Photoprotection

Total Page:16

File Type:pdf, Size:1020Kb

Photoprotection Photoprotection Review Article Photoprotection Authors: ABSTRACT Gabriel Teixeira Gontijo1 2 Maria Cecília Carvalho Pugliesi Introduction: Incidence of skin cancer has increased signifi cantly in recent decades, Fernanda Mendes Araújo3 corresponding to a public health problem in many countries. Skin is the organ most affected 1Professor of Dermatology – by the deleterious effects of ultraviolet radiation and the association between sun exposure Universidade Federal de Minas Gerais; Preceptor of the and skin cancer is well-documented. Objective: To conduct a comprehensive review of the Dermatologic Surgery Department main photoprotection measures. Method: We conducted searches on MEDLINE from June at Hospital das Clinicas – 22 through August 18. Descriptive studies, review, and comparative studies were analyzed Universidade Federal de Minas Gerais together. Results: Eleven articles about a review of photoprotection, effects of ultraviolet 2Resident in Dermatology, UFMG radiation on the skin, prevalence of the use of sunscreens, and behavioral measures among 3 MD adults and adolescents were reported were selected. Conclusions: The use of broad-spectrum Correspondence to: sunscreens, besides simple behavioral measures, appears to have a major impact on prevention Gabriel Gontijo of skin cancer. Praça da Bandeira, nº 170, 4º andar Keywords: ultraviolet light, sunlight, ultraviolet fi lters, squamous cell carcinoma, basal cell Bairro Mangabeiras – Belo Horizonte – MG carcinoma, melanoma, vitamin D, stability of cosmetics. CEP: 30130-050 Tel: (31) 3227-7733 INTRODUCTION E-mail: gabrielgontijo@terra. com.br In the USA, statistics show that 1 in 5 people in this country will develop skin cancer throughout life. About one million cases of skin cancer are diagnosed every year, and the incidence of melanoma is growing faster than any other type of cancer.1-3 In Brazil, according to data obtained from skin cancer prevention campaigns of the Brazilian Society of Dermatology (SBD), it is estimated that 76% of men and 62% of women expose themselves to sunlight without any protection. Simple behavioral measures contribute signifi cantly to reduce the risk of cutaneous neoplasias.1-4 Current recommendations for adequate sun protection are based on the following triad: use of appropriate clothing, broad spectrum sunscreens, sun exposure avoidance from 10 AM to 4 PM.1-2,4 OBJECTIVE Perform a systematic literature review on the principal measures of photoprotection, including the recent FDA guidelines and emphasizing primary prevention strategies to reduce risk of skin cancer. MATERIAL AND METHODS Search Strategy The search was conducted in MEDLINE database, using the following keywords: sunscreen, photoprotection, ultraviolet rays, sunlight, ultraviolet fi lters, squamous cell carcinoma, basal cell carcinoma, melanoma, vitamin D, and cosmetic stability, cross-linked with other words, such as history, methods, classifi cation, agents, effi cacy, statistics, and review. Searches were carried out in English from June 22nd to August 18th, 2009. Recebido em: 10/09/2009 Studies Selection Criteria Aprovado em: 03/11/2009 We selected 11 articles, 9 descriptive or review and 2 comparative, randomized, and Declaramos a inexistência de confl itos de interesse. blind trials. 186 Surgical & Cosmetic Dermatology Surgical & Cosmetic Dermatology 2009;1(4):186-191 RESULTS Photoaging, immunosuppression and photocarcinogenesis Studies Main Features occur as delayed reaction.1,4-5 Of the selected studies, 2 comprised a comprehensive UVA radiation can activate endogenous photosensitizing review of photoprotection, including the FDA most recent agents (porphyrin, riboflavin and quinones), producing guidelines for the elaboration of labels of sunscreens associated oxygen free radicals (direct action on conjunctive tissue). It is with insect repellents. Most studies (6) demonstrated the not directly absorbed by biological targets, but drastically alters deleterious effects of ultraviolet radiation on the skin, and the cell function. It has stronger photosensitizing action to in 3 articles, were evaluated the prevalence of sunscreen use exogenous and systemic topical agents, and causes more tanning and behavioral measures among young adults and adolescents than erythema, requiring 1000 times more UVA than UVB plus the use of artificial tanning and lights. The relationship to produce erythema. It also has greater immunosuppressive between vitamin D synthesis and use of sunscreens has been effect than UVB. 4,6-8 UVA tanning is caused by melanin addressed in 3 articles. oxidation and can be divided into: 1) immediate pigment darkening (IPD), which occurs after seconds of exposure to Studies Main Results UVA and visible light, disappearing 2 hours after exposure; 2) 1. Physical Aspects persistent pigment darkening (PPD), which occurs between 2 Ultraviolet radiation (UVR) and 24 hours after exposure.4,9 - Sun UVR is divided according to wavelength: - UVA 320-400 nm: UVA 1: 340-400 nm (long wave)/ 2. Photoprotective Agents UVA2: 320-340 nm (short wave) They are divided into: - UVB 290-320 nm - natural: occurring in nature, in the environment (ozone, - UVC 270-290 nm clouds, fog, pollutants), and include the skin itself; UVC radiation is completely filtered by the ozone layer - physical: clothes, hats, makeup, sunglasses, glasses; in stratosphere, not reaching the earth’s surface. UVB radiation - sunscreens; is composed of short waves, which have a lot of energy and - antioxidants. less penetration in the ground. Because the UVA waves are longer, they penetrate more in the earth’s surface and are Natural photoprotective agents (atmosphere and environment) less influenced by atmospheric conditions, reaching deeper The ozone layer allows passage of UVA and visible light, into the skin. The proportion of UVR reaching the earth is filters UVC and most UVB rays. Its thickness is not uniform, 20 UVA: 1 UVB.4 The amount of UVR reaching the earth being thicker toward the poles and thinner in the region near depends on several factors, including latitude, altitude, season, the equator — every degree of latitude increases 3% of UVR time of day (between 10 AM and 4 PM the sun’s rays are reaching the earth. It also varies according to altitude: the directed more perpendicular), presence of clouds, and the higher the greater the penetration of UVR — an increase ozone layer. 3-4 of each 300 meters increases UVR by 10%. It is estimated that a decrease of 1% in its thickness increases by 1% to 2% Effects of UVR on skin the mortality from melanoma.4,6 Clouds, pollutants, fog: by When UVR reaches the skin, some is reflected and some dispersion, they reduce UVR reaching the earth’s surface.4 is absorbed. UVR absorbed by the skin is responsible for the Reflective surfaces: radiation reflected by the terrestrial production of free radicals, reactive and toxic oxygen, with surface does not reach the skin. Most soils reflect about 10% consequent damage to DNA, occurrence of mutations and of UVR. Snow, ice, white sand, glass and metal reflect 85% of cancer (actinic keratoses, BCC, SCC, melanoma).4-6 It also UVB. Water is not a good photoprotective, since UVR can leads to immunosuppression and participate in pathogenesis penetrate up to 60 cm below water surface. Trees with dense of photodermatoses, lentigines, and photoaging.4 canopies and foliage are offer very high protection, including UVB radiation is the main responsible for skin damage, UVA protection.4 both acute and chronic.2,4-6 Acute reaction is characterized by redness, swelling, burning, and pigment darkening, Natural biological agents followed by later tanning, increased mitoses, both epidermis The skin reflects, diffuses, or absorbs UVR and visible and dermis thickening, and vitamin D synthesis. Erythema light through protein (tryptophan, tyrosine), or chromophores, induced by UVB starts after 4 AM, with peak between 8 which are molecules that absorb light energy. The main and mid-night, and subsides after mid-night. UVB tanning chromophore is melanin, a large opaque molecule that blocks is caused by increased melanin and occurs after 72 hours. and diffuses UVR, turning light energy into heat.4 Surgical & Cosmetic Dermatology 187 Photoprotection 3. Physical Agents state, then back to the steady state, releasing energy as heat. Clothing is an excellent photoprotective measure, Upon returning to the steady state, it recovers the ability to especially for UVB. The ability of protection is measured in repeatedly absorb UVR (photostability). The efficiency of ultraviolet protection factor (UPF). The test is performed in chromophore absorption is directly related to its chemical vitro and measures the fabric reflectance to UVR through structure. The greater the number of conjugated double bonds spectrophotometer. In order to have good sun protection, the greater the protection.4.9 clothing must have a minimum of SPF 30.4 The following Photounstable filter: undergoes transformation or are some factors that influence UPF: weave (open or closed), degradation in its structure and quickly loses the ability to thread thickness, moisture, new clothes, and proximity to the absorb and protect.6 skin. There are already washing powder with additives that Photoreactive filter: is a filter that in the excited state absorb UVR and increase UPF (Tinosorb). Its mechanism of interacts with skin and environment, producing toxic reactions.4 action is based on the presence of ultraviolet chemical absorbers Protection against UVB is easier; UVB sunscreens are (stilbene disulfonic acid triazine backbone), which do not photostable and effective. The choice is more difficult for change the texture or color of the fabric. Clothes washed 5 UVA filters, which often have questionable efficacy and are times with this type of soap may have UPF increased by 400%.4 more unstable.4,7,9 Large-brim hats (> 7.5 cm) provide a SPF 7 for the nose, 3 for the malar regions, 5 for the neck, and 2 for the chin; UVB filters medium-brim hats (between 2.5 and 7.5 cm) offer SPF 3 for PABA – high UVB protection, stain clothes, induces the nose, 2 for the cheeks, 2 for the neck, and 0 for the chin; photoallergy, carcinogen (?), and is virtually out of the market.
Recommended publications
  • Safety of Oxybenzone: Putting Numbers Table
    Safety of Oxybenzone: Putting Numbers Table. Years of Daily Sunscreen Application Required by an Average US Woman to Reach Systemic Levels Into Perspective of Oxybenzone per Unit of Body Mass Equivalent to Those Given to Immature Rats10 xybenzone, an organic UV-B and short-wave UV-A filter, has been available for over 40 years1; Scenario Scenario Scenario it is widely used in sunscreens and other con- Characteristic 1 2 3 O 2 sumer products in the United States. The Centers for Dis- Body surface area covered, % 100 100 25 ease Control and Prevention has estimated the preva- Application dose, mg/cm2/d211 lence of oxybenzone exposure in the general US Application amount required, 30.00 15.00 3.75 population to be 96.8%.3 In the past few years, oxyben- mL/d Time required, y 34.6 69.3 277.0 zone has received increasing attention as a potentially harmful compound. Initial concerns arose when a re- port demonstrated systemic absorption of oxybenzone in humans at a rate of 1% to 2% after topical applica- For the purposes of this estimation, a generous in-use dose of 1 mg/cm2 was used,13-16 and it was assumed that cov- tion.4 Similar or higher rates of cutaneous absorption in 5-9 erage of 25% of the human BSA was limited to the face, human subjects have been observed. The potential for neck, hands, and arms.17 biological effects, however, were first published in a study 10 by Schlumpf et al demonstrating uterotropic effects in Results. The numbers of years of daily application re- immature rats after oral administration of oxybenzone; quired to obtain the equivalent amount of sunscreen un- it should be noted that the estrogenic effect detected was der the 3 scenarios are listed in the Table.
    [Show full text]
  • GAO-18-61, SUNSCREEN: FDA Reviewed Applications For
    United States Government Accountability Office Report to Congressional Committees November 2017 SUNSCREEN FDA Reviewed Applications for Additional Active Ingredients and Determined More Data Needed GAO-18-61 November 2017 SUNSCREEN FDA Reviewed Applications for Additional Active Ingredients and Determined More Data Needed Highlights of GAO-18-61, a report to congressional committees Why GAO Did This Study What GAO Found Using sunscreen as directed with other The Food and Drug Administration (FDA), within the Department of Health and sun protective measures may help Human Services, implemented requirements for reviewing applications for reduce the risk of skin cancer—the sunscreen active ingredients within time frames set by the Sunscreen Innovation most common form of cancer in the Act, which was enacted in November 2014. For example, the agency issued a United States. In the United States, guidance document on safety and effectiveness testing in November 2016. sunscreen is considered an over-the- counter drug, which is a drug available As of August 2017, all applications for sunscreen active ingredients remain to consumers without a prescription. pending after the agency determined more safety and effectiveness data are Some sunscreen active ingredients not needed. By February 2015, FDA completed its initial review of the safety and currently marketed in the United States effectiveness data for each of the eight pending applications, as required by the have been available in products in act. FDA concluded that additional data are needed to determine that the other countries for more than a ingredients are generally recognized as safe and effective (GRASE), which is decade. Companies that manufacture needed so that products using the ingredients can subsequently be marketed in some of these ingredients have sought the United States without FDA’s premarket approval.
    [Show full text]
  • Research Article Development and Validation of a Stability Indicating
    Hindawi Publishing Corporation ISRN Chromatography Volume 2013, Article ID 506923, 12 pages http://dx.doi.org/10.1155/2013/506923 Research Article Development and Validation of a Stability Indicating RP-HPLC Method for the Determination of Two Sun Protection Factors (Koptrizon and Tinosorb S) in Topical Pharmaceutical Formulations Using Experimental Designs Chinmoy Roy1,2 and Jitamanyu Chakrabarty2 1 Analytical Research and Development, Dr. Reddy’s Laboratories Ltd., Bachupally, Hyderabad, Andhra Pradesh 500090, India 2 Department of Chemistry, National Institute of Technology, Durgapur, West Bengal 713209, India Correspondence should be addressed to Chinmoy Roy; [email protected] Received 11 March 2013; Accepted 15 April 2013 Academic Editors: C. Akbay and J. A. P. Coelho Copyright © 2013 C. Roy and J. Chakrabarty. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel, simple, validated stability indicating HPLC method was developed for determination of Koptrizon and Tinosorb S. Stability indicating power of the method was established by forced degradation study. The chromatographic separation was achieved with Waters X Bridge C18 column, by using mobile phase consisting of a mixture of acetonitrile : tetrahydrofuran : water (38 : 38 : 24, v/v/v). The method fulfilled validation criteria and was shown to be sensitive, with limits of detection (LOD) and quantitation −1 −1 (LOQ) of 0.024 and 0.08 gmL for Koptrizon and 0.048 and 0.16 gmL for Tinosorb S, respectively. The developed method is validated for parameters like precision, accuracy, linearity, solution stability, specificity, and ruggedness as per ICH norms.
    [Show full text]
  • Table 1 - Experimental and Predicted Physical-Chemical Parameters of the Most Recently Investigated UV-Absorbers
    Table 1 - Experimental and predicted physical-chemical parameters of the most recently investigated UV-absorbers. INCI name (INN/XAN) Chemical structure Brand name Absorption Molecula LogP Water solubility Melting spectrum range r weight (mg/L) point (°C) (g/mol)4 diethylamino Uvinul® A Plus UVA1 5.7-6.21 <0.01 (20°C) 1 54; 314 hydroxybenzoyl hexyl 397.515 (dec.) 1 benzoate Butyl Eusolex® 9020, UVA 310.393 4.514 2.2 (25°C)4 83.54 methoxydibenzoylmetha Parsol® 1789 ne (avobenzone) 4-methylbenzylidene Eusolex® 6300 UVB 258.397 4.95 1.3 (20°C) 66–68 camphor (enzacamene) Parsol® 5000 Uvinul® MBC 95 Octocrylene Eusolex® OCR, UVB 361.485 6.783 0.00383 N/A (octocrilene) Parsol® 340, Uvinul® N539T, NeoHeliopan® 303 USP isoamyl p- Neo Heliopan® UVB 248.322 3.61 4.9 (25°C)1 N/A methoxycinnamate E1000 (amiloxate) Ethylhexyl triazone Uvinul® T150 UVB 823.092 > 7(20 °C) 6 < 0.001 (20.0 °C) 6 1296 Ethylhexyl Parsol® MCX, UVB 290.403 6.14 0.041 (24 °C and N/A methoxycinnamate Heliopan® New pH 7.1) 4 (octinoxate) Ethylhexyl dimethyl Escalol™ 507 UVB 277.4084 5.774 0.54 (25 °C) 4 N/A PABA (padimate-O) Arlatone 507 Eusolex 6007 benzophenone-3 Eusolex® 4360 UVA2+ UVB 228.247 3.72 3.7 (20°C) 2 62-652 (oxybenzone) bis-ethylhexyloxyphenol Tinosorb® S UVA1+UVB 627.826 12.61 <10-4 80.401 methoxyphenol triazine (bemotrizinol) Phenylbenzimidazole Eusolex® 232 UVA2+ UVB 274.2945 -1.1 (pH 5) > 30% (As sodium N/A sulfonic acid Parsol® HS -2.1 (pH 8)5 or (ensulizole) Neo Heliopan® triethanolammoniu Hydro m salt at 20°C) 5 1 (3) 2 (34) 3 (44) 4 Pubchem 5 SCCP/1056/06 Opinion on phenylbenzimidazole sulfonic acid and its salts 6 BASF safety data sheet Table 2 – In vitro studies for the assessment of skin permeation/penetration of sunscreens.
    [Show full text]
  • Two-Step Semi-Microscale Preparation of a Cinnamate Ester Sunscreen Analog W
    In the Laboratory edited by The Microscale Laboratory R. David Crouch Dickinson College Carlisle, PA 17013-2896 Two-Step Semi-Microscale Preparation of a Cinnamate Ester Sunscreen Analog W Ryan G. Stabile and Andrew P. Dicks* Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6; *[email protected] Several laboratory experiments concerning the physical A two-step procedure using 4-methoxybenzaldehyde as properties of sunscreens have appeared in this Journal dur- the starting material (Scheme I) synthesizes ethyl trans-4- ing the last decade (1–5). These include quantification of methoxycinnamate 1. In the first laboratory session students commercial formulations by liquid chromatography (1) and are exposed to an important carbon–carbon bond forming ultraviolet (UV) spectrophotometry (2–4). The photochem- condensation reaction. The Verley–Doebner modification of istry of sunscreens has also been reviewed (6). Significantly, the Knoevenagel condensation (11) affords facile synthesis a student procedure focusing on multistep sunscreen synthesis of trans-4-methoxycinnamic acid, which is isolated and char- and spectroscopic analysis has not, to our knowledge, been acterized. During the second period, esterification is effected reported. Given the current high profile nature of skin can- by a cesium base mediated O-alkylation approach. This ex- cer (7) and media attention towards sunscreens, we designed emplifies the so-called “cesium effect” (12) and the useful- a two-step synthetic pathway towards an analog of a com- ness of cesium carboxylates as nucleophiles in SN2 reactions. mercially available UV light blocker. This methodology is in- In addition to stimulating class enthusiasm towards syn- corporated into a third-year undergraduate organic synthesis thetic chemistry, this experiment impresses many organic course at the University of Toronto.
    [Show full text]
  • Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical Camp Manipulation
    Molecules 2014, 19, 6202-6219; doi:10.3390/molecules19056202 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation Alexandra Amaro-Ortiz 1, Betty Yan 1 and John A. D’Orazio 1,2,* 1 The Graduate Center for Toxicology, the Markey Cancer Center and the Department of Pediatrics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA 2 Markey Cancer Center, University of Kentucky College of Medicine, Combs Research Building 204, 800 Rose Street, Lexington, KY 40536-0096, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-859-323-6238; Fax: +1-859-257-8940. Received: 26 April 2014; in revised form: 8 May 2014 / Accepted: 13 May 2014 / Published: 15 May 2014 Abstract: Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study the long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of “realized” solar radiation dose and UV-induced injury.
    [Show full text]
  • Photophysics and Skin Penetration of Active Agents in a Commercial Sunscreen and Insect Repellent
    PHOTOPHYSICS AND SKIN PENETRATION OF ACTIVE AGENTS IN A COMMERCIAL SUNSCREEN AND INSECT REPELLENT by DONALD PRETTYPAUL A Dissertation submitted to the Graduate School-Newark Rutgers, The State University of New Jersey In partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Chemistry written under the direction of Professor Richard Mendelsohn Professor Piotr Piotrowiak and approved by Newark, New Jersey October 2018 ©2018 Donald Prettypaul ALL RIGHTS RESERVED ABSTRACT OF DISSERTATION PHOTOPHYSICS AND SKIN PENETRATION OF ACTIVE AGENTS IN A COMMERCIAL SUNSCREEN AND INSECT REPELLENT By DONALD PRETTYPAUL Dissertation co-Directors: Professor Richard Mendelsohn Professor Piotr Piotrowiak This dissertation is focused on active agents in commercial sunscreen and insect repellent products. It consists of two parts, the first focusing on the photophysics of a sunscreen active agent and the second on the permeation and spatial distribution of the sunscreen active and an insect repellent active when these agents are applied to ex-vivo human skin. In the photochemistry study, ultrafast spectroscopy was used to study the excited state dynamics of the sunscreen molecule, Bemotrizinol. The work focused on the dissipation rates of the electronic excitation energy in different solvents. To complement the results from time-resolved femtosecond spectroscopy, Hartree- Fock UH/UHF 6-31G* calculations were used to characterize the ground and excited states potential energy surfaces. The results indicate that the excited state deactivation pathway follows a proton coupled electron transfer process which ii proceeds via a concerted mechanism. The dependencies on solvent polarity, viscosity, and H/D isotope effects, were investigated. Sunscreen products have been developed to protect skin from ultraviolet (UV) radiation; to achieve adequate protection, the sunscreen must be evenly applied and remain on the surface of the skin.
    [Show full text]
  • New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne
    COSMETIC CONSULTATION New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne he primary preventable cause of photoaging is United States, as there is no official rating system for exposure to UVA radiation. This wavelength UVA photoprotection yet. T emitted by the sun is present year round in all Ecamsule absorbs UVA radiation in the range of 320 to latitudes. Currently, the majority of sun-protective prod- 360 nm, but its peak absorbance occurs at 345 nm. It is ucts provide excellent UVB protection with minimal UVA typically combined with other organic sunscreen ingredi- protection. Although UVB protection is important in ents, such as avobenzone and octocrylene. Avobenzone, order to prevent sun damage to the skin from occurring, which is a photounstable photoprotectant, becomes UVA protection is equally important. New developments photostable when combined with octocrylene. These in raw material science have led to the manufacture of ingredients yield a photostable broad-spectrum sunscreen novel ingredients able to provide unprecedented photo- combination. However, the active sunscreen agents are protection COSin the UVA spectrum. DERMonly part of the formulation. Also important in sunscreen One of the most significant developments in cutaneous is the construction of the vehicle to deliver the photo- UVA protection was the discovery of ecamsule (Figure 1), protectants in an aesthetically pleasing manner, enticing also known as Mexoryl SX. Mexoryl SX, which has patients to wear the product. Sunscreens fail to be effec- the International Nomenclature of Cosmetic Ingredients tive if they remain in the bottle. name of terephthalylidene dicamphor sulfonic acid, is In order to evaluate the efficacy and tolerability of a water soluble.
    [Show full text]
  • Effect of 10 UV Filters on the Brine Shrimp Artemia Salina and the Marine Microalgae Tetraselmis Sp
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926451; this version posted January 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Effect of 10 UV filters on the brine shrimp Artemia salina and the marine microalgae Tetraselmis sp. Evane Thorel, Fanny Clergeaud, Lucie Jaugeon, Alice M. S. Rodrigues, Julie Lucas, Didier Stien, Philippe Lebaron* Sorbonne Université, CNRS USR3579, Laboratoire de Biodiversité et Biotechnologie Microbienne, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-mer, France. *corresponding author : E-mail address : [email protected] Abstract The presence of pharmaceutical and personal care products’ (PPCPs) residues in the aquatic environment is an emerging issue due to their uncontrolled release, through grey water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis- benzotriazolyl tetramethylbutylphenol (MBBT), 2-Ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS), and octocrylene (OC) to marine organisms from two major trophic levels including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, EC50 results show that both HS and OC are the most toxic for our tested species, followed by a significant effect of BM on Artemia salina but only at high concentrations (1 mg/L) and then an effect of ES, BP3 and DHHB on the metabolic activity of the microalgae at 100 µg/L.
    [Show full text]
  • WO 2013/036901 A2 14 March 2013 (14.03.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/036901 A2 14 March 2013 (14.03.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 8/30 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2012/054376 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 10 September 2012 (10.09.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW. 61/532,701 9 September 201 1 (09.09.201 1) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): UNIVER¬ kind of regional protection available): ARIPO (BW, GH, SITY OF FLORIDA RESEARCH FOUNDATION, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, INC.
    [Show full text]
  • OSEQUE ZSOLE DUAL SUN BLOCK- Octinoxate Avobenzone Bisoctrizole Spray SONGHAK CO., LTD
    OSEQUE ZSOLE DUAL SUN BLOCK- octinoxate avobenzone bisoctrizole spray SONGHAK CO., LTD. ---------- Active ingredients: Octyl Methoxycinnamate 7.5%, Ethylhexyl Salicylate 5%, Avobenzone 2%, Bisoctrizole 0.5% Purpose: Sunscreen Inactive Ingredients: Water, Alcohol Denat, Butylene Glycol, Glycerin, Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine, Niacinamide, Isononyl Isononanoate, Glacier Water, Butyloctyl Salicylate, Xanthan Gum, Decyl Glucoside, Disodium EDTA, Methylparaben, Propylparaben, Fragrance Do not use: on wounds, rashes, dermatitis or damaged skin Keep out of reach of children. In case of accidental ingestion, seek professional assistance or contact a Poison Control Center immediately Stop use: Please stop using this product and contact a dermatologist 1. If allergic reaction or irritation occurs 2. If direct sunlight affects the area as above When using this product: Do not use other than directed Warnings: For external use only. Not to be swallowed. Avoid contact with eyes. Discontinue use if signs of irritation or rash appear Uses: Spray or apply liberally over the face and body 15 minutes prior to sun exposure. Always ensure total coverage of all sun exposed areas. Re-apply every 1-2 hours and always after swimming. For spray type, shake it well before use and spray it evenly at 20cm-30cm apart from face or wherever needed. For spray type - shake it well before use For lotion type - turn a cap to use Storage: Keep in a dry or room temperature area OSEQUE ZSOLE DUAL SUN BLOCK octinoxate avobenzone bisoctrizole spray Product
    [Show full text]
  • Annex VI, Last Update: 02/08/2021
    File creation date: 03/10/2021 Annex VI, Last update: 22/09/2021 LIST OF UV FILTERS ALLOWED IN COSMETIC PRODUCTS Substance identification Conditions Wording of Reference Maximum conditions of Product Type, concentration Update date number Chemical name / INN / XAN Name of Common Ingredients Glossary CAS Number EC Number Other use and body parts in ready for use warnings preparation 2 N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenemethyl CAMPHOR BENZALKONIUM 52793-97-2 258-190-8 6% 15/10/2010 ) anilinium methyl sulphate METHOSULFATE 3 Benzoic acid, 2-hydroxy-, HOMOSALATE 118-56-9 204-260-8 10% 02/08/2021 3,3,5-trimethylcyclohexyl ester / Homosalate 4 2-Hydroxy-4-methoxybenzophenone / BENZOPHENONE-3 131-57-7 205-031-5 6% Reg (EU) Not more than Contains 02/08/2021 Oxybenzone 2017/238 of 10 0,5 % to protect Benzophenone-3 February 2017- product (1) date of formulation application from September 2017 6 2-Phenylbenzimidazole-5-sulphonic acid and its PHENYLBENZIMIDAZOLE SULFONIC 27503-81-7 248-502-0 8%(as acid) 08/03/2011 potassium, sodium and triethanolamine salts / ACID Ensulizole 7 3,3'-(1,4-Phenylenedimethylene) bis TEREPHTHALYLIDENE DICAMPHOR 92761-26-7 / 410-960-6 / - 10%(as acid) 26/10/2010 (7,7-dimethyl-2-oxobicyclo-[2.2.1] SULFONIC ACID 90457-82-2 hept-1-ylmethanesulfonic acid) and its salts / Ecamsule 8 1-(4-tert-Butylphenyl)-3-(4-methoxyphenyl) BUTYL 70356-09-1 274-581-6 5% 15/10/2010 propane-1,3-dione / Avobenzone METHOXYDIBENZOYLMETHANE 9 alpha-(2-Oxoborn-3-ylidene)toluene-4-sulphoni BENZYLIDENE CAMPHOR SULFONIC 56039-58-8 - 6%(as acid)
    [Show full text]