their populations are always in dynamic equilibri- tion about the proportion of a plot occupied by a species. A plant um with climate (Davis and Botkin, 1985; Webb, 1986; Prentice species with a large population, as measured by cover value, et al., 1993): the list of species in a community and their properties should occupy a larger proportion of a plot than a species (e.g., abundances) match those allowable under the prevailing represented by a small population (Andrewartha and Birch, 1954; climatic regime. If the biological response lags significantly behind Krebs, 1985). the pace of climate change, then this assumption is unjustified. Davis Like all frequency measures, Fqi and FSi depend on plot size. and Botkin (1985) showed, through simulation studies, that short- Thus, we excluded from consideration any plot comprised of less term (i.e., decadal) climate changes may have little immediate effect than 100% accessible forest, as it would have sampled fewer than on the adult survival of long-lived tree species. Even annuals and 12 quadrats and fewer than four subplots. short-lived perennials may be little affected by climate change as For construction of the calibration set, we obtained data from long as the buffering capacity of the canopy persists (Smith, 1965; 107 fully forested FIA Phase 3 plots sampled in 2001, 2004, and Davis and Botkin, 1985). Regular disturbance may be necessary to 2005 distributed across Oregon and Washington (Fig. 1). We guarantee that short-term climate change will bring about a calculated quadrat frequencies for 538, and subplot frequencies for measurable species response. 698, vascular plant species on these plots. In view of recent Palaeoecologists use the past remains of vascular plants as findings (Lischke et al., 2002; Miller et al., 2008; Payette, 2007; indicators
Recommended publications
  • Alpine Garden Club of B.C. Bulletin
    Alpine Garden Club of B.C. Vol.48, No. 4 Bulletin FALL 2005 Web Address: http://www.agc-bc.ca President Doug Smith 604-596-8489 1st V.P. Moya Drummond 604-738-6570 2nd V.P. Philip MacDougall 604-580-3219 Past President Ian Plenderleith 604-733-1604 Secretary Ian Gillam 4040 W.38th Ave, 604-266-6318 Vancouver, BC. V6N 2Y9 Treasurer Amanda Offers 604-885-7532 Editor Sue Evanetz 604-885-3356 3731 Beach Ave, RR 22, Roberts Creek, BC, V0N 2W2 Program Philip MacDougall 604-580-3219 14776-90th Ave, Surrey, BC, V3R 1A4 Pot Show Ellen Smith 604-596-8489 Membership Moya Drummond 604-738-6570 3307 West 6th Avenue, Vancouver, BC, V6R 1T2 Seed Exch. Ian & Phyllis Plenderleith, 604-733-1604 2237 McBain Ave, Vancouver, BC, V6L 3B2 Library Pam Frost 604-266-9897 6269 Elm St. BC, V6N 1B2, BC, V6N 1B2 Spring Show: Ian Gillam – as above Plant Sales: Mark Demers 604-254-5479 2222 Napier St, Vancouver, BC, V5N 2P2 Committee Members Mark Demers, Len Gardiner, Sara Jones, Joe Keller, Jason Nehring, Stuart Scholefield Honorary Life Members Rosemary Burnham, Margaret Charlton, Grace Conboy, Francisca Darts, Frank Dorsey, Pam Frost, Daphne Guernsey, Bodil Leamy, Jim MacPhail, Vera Peck, Geoff Williams, Bob Woodward Meetings are held the second Wednesday of each month except July & August, in the Floral Hall, VanDusen Botanical Garden. Doors and Library open at 7:00pm and Meetings start at 7:30pm sharp with the educational talk. Don’t forget to bring a prize for the raffle which goes a long way to paying for the hall rental.
    [Show full text]
  • Vascular Plant Inventory of Mount Rainier National Park
    National Park Service U.S. Department of the Interior Natural Resource Program Center Vascular Plant Inventory of Mount Rainier National Park Natural Resource Technical Report NPS/NCCN/NRTR—2010/347 ON THE COVER Mount Rainier and meadow courtesy of 2007 Mount Rainier National Park Vegetation Crew Vascular Plant Inventory of Mount Rainier National Park Natural Resource Technical Report NPS/NCCN/NRTR—2010/347 Regina M. Rochefort North Cascades National Park Service Complex 810 State Route 20 Sedro-Woolley, Washington 98284 June 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]
  • Samenkatalog Graz 2016.Pdf
    SAMENTAUSCHVERZEICHNIS Index Seminum Seed list Catalogue de graines des Botanischen Gartens der Karl-Franzens-Universität Graz Ernte / Harvest / Récolte 2016 Herausgegeben von Christian BERG, Kurt MARQUART & Jonathan WILFLING ebgconsortiumindexseminum2012 Institut für Pflanzenwissenschaften, Januar 2017 Botanical Garden, Institute of Plant Sciences, Karl- Franzens-Universität Graz 2 Botanischer Garten Institut für Pflanzenwissenschaften Karl-Franzens-Universität Graz Holteigasse 6 A - 8010 Graz, Austria Fax: ++43-316-380-9883 Email- und Telefonkontakt: [email protected], Tel.: ++43-316-380-5651 [email protected], Tel.: ++43-316-380-5747 Webseite: http://garten.uni-graz.at/ Zitiervorschlag : BERG, C., MARQUART, K. & Wilfling, J. (2017): Samentauschverzeichnis – Index Seminum – des Botanischen Gartens der Karl-Franzens-Universität Graz, Samenernte 2016. – 54 S., Karl-Franzens-Universität Graz. Personalstand des Botanischen Gartens Graz: Institutsleiter: Ao. Univ.-Prof. Mag. Dr. Helmut MAYRHOFER Wissenschaftlicher Gartenleiter: Dr. Christian BERG Gartenverwalter: Jonathan WILFLING, B. Sc. Gärtnermeister: Friedrich STEFFAN GärtnerInnen: Doris ADAM-LACKNER Viola BONGERS Magarete HIDEN Franz HÖDL Kurt MARQUART Franz STIEBER Ulrike STRAUSSBERGER Monika GABER Gartenarbeiter: Philip FRIEDL René MICHALSKI Oliver KROPIWNICKI Gärtnerlehrlinge: Gabriel Buchmann (1. Lehrjahr) Bahram EMAMI (3. Lehrjahr) Mario MARX (3. Lehrjahr) 3 Inhaltsverzeichnis / Contents / Table des matières Abkürzungen / List of abbreviations / Abréviations
    [Show full text]
  • Nectar Flower Use and Electivity by Butterflies in Sub-Alpine Meadows
    138138 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY Journal of the Lepidopterists’ Society 62(3), 2008, 138–142 NECTAR FLOWER USE AND ELECTIVITY BY BUTTERFLIES IN SUB-ALPINE MEADOWS MAYA EZZEDDINE AND STEPHEN F. M ATTER Department of Biological Sciences and Center for Environmental Studies, University of Cincinnati, Cincinnati OH 45221-0006; email: [email protected] ABSTRACT. Nectar flowers are an important resource for most adult butterflies. Nectar flower electivity was evaluated for the pierid butterflies Pontia occidentalis (Reak.), Colias nastes Bdv., Colias christina Edw., Colias meadii Edw., Colias philodice Godt., and Pieris rapae (L.), and the nymphalid Nymphalis milberti (Godt.). Butterflies were observed in a series of sub-alpine meadows in Kananaskis Country, Alberta, Canada. A total of 214 observations of nectar feeding were made over four years. The butterflies were found to nectar on a range of species of flowering plants. Despite the variety of flower species used, there was relative consis- tency in use among butterfly species. Tufted fleabane (Erigeron caespitosus Nutt.) and false dandelion (Agoseris glauca (Pursh) Raf.) were the flowers most frequently elected by these butterflies. Additional key words: Alpine, habitat quality, preference, Pieridae, Nymphalidae, host plants, Kananaskis Country, Alberta INTRODUCTION resource is particularly valuable having appropriate For most species of butterflies, nectar is the main viscosity, sugar content, amino acids or other nutrients. source of food energy in the adult stage. Access to Alternatively, an elected resource may simply be nectar resources can affect many aspects of the ecology enticing without offering any substantial or consistent of butterflies. For example, flowers have been shown to benefit.
    [Show full text]
  • Washington Park Arboretum (2004) (Pdf)
    i Foreword The results of this project are from the combined efforts of a team of talented students at the University of Washington. The five members of this team came to this project with diverse experiences and knowledge. The team included Landscape Architecture students and Environmental Horticulture/ Urban Forestry students; including undergraduate and graduate students. Amongst the team were individuals with extensive experience in nursery management, municipal arboriculture, landscape design, and environmental consulting. The team even included an International Society of Arboriculture Certified Arborist and Washington State University Master Gardeners. We hope that this project will contribute significantly to the implementation of a Native Plant Synoptic Garden at Washington Park Arboretum. The information contained in this project should be used in conjunction with other previous projects that have focused on the creation of this garden. By combining all this cumulative information, the final stakeholders and designers at Washington Park Arboretum will be able to synthesize and create this world class garden. ii Contents FOREWORD……………………………………………………………………………………..i INTRODUCTION………………………………………………………………………………..1 Site Location……………………………………………………………………………………..1 Site History……………………………………………………………………………………....1 Project Goals ……………………………………………………………………………………..2 SITE ANALYSIS………………………………………………………………………………...3 Existing Vegetation…………………………………………………………………………….....6 Topography……………………………………………………………………………………....7 Climate…………………………………………………………………………………………..8
    [Show full text]
  • Vascular Plant List Whatcom County Whatcom County. Whatcom County, WA
    Vascular Plant List Whatcom County Whatcom County. Whatcom County, WA. List covers plants found in Whatcom County. Combination of plant lists of areas within Whatcom County, made by various observers over several years, with numerous additions by Jim Duemmel. Plants collected in Whatcom County found in the UW and WSU herbariums have been added to the list. 1175 spp., 223 introduced. Prepared by Don Knoke 2004. These lists represent the work of different WNPS members over the years. Their accuracy has not been verified by the Washington Native Plant Society. We offer these lists to individuals as a tool to enhance the enjoyment and study of native plants. * - Introduced Scientific Name Common Name Family Name Abies amabilis Pacific silver fir Pinaceae Abies grandis Grand fir Pinaceae Abies lasiocarpa Sub-alpine fir Pinaceae Abies procera Noble fir Pinaceae Acer circinatum Vine maple Aceraceae Acer glabrum Douglas maple Aceraceae Acer macrophyllum Big-leaf maple Aceraceae Achillea millefolium Yarrow Asteraceae Achlys triphylla Vanilla leaf Berberidaceae Aconitum columbianum Monkshood Ranunculaceae Actaea rubra Baneberry Ranunculaceae Adenocaulon bicolor Pathfinder Asteraceae Adiantum pedatum Maidenhair fern Polypodiaceae Agoseris aurantiaca Orange agoseris Asteraceae Agoseris glauca Mountain agoseris Asteraceae Agropyron caninum Bearded wheatgrass Poaceae Agropyron repens* Quack grass Poaceae Agropyron spicatum Blue-bunch wheatgrass Poaceae Agrostemma githago* Common corncockle Caryophyllaceae Agrostis alba* Red top Poaceae Agrostis exarata*
    [Show full text]
  • North American Rock Garden Society |
    Bulletin of the American Rock Garden Society VOL. 45 SUMMER 1987 NO. 3 CONTENTS VOL. 45 NO. 3 SUMMER 1987 A New Botanic Garden: Why and How—Cynthia Reed 109 Rumblings of a Silent Partner in the Rock Garden—Jim Borland .... 112 Neglected—Laura Louise Foster 118 In the Beginning: Easy Alpines and Rock Plants for Beginning Gardeners— Ann Lovejoy 119 A Nursery Owner's Response to "Thoughts and Trials of a Tenderfoot"—Norma Phillips 122 Summer Harebells—Derrick Rooney 123 Mount Cheeseman Weekend—Louise Sprosen 125 Gentiana montana—Fred Watson 127 Marvin E. Black, Plantsman—Sharon Collman, Dan Douglas 128 Naming the Chihuahuan Phloxes—Roy Davidson 129 Books Worth Knowing 132 Of Interest from the Chapters: Composites—Geoffrey Charlesworth 137 Creating a Nature Preserve in Your Own Back Yard- James L Hodging 142 European Notebook: The Garden at St. Triphon—Paul Halladin 144 Book Reviews: Rocky Mountain Alpines, Jean Williams, Editor 147 A Field Manual of the Ferns and Fern Allies of the United States and Canada by David B. Lellinger 149 Omnium-Gatherum—SFS 151 CALENDAR OF COMING EVENTS Eastern Winter Study Weekend (New England Chapter) Sheraton Tara Hotel January 29-31, 1988 Framingham, MA Western Winter Study Weekend (Western Chapter) Villa Hotel February 26-28, 1988 San Mateo, CA Annual Meeting (Columbia-Willamette Chapter) July, 1988 Cover picture: drawing of Physoplexis comosa (Phyteuma comosum) by Lisa Moran (Page 146) Published quarterly by the AMERICAN ROCK GARDEN SOCIETY, a tax-exempt, non-profit organization incorporated under the laws of the state of New Jersey. You are invited to join.
    [Show full text]
  • Host Choice in Rotylenchulus Species
    Available online at www.ijpab.com Rathore Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6878 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) Research Article Host Choice in Rotylenchulus Species Y. S. Rathore* Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur-208 024 (U.P.) India *Corresponding Author E-mail: [email protected] Received: 12.09.2018 | Revised: 9.10.2018 | Accepted: 16.10.2018 ABSTRACT The reniformis nematodes of the genus Rotylenchulus (Haplolaimidae: Nematoda) are sedentary semi-endoparasites of numerous crops. There are ten species out of which R. reniformis and R. parvus are important, and three species (R. amanictus, R. clavicadatus, R. leptus) are monophagous: two on monocots and one on Rosids. In general, Rotylenchulus species are capable of feeding from very primitive Magnoliids to plants of advanced category. Preference was distinctly observed towards the plants in Rosids (42.779%) followed by monocots (23.949%) and Asterids (21.755%). The SAI values were also higher for these groups of plants. The study on lineages further revealed intimate affinity to febids (25.594%), followed by commelinids (18.647%), malvids (16.088%), lamiids (11.883%), and campanulids (9.141%). Poales contribution within commelinids was 65.353%. Maximum affinity of Rotylenchulus species was observed by their association with plants from families Poaceae (7), followed by Fabaceae (6), Malvaceae (6), Asteraceae (4), Oleaceae (4), Soanaceae (4) and so on. Key words: Agiosperms, Gymnosperms, APG IV system, Reniform nemtodes, Monocots, Rosids, Asterids INTRODUCTION number of crops, whereas the other eight Plant parasitic nematodes pose a great species are of limited importance.
    [Show full text]
  • BULLETIN of the AMERICAN ROCK GARDEN SOCIETY
    BULLETIN of the AMERICAN ROCK GARDEN SOCIETY Vol. 22 January, 1964 No. 1 MARY BYMAN AND HER GARDEN — Olgcc Johnson 1 LEWISIAS OF THE SISKIYOUS — Marcel Le Piniec ........ 4 THREE ACQUISITIONS FROM THE NORTH CAROLINA PINE BARRENS — Leonard /. Uttal .... 6 FLOWERS ON BARE-FACED ROCKS — Leonard Wiley 7 BOOK REVIEW — Florence Free 9 HYPOXIS HIRSUTA — Elizabeth L. Freeman 10 FLOWERLESS SEPTEMBER IN THE HIGH SIERRA Shirley Backman 12 INTERCHANGE OVERFLOW 14 SOME SHADE-LOVING NATIVE ROCK GARDEN PLANTS PART II —.Robert H. Gaede 16 ERIGERON AUREUS—AM.S 18 NOTES FROM THE NORTHWEST — Sallie D. Allen 20 WELCOME! NEW MEMBERS 23 THE TRAIL OF THE WHITE IRIS — Mrs. Raleigh Harold .... 23 A FLORAL EMBLEM 25 NOTES ON COLD FRAME SASHES — Richard Langfelder .. 26 INTERCHANGE 27 OMNIUM-GATHERUM 29 DIRECTORATE BULLETIN Editor Emeritus DR. EDGAR T. WHERRY, University of Pennsylvania, Philadelphia 4, Pa. Editor ALBERT M. SUTTON 9608 26th Ave. N. W., Seattle, Washington 98107 AMERICAN ROCK GARDEN SOCIETY President HAROLD EPSTEIN, Larchmont, N. Y. Secretary E. L. TOTTEN, Hendersonville, N. C. Treasurer - ALEX D. REID, Mountain Lakes, N. J. Vice-Presidents LEONARD J. BUCK MRS. HARRY HAYWARD MRS. COULTER STEWART FREDERICK E. LANDMANN BRIAN O. MULLIGAN Directors— Term Expires 1964 MRS. DOROTHY E. HANSELL MISS ALIDA LIVINGSTON MRS. MORTIMER FOX Terra Expires 1965 DR. E. T. WHERRY MR. KURT W. BAASCH MR. BERNARD HARKNESS Term Expires 1966 Miss ALYS SUTCLIFFE MR. H. LINCOLN FOSTER DR. A. R. KRUCKEBERG Director of Seed Exchange BERNARD HARKNESS 5 Castle Park, Rochester 20, N. Y. REGIONAL CHAIRMEN Northwestern SCOTT A. MCCLANAHAN, 2643 38th Ave., W.
    [Show full text]
  • Appendix A: Assessment Tools
    Appendix A: Assessment Tools SOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT 208 Interactive Biodiversity Information System IBIS is an informational resource developed by the Northwest Habitat Institute (NHI) to promote the conservation of Northwest fish, wildlife, and their habitats through education and the distribution of timely, peer-reviewed scientific data. IBIS contains extensive information about Pacific Northwest fish, wildlife, and their habitats, but more noteworthy, IBIS attempts to reveal and analyze the relationships among these species and their habitats. NHI hopes to make the IBIS web site a place where students, scientists, resource managers or any other interested user can discover and analyze these relationships without having to purchase special software (such as geographic information systems) or hassle with the integration of disparate data sets. IBIS will, however, provide downloadable data for users who desire to perform more advanced analyses or to integrate their own data sets with IBIS data. Finally, NHI sees IBIS as not only a fish, wildlife, and habitat information distribution system but also as a peer-review system for species data. We acknowledge that in a system as extensive as IBIS, there are going to be errors as well as disagreement among scientists regarding the attributes of species and their relationships. NHI encourages IBIS users to provide feedback so we may correct errors and discuss discrepancies. The IBIS web site is in the early stages of development, however, NHI staff, with the support of many project partners, has been developing the data for over five years. The IBIS database was initially developed by NHI for Oregon and Washington during the Wildlife-Habitat Types in Oregon and Washington project.
    [Show full text]
  • National Park Service U.S
    National Park Service U.S. Department of the Interior Natural Resource Program Center Vascular Plant Inventory of North Cascades National Park Service Complex Natural Resource Technical Report NPS/NCCN/NRTR—2010/369 ON THE COVER Volunteers collect specimens near Easy Pass, North Cascades National Park, August 2003. Photograph courtesy of North Cascades National Park Service Complex. Vascular Plant Inventory of North Cascades National Park Service Complex Natural Resource Technical Report NPS/NCCN/NRTR—2010/369 Mignonne M. Bivin North Cascades National Park Service Complex 7280 Ranger Station Road Marblemount, WA 98267 Regina M. Rochefort North Cascades National Park Service Complex 810 State Route 20 Sedro Woolley, WA 98284 September 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Pollinator Adaptation and the Evolution of Floral Nectar Sugar
    doi: 10.1111/jeb.12991 Pollinator adaptation and the evolution of floral nectar sugar composition S. ABRAHAMCZYK*, M. KESSLER†,D.HANLEY‡,D.N.KARGER†,M.P.J.MULLER€ †, A. C. KNAUER†,F.KELLER§, M. SCHWERDTFEGER¶ &A.M.HUMPHREYS**†† *Nees Institute for Plant Biodiversity, University of Bonn, Bonn, Germany †Institute of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland ‡Department of Biology, Long Island University - Post, Brookville, NY, USA §Institute of Plant Science, University of Zurich, Zurich, Switzerland ¶Albrecht-v.-Haller Institute of Plant Science, University of Goettingen, Goettingen, Germany **Department of Life Sciences, Imperial College London, Berkshire, UK ††Department of Ecology, Environment and Plant Sciences, University of Stockholm, Stockholm, Sweden Keywords: Abstract asterids; A long-standing debate concerns whether nectar sugar composition evolves fructose; as an adaptation to pollinator dietary requirements or whether it is ‘phylo- glucose; genetically constrained’. Here, we use a modelling approach to evaluate the phylogenetic conservatism; hypothesis that nectar sucrose proportion (NSP) is an adaptation to pollina- phylogenetic constraint; tors. We analyse ~ 2100 species of asterids, spanning several plant families pollination syndrome; and pollinator groups (PGs), and show that the hypothesis of adaptation sucrose. cannot be rejected: NSP evolves towards two optimal values, high NSP for specialist-pollinated and low NSP for generalist-pollinated plants. However, the inferred adaptive process is weak, suggesting that adaptation to PG only provides a partial explanation for how nectar evolves. Additional factors are therefore needed to fully explain nectar evolution, and we suggest that future studies might incorporate floral shape and size and the abiotic envi- ronment into the analytical framework.
    [Show full text]