Reassessment of Islamic Astronomical Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Timeline 2 Geocentric Model
Ancient Astronomy Many ancient cultures were interested in the night sky • Calenders • Prediction of seasons • Navigation 1 Timeline Astronomy timeline • ∼ 3000 B.C. Stonehenge • 2136 B.C. First record of solar eclipse by Chinese astronomers • 613 B.C. First record of Halley’s comet by Zuo Zhuan (China) • ∼ 270 B.C. Aristarchus proposes Earth goes around Sun (not a popular idea at the time) • ∼ 240 B.C. Eratosthenes estimates Earth’s circumference • ∼ 130 B.C. Hipparchus develops first accurate star map (one of the first to use R.A. and Dec) 2 Geocentric model The Geocentric Model • Greek philosopher Aristotle (384-322 B.C.) • Uniform circular motion • Earth at center of Universe Retrograde Motion • General motion of planets east- ward • Short periods of westward motion of planets • Then continuation eastward How did the early Greek philosophers make retrograde motion consistent with uniform circular motion? 3 Ptolemy Ptolemy’s Geocentric Model • Planet moves around a small circle called an epicycle • Center of epicycle moves along a larger cir- cle called a deferent • Center of deferent is at center of Earth (sort of) Ptolemy’s Geocentric Model • Ptolemy invented the device called the eccentric • The eccentric is the center of the deferent • Sometimes the eccentric was slightly off center from the center of the Earth Ptolemy’s Geocentric Model • Uniform circular motion could not account for speed of the planets thus Ptolemy used a device called the equant • The equant was placed the same distance from the eccentric as the Earth, but on the -
A Philosophical and Historical Analysis of Cosmology from Copernicus to Newton
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton Manuel-Albert Castillo University of Central Florida Part of the History of Science, Technology, and Medicine Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Castillo, Manuel-Albert, "Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton" (2017). Electronic Theses and Dissertations, 2004-2019. 5694. https://stars.library.ucf.edu/etd/5694 SCIENTIFIC TRANSFORMATIONS: A PHILOSOPHICAL AND HISTORICAL ANALYSIS OF COSMOLOGY FROM COPERNICUS TO NEWTON by MANUEL-ALBERT F. CASTILLO A.A., Valencia College, 2013 B.A., University of Central Florida, 2015 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in the department of Interdisciplinary Studies in the College of Graduate Studies at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Donald E. Jones ©2017 Manuel-Albert F. Castillo ii ABSTRACT The purpose of this thesis is to show a transformation around the scientific revolution from the sixteenth to seventeenth centuries against a Whig approach in which it still lingers in the history of science. I find the transformations of modern science through the cosmological models of Nicholas Copernicus, Johannes Kepler, Galileo Galilei and Isaac Newton. -
1 Science LR 2711
A Scientific Response to the Chester Beatty Library Collection Contents The Roots Of Modern Science A Scientific Response To The Chester Beatty Library Collection 1 Science And Technology 2 1 China 3 Science In Antiquity 4 Golden Age Of Islamic Science 5 Transmission Of Knowledge To Europe 6 A Scientific Response To The Chester Beatty Library Collections For Dublin City Of Science 2012 7 East Asian Collections The Great Encyclopaedia of the Yongle Reign (Yongle Dadian) 8 2 Phenomena of the Sky (Tianyuan yuli xiangyi tushuo) 9 Treatise on Astronomy and Chronology (Tianyuan lili daquan) 10 Illustrated Scrolls of Gold Mining on Sado Island (Sado kinzan zukan) 11 Islamic Collections Islamic Medicine 12 3 Medical Compendium, by al-Razi (Al-tibb al-mansuri) 13 Encyclopaedia of Medicine, by Ibn Sina (Al-qanun fi’l-tibb) 14 Treatise on Surgery, by al-Zahrawi (Al-tasrif li-man ‘ajiza ‘an al-ta’lif) 15 Treatise on Human Anatomy, by Mansur ibn Ilyas (Tashrih al-badan) 16 Barber –Surgeon toolkit from 1860 17 Islamic Astronomy and Mathematics 18 The Everlasting Cycles of Lights, by Muhyi al-Din al-Maghribi (Adwar al-anwar mada al-duhur wa-l-akwar) 19 Commentary on the Tadhkira of Nasir al-Din al-Tusi 20 Astrolabes 21 Islamic Technology 22 Abbasid Caliph, Ma’mum at the Hammam 23 European Collections European Science of the Middle Ages 24 4 European Technology: On Military Matters (De Re Militari) 25 European Technology: Concerning Military Matters (De Re Militari) 26 Mining Technology: On the Nature of Metals (De Re Metallica) 27 Fireworks: The triumphal -
The Baader Planetarium
1 THE BAADER PLANETARIUM INSTRUCTION MANUAL BAADER PLANETARIUM Zur Sternwarte M 82291 Mammendorf M Tel. 08145/8802 M Fax 08145/8805 www.baader-planetarium.de M [email protected] M www.celestron-deutschland.de 2 HINTS/TECHNICAL 1. YOUR PLANETARIUM OPERATES BY A DC MINIATUR MOTOR. IT'S LIFETIME IS THEREFORE LIMITED. PLEASE HAVE THE MOTOR USUALLY RUN IN THE SLOWEST SPEED POSSIBLE. FOR EXHIBITIONS OR PERMANENT DISPLAY A TIME LIMIT SWITCH IS A MUST. 2. DON'T HAVE THE SUNBULB WORKING IN THE HIGHEST STEP CONTINUOUSLY. THIS STEP IS FORSEEN ONLY FOR PROJECTING THE HEAVENS IF THE PLASTIC SUNCAP IS REMOVED. 3. CLOSE THE SPHERE AT ANY TIME POSSIBLE. HINTS/THEORETICAL 1. ESPECIALLY GIVE ATTENTION TO PAGE 5-3.F OF THE MANUAL. 2. CLOSE THE SPHERE SO THAT THE ORBIT LINES OF THE PLANETS INSIDE FIT CORRECTLY PAGE 6-5.A. 3. USUALLY DEMONSTRATE BY KEEPING THE EARTH'S ORBIT HORIZONTAL. 4. A SPECIAL EXPLANTATION FOR THE SEASONS IS POSSIBLE IF YOU TURN THE SPHERE TO A HORIZONTAL CELESTIAL EQUATOR. NOW THE EARTH MOVES UP AND DOWN ON ITS WAY AROUND THE SUN. MENTION THE APPEARING LIGHTPHASES. 5. REMEMBER THE GREATEST FINDING OF COPERNICUS: THE DISTANCE EARTH - SUN IS NEARLY ZERO COMPARED TO THE DISTANCE OF THE FIXED STARS. IN REALITY THE WHOLE SOLAR SYSTEM IN THE CELESTIAL SPHERE WOULD BE A PINPOINT IN THE CENTER. THIS HELPS TO UNDERSTAND THE MINUTE STELLAR PARALLAXE AND THE "FIXED" POSITION OF THE STARS COMPARED TO THE SUN'S CHANGING HEIGHT OVER THE HORIZON DURING THE YEAR. 3 INTRODUCTION For countless centuries the stars have been objects of mystery. -
The Magic of the Atwood Sphere
The magic of the Atwood Sphere Exactly a century ago, on June Dr. Jean-Michel Faidit 5, 1913, a “celestial sphere demon- Astronomical Society of France stration” by Professor Wallace W. Montpellier, France Atwood thrilled the populace of [email protected] Chicago. This machine, built to ac- commodate a dozen spectators, took up a concept popular in the eigh- teenth century: that of turning stel- lariums. The impact was consider- able. It sparked the genesis of modern planetariums, leading 10 years lat- er to an invention by Bauersfeld, engineer of the Zeiss Company, the Deutsche Museum in Munich. Since ancient times, mankind has sought to represent the sky and the stars. Two trends emerged. First, stars and constellations were easy, especially drawn on maps or globes. This was the case, for example, in Egypt with the Zodiac of Dendera or in the Greco-Ro- man world with the statue of Atlas support- ing the sky, like that of the Farnese Atlas at the National Archaeological Museum of Na- ples. But things were more complicated when it came to include the sun, moon, planets, and their apparent motions. Ingenious mecha- nisms were developed early as the Antiky- thera mechanism, found at the bottom of the Aegean Sea in 1900 and currently an exhibi- tion until July at the Conservatoire National des Arts et Métiers in Paris. During two millennia, the human mind and ingenuity worked constantly develop- ing and combining these two approaches us- ing a variety of media: astrolabes, quadrants, armillary spheres, astronomical clocks, co- pernican orreries and celestial globes, cul- minating with the famous Coronelli globes offered to Louis XIV. -
Using Crowdsourcing to Prioritize Bicycle Network Improvements
GEORGIA DOT RESEARCH PROJECT 14-39 FINAL REPORT USING CROWDSOURCING TO PRIORITIZE BICYCLE NETWORK IMPROVEMENTS OFFICE OF RESEARCH 15 KENNEDY DRIVE FOREST PARK, GA 30297-2534 This page intentionally left blank. GDOT Research Project RP14-39 Final Report Using Crowdsourcing to Prioritize Bicycle Network Improvements By Dr. Kari E. Watkins Assistant Professor School of Civil and Environmental Engineering Georgia Institute of Technology Dr. Chris LeDantec Assistant Professor School of Literature, Media and Communication Georgia Institute of Technology Contract with Georgia Department of Transportation In cooperation with U.S. Department of Transportation Federal Highway Administration April 2016 The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. i This page intentionally left blank. ii 1.Report No.: 2. Government Accession No.: 3. Recipient's Catalog No.: FHWA-GA-16-1439 4. Title and Subtitle: 5. Report Date: Using Crowdsourcing to Prioritize Bicycle April 2016 Network Improvements 6. Performing Organization Code 7. Author(s): 8. Performing Organ. Report No.: Dr. Kari E. Watkins, PE (P.I.), Dr. Chris LeDantec (co-P.I), Aditi Misra, Mariam Asad, Charlene Mingus, Cary Bearn, Alex Poznanski, Anhong Guo, Rohit Ammanamanchi, Vernon Gentry, Aaron Gooze 9. Performing Organization Name and Address: 10. Work Unit No. Georgia Institute of Technology 11. Contract or Grant No.: School of Civil and Environmental Engineering GDOT Research Project No. -
The Roots of Astronomy
The Roots of Astronomy • Already in the stone and bronze ages, human cultures realized the cyclic nature of motions in the sky. • Monuments dating back to ~ 3000 B.C. show alignments with astronomical significance. • Those monuments were probably used as calendars or even to predict eclipses. Stonehenge • Constructed: 3000 – 1800 B.C. Summer solstice Heelstone • Alignments with locations of sunset, sunrise, moonset and moonrise at summer and winter solstices • Probably used as calendar. Other Examples All Over the World Big Horn Medicine Wheel (Wyoming) Other Examples All Over the World (2) Caracol (Maya culture, approx. A.D. 1000) Ancient Greek Astronomers (1) • Unfortunately, there are no written documents about the significance of stone and bronze age monuments. • First preserved written documents about ancient astronomy are from ancient Greek philosophy. • Greeks tried to understand the motions of the sky and describe them in terms of mathematical (not physical!) models. Ancient Greek Astronomers (2) Models were generally wrong because they were based on wrong “first principles”, believed to be “obvious” and not questioned: 1. Geocentric Universe: Earth at the Center of the Universe. 2. “Perfect Heavens”: Motions of all celestial bodies described by motions involving objects of “perfect” shape, i.e., spheres or circles. Ancient Greek Astronomers (3) • Eudoxus (409 – 356 B.C.): Model of 27 nested spheres • Aristotle (384 – 322 B.C.), major authority of philosophy until the late middle ages: Universe can be divided in 2 parts: 1. Imperfect, -
Models for Earth and Maps
Earth Models and Maps James R. Clynch, Naval Postgraduate School, 2002 I. Earth Models Maps are just a model of the world, or a small part of it. This is true if the model is a globe of the entire world, a paper chart of a harbor or a digital database of streets in San Francisco. A model of the earth is needed to convert measurements made on the curved earth to maps or databases. Each model has advantages and disadvantages. Each is usually in error at some level of accuracy. Some of these error are due to the nature of the model, not the measurements used to make the model. Three are three common models of the earth, the spherical (or globe) model, the ellipsoidal model, and the real earth model. The spherical model is the form encountered in elementary discussions. It is quite good for some approximations. The world is approximately a sphere. The sphere is the shape that minimizes the potential energy of the gravitational attraction of all the little mass elements for each other. The direction of gravity is toward the center of the earth. This is how we define down. It is the direction that a string takes when a weight is at one end - that is a plumb bob. A spirit level will define the horizontal which is perpendicular to up-down. The ellipsoidal model is a better representation of the earth because the earth rotates. This generates other forces on the mass elements and distorts the shape. The minimum energy form is now an ellipse rotated about the polar axis. -
Al-Biruni: a Great Muslim Scientist, Philosopher and Historian (973 – 1050 Ad)
Al-Biruni: A Great Muslim Scientist, Philosopher and Historian (973 – 1050 Ad) Riaz Ahmad Abu Raihan Muhammad bin Ahmad, Al-Biruni was born in the suburb of Kath, capital of Khwarizmi (the region of the Amu Darya delta) Kingdom, in the territory of modern Khiva, on 4 September 973 AD.1 He learnt astronomy and mathematics from his teacher Abu Nasr Mansur, a member of the family then ruling at Kath. Al-Biruni made several observations with a meridian ring at Kath in his youth. In 995 Jurjani ruler attacked Kath and drove Al-Biruni into exile in Ray in Iran where he remained for some time and exchanged his observations with Al- Khujandi, famous astronomer which he later discussed in his work Tahdid. In 997 Al-Biruni returned to Kath, where he observed a lunar eclipse that Abu al-Wafa observed in Baghdad, on the basis of which he observed time difference between Kath and Baghdad. In the next few years he visited the Samanid court at Bukhara and Ispahan of Gilan and collected a lot of information for his research work. In 1004 he was back with Jurjania ruler and served as a chief diplomat and a spokesman of the court of Khwarism. But in Spring and Summer of 1017 when Sultan Mahmud of Ghazna conquered Khiva he brought Al-Biruni, along with a host of other scholars and philosophers, to Ghazna. Al-Biruni was then sent to the region near Kabul where he established his observatory.2 Later he was deputed to the study of religion and people of Kabul, Peshawar, and Punjab, Sindh, Baluchistan and other areas of Pakistan and India under the protection of an army regiment. -
In. ^Ifil Fiegree in PNILOSOPNY
ISLAMIC PHILOSOPHY OF SCIENCE: A CRITICAL STUDY O F HOSSAIN NASR Dis««rtation Submitted TO THE Aiigarh Muslim University, Aligarh for the a^ar d of in. ^Ifil fiegree IN PNILOSOPNY BY SHBIKH ARJBD Abl Under the Kind Supervision of PROF. S. WAHEED AKHTAR Cbiimwa, D«ptt. ol PhiloMphy. DEPARTMENT OF PHILOSOPHY ALIGARH IWIUSLIIM UNIVERSITY ALIGARH 1993 nmiH DS2464 gg®g@eg^^@@@g@@€'@@@@gl| " 0 3 9 H ^ ? S f I O ( D .'^ ••• ¥4 H ,. f f 3« K &^: 3 * 9 m H m «< K t c * - ft .1 D i f m e Q > i j 8"' r E > H I > 5 C I- 115m Vi\ ?- 2 S? 1 i' C £ O H Tl < ACKNOWLEDGEMENT In the name of Allah« the Merciful and the Compassionate. It gives me great pleasure to thanks my kind hearted supervisor Prof. S. Waheed Akhtar, Chairman, Department of Philosophy, who guided me to complete this work. In spite of his multifarious intellectual activities, he gave me valuable time and encouraged me from time to time for this work. Not only he is a philosopher but also a man of literature and sugge'sted me such kind of topic. Without his careful guidance this work could not be completed in proper time. I am indebted to my parents, SK Samser All and Mrs. AJema Khatun and also thankful to my uncle Dr. Sheikh Amjad Ali for encouraging me in research. I am also thankful to my teachers in the department of Philosophy, Dr. M. Rafique, Dr. Tasaduque Hussain, Mr. Naushad, Mr. Muquim and Dr. Sayed. -
Exploring the Reasons for the Seasons Using Google Earth, 3D Models, and Plots
International Journal of Digital Earth ISSN: 1753-8947 (Print) 1753-8955 (Online) Journal homepage: http://www.tandfonline.com/loi/tjde20 Exploring the reasons for the seasons using Google Earth, 3D models, and plots Declan G. De Paor, Mladen M. Dordevic, Paul Karabinos, Stephen Burgin, Filis Coba & Steven J. Whitmeyer To cite this article: Declan G. De Paor, Mladen M. Dordevic, Paul Karabinos, Stephen Burgin, Filis Coba & Steven J. Whitmeyer (2016): Exploring the reasons for the seasons using Google Earth, 3D models, and plots, International Journal of Digital Earth, DOI: 10.1080/17538947.2016.1239770 To link to this article: http://dx.doi.org/10.1080/17538947.2016.1239770 © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 21 Oct 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjde20 Download by: [141.105.107.244] Date: 21 October 2016, At: 09:31 INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016 http://dx.doi.org/10.1080/17538947.2016.1239770 Exploring the reasons for the seasons using Google Earth, 3D models, and plots Declan G. De Paora , Mladen M. Dordevicb , Paul Karabinosc , Stephen Burgind , Filis Cobae and Steven J. Whitmeyerb aDepartments of Physics and Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA; bDepartment of Geology and Environmental Science, James Madison University, Harrisonburg, VA, USA; cDepartment of Geosciences, Williams College, Williamstown, MA, USA; dDepartment of Curriculum and Instruction, University of Arkansas, Fayetteville, AR, USA; eDepartment of Physics, Old Dominion University, Norfolk, VA, USA ABSTRACT ARTICLE HISTORY Public understanding of climate and climate change is of broad societal Received 7 May 2016 importance. -
The Chandelier Model by Richard Thompson on April 27Th, 1976
September 2008 The Chandelier Model by Richard Thompson On April 27th, 1976, Srila Prabhupada wrote a letter to Svarupa Damodara Das discussing the universe as described in the 5th Canto of the Srimad Bhagavatam. He asked his disciples with Ph.D’s to study the 5th Canto with the aim of making a model of the universe for a Vedic Planetarium. In this essay I will outline how such a model could be designed. This model has been called the “chandelier model” since it hangs down from a point of suspension situated on the ceiling above it. Srila Prabhupada said, “My final decision is that the universe is just like a tree, with root upwards. Just as a tree has branches and leaves so the universe is also composed of planets which are fixed up in the tree like the leaves, flowers, fruits, etc. of the tree. The pivot is the pole star, and the whole tree is rotating on this pivot. Mount Sumeru is the center, trunk, and is like a steep hill... The tree is turning and therefore, all the branches and leaves turn with the tree. The planets have their fixed orbits, but still they are turning with the turning of the great tree. There are pathways leading from one planet to another made of gold, copper, etc., and these are like the branches. Distances are also described in the 5th Canto just how far one planet is from another. We can see that at night, how the whole planetary system is turning around, the pole star being the pivot.