Phascolarctos Cinereus) and Southern Hairy-Nosed Wombat (Lasiorhinus Latifrons) Testis Motoharu Oishi,1 Mei Takahashi,1,2 Hajime Amasaki,1 Tina Janssen3 and Stephen D

Total Page:16

File Type:pdf, Size:1020Kb

Phascolarctos Cinereus) and Southern Hairy-Nosed Wombat (Lasiorhinus Latifrons) Testis Motoharu Oishi,1 Mei Takahashi,1,2 Hajime Amasaki,1 Tina Janssen3 and Stephen D Journal of Anatomy J. Anat. (2013) 222, pp380--389 doi: 10.1111/joa.12020 The seminiferous epithelial cycle and microanatomy of the koala (Phascolarctos cinereus) and southern hairy-nosed wombat (Lasiorhinus latifrons) testis Motoharu Oishi,1 Mei Takahashi,1,2 Hajime Amasaki,1 Tina Janssen3 and Stephen D. Johnston4 1Department of Veterinary Anatomy, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan 2Morioka Zoological Park, Morioka, Japan 3Australian Animals Care and Education, Mt Larcom, Qld, Australia 4Wildife Biology Unit, School of Agriculture and Food Science, The University of Queensland, Gatton, Qld, Australia Abstract The koala (Phascolarctos cinereus) and southern hairy-nosed wombat (Lasiorhinus latifrons) are iconic Australian fauna that share a close phylogenetic relationship but there are currently no comparative studies of the seminiferous epithelial cell or testicular microanatomy of either species. Koala and wombat spermatozoa are unusual for marsupials as they possess a curved stream-lined head and lateral neck insertion that superficially is similar to murid spermatozoa; the koala also contains Sertoli cells with crystalloid inclusions that closely resemble the Charcot–Bottcher crystalloids described in human Sertoli cells. Eighteen sexually mature koalas and four sexually mature southern hairy-nosed (SHN) wombats were examined to establish base-line data on quantitative testicular histology. Dynamics of the seminiferous epithelial cycle in the both species consisted of eight stages of cellular association similar to that described in other marsupials. Both species possessed a high proportion of the pre-meiotic (stages VIII, I – III; koala – 62.2 1.7% and SHN wombat – Æ 66.6 2.4%) when compared with post-meiotic stages of the seminiferous cycle. The mean diameters of the Æ seminiferous tubules found in the koalas and the SHN wombats were 227.8 6.1 and 243.5 3.9 lm, Æ Æ respectively. There were differences in testicular histology between the species including the koala possessing (i) a greater proportion of Leydig cells, (ii) larger Sertoli cell nuclei, (iii) crystalloids in the Sertoli cell cytoplasm, (iv) a distinctive acrosomal granule during spermiogenesis and (v) a highly eosinophilic acrosome. An understanding of the seminiferous epithelial cycle and microanatomy of testis is fundamental for documenting normal spermatogenesis and testicular architecture; recent evidence of orchitis and epididymitis associated with natural chlamydial infection in the koala suggest that this species might be useful as an experimental model for understanding Chlamydia induced testicular pathology in humans. Comparative spermatogenic data of closely related species can also potentially reflect evolutionary divergence and differences in reproductive strategies. Key words: koala; seminiferous epithelium; southern hairy-nosed wombat. Introduction separated into three phases; the mitotic or proliferative phase, the meiotic phase, and the spermiogenic phase, in Spermatogenesis of mammals results in the timed sequence which three types of germ cells (spermatogonia, spermato- of cellular associations in the seminiferous epithelium cytes and spermatids) are arranged in the seminiferous resulting in repeated generations of germ cells surrounded tubules and whereby their relative association can be char- by supporting Sertoli cells (Hess, 1999). This process can be acterized as different stages oftheseminiferousepithelium cycle (Courot et al. 1970; Russell et al. 1990). In marsupials, the main events of spermatogenesis are Correspondence Motoharu Oishi, Department of Veterinary Anatomy, School of Vet- generally similar to those of eutherian mammals (Harding erinary Medicine, Nippon Veterinary and Life Science University, et al. 1979, 1982); however, the spermatids of most marsu- 1-7-1 Kyonnan-cho, Musashino, Tokyo 180-8602, Japan. pials show unusual morphological changes during spermio- E: [email protected] genesis and include: (i) a flattening of the nucleus at right Accepted for publication 27 November 2012 angles to the long axis of the flagellum; (ii) nuclear rotation Article published online 01 January 2013 © 2013 The Authors Journal of Anatomy © 2013 Anatomical Society Microanatomy of the koala and wombat testis, M. Oishi et al. 381 about the point of attachment to the flagellum, possibly Materials and methods caused by invasions by Sertoli cell cytoplasm; and (iii) an incomplete coverage of the acrosome as cap over the sper- Animals matid nucleus, whereby it is restricted to a relatively small proportion of the dorsal nuclear surface (Harding et al. Testes were collected from 18 sexually mature necropsied koalas 1976, 1979; Tyndale-Biscoe & Renfree, 1987). The mode of (Queensland in August and September in from 1992 to 1994) and nuclear flattening during spermiogenesis in both the koala four sexually mature southern hairy-nosed wombats (South Aus- and wombat follows the basic marsupial pattern except tralia in September in 2010). Koala testes were recovered from animals euthanized at the Moggill Koala Hospital (Environment that the flagellar connection is laterally rather than Protection and Heritage, Queensland Government) and wombat centrally placed and as a result the neck insertion is disto- testes were collected as part of population management program ventral rather than centro-ventral as in other marsupials conducted under the authority of the South Australian Depart- (Harding & Aplin, 1990). ment of Environment and Heritage. Experimental procedures were Although the koala and the wombat are categorized into approved by Animal Ethics Committee in the University of the sub-order Vombatiformes, they are also thought to Queensland (SAS/261/10) and Nippon Veterinary and Life Science have had a long evolutionary separation (Kirsch et al. 1997; University (AEC1). Osborne et al. 2002; Munemasa et al. 2006; Phillips & Pratt, 2008). Consequently, sperm production in the koala and Tissue preparation wombat might be expected to exhibit convergent or diver- gent structural solutions with respect to spermiogenesis Following dissection, each testis was immediately placed in Bouin’s and characterisation of the various stages of the seminifer- fixative (Humason, 1977) after removing the top and bottom of the ous epithelial cycle. Comparative studies of qualitative and testis to facilitate penetration of the fixative. After an initial fixa- tion of 2–3 h, testes were cut into about 5 mm thick slices and then quantitative evaluation of the testicular histology can re-fixed in Bouin’s fixative overnight. Fixed tissues were transferred potentially provide answers to important questions about to 70% ethanol. For studies of testicular quantitative histology, six testicular structure and function and may even reveal to eight tissue blocks were obtained from different sections of the insights into differences of reproductive strategy, for exam- right testis that were separated by at least 200 lm. Sections for his- ple temporal changes and species differences in reproduc- tology were prepared using conventional histology and stained tive hormone secretion (Leydig cell) and sperm production. with haematoxylin-eosin staining (Humason, 1977). Histological Recently, Deif (2011) has reported the first description of preparations were viewed under standard light microscopy (Olym- pus BX51) for both quantitative measurements of microanatomy orchitis and epididymitis associated with ascending chlam- and photomicroscopy (Olympus DP2-BSW). ydiosis in the koala, with this organism being identified using histochemistry and PCRq. Deif (2011) has also reported the histopathology of these lesions and identified Quantitative histology the organism in the tissues at the ultra structural level. An understanding of the histopathology of this infection Random samples of 100 tubules from each testis were examined 9 requires a detailed comprehension of normal spermatogen- and measured using a light microscopy at 100 magnification with a calibrated micrometer eyepiece and high resolution photography esis and testicular cellular architecture. In addition, and using IMAGEJ 1.45 software (http://rsbweb.nih.gov/ij/). Transverse sem- given that chlamydiosis in the male koala is a natural infec- iniferous tubule diameters were determined by taking two mea- tion and more widespread than previously thought (Deif, surements at right angles to each other. The longitudinal and 2011), the koala may in fact be a useful model for studying transverse lengths of the Sertoli cell nucleus were also measured in the pathology of this organism in the human testis. the same way using light microscopy at 2009 magnification. Rela- Although spermiogenesis in the koala and the wombat tive proportions of the various stages of the seminiferous epithelial has been described at the electron microscopy level cycle observed in this study were also determined by light micros- copy and high resolution images (2009 magnification) using photo- (Harding et al. 1987; Harding & Aplin, 1990), the kinetics graphic software (GIMP 2.6.12, http://www.gimp.org/) with a Weibel of spermatogenesis has not yet been investigated. This randomized grid system (Weibel, 1979); a total of 2000 points were study aimed to establish base-line data on the quantita- made for each individual animal. tive testicular histology of koala and southern hairy- The epithelium of seminiferous tubules in marsupials has essen- nosed (SHN) wombat, with a focus on light microscopic tially the same cell types as
Recommended publications
  • Ecology of the Koala, Phascolarctos Cinereus
    I give eonsent to this eopy of ny thesis, r,,rhen d.eposited. in the Universit.y Library, being avail-abl-e 1'or loan and. photocopying. Date . ?! ÛP,"+ .13:r.o.. S igned. CONTENTS SUM MA RY ACKNOWLEDGEMENTS lil INTRODUCTION I PA,RT I FIELD STUDIES INTRODUCTION O.l Kongoroo lslqnd B O.2 Floro ond Founo il 0.3 Philpott's Study l3 O.4 Methods t5 0.5 Results 25 I THE DISTRIBUTION AND ABUN DANCE OF KOALAS I. I The Distribution of Koalos 29 | .2 The Abundonce of Koo lqs 34 2 BREEDING, GROWTH AND DEVELOPA,\E¡.¡T 2.1 Breeding 39 2.2 Pouch Young 40 2.3 Growth, Ageing ond LongevitY 49 2.4 Sexucrl Moturity 54 I SUMMARY The distribution of koalas u'ithin Flinders Chase was fou-nd to be made up of areas centred on the occurrences of manna guilr , Euca.ly¡rtus viminalis. Some koalas br:owsed chiefly iri trees of other species but tlrere liÌere ferv animals, if any, that clid not feed on the foliage of E. r'iminalis rnore or less regularly. The composition of populations in sever¿rl sürcly areas changed from üirne to time but over aE long as three successir¡e years of observat:lorr the numhers remained ::emarkably constant. The koalas bred in the surnmer: arrd early auturnn, and a high proporüon of feinales successfully raised a single young to independence each year. Growth of the yourìg was :lapid over the first Lhree yearr!; it slowed. down thereafter and anirnals reached firll size in tlieir fourth and fiffh years.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Reproductionreview
    REPRODUCTIONREVIEW Wombat reproduction (Marsupialia; Vombatidae): an update and future directions for the development of artificial breeding technology Lindsay A Hogan1, Tina Janssen2 and Stephen D Johnston1,2 1Wildlife Biology Unit, Faculty of Science, School of Agricultural and Food Sciences, The University of Queensland, Gatton 4343, Queensland, Australia and 2Australian Animals Care and Education, Mt Larcom 4695, Queensland, Australia Correspondence should be addressed to L A Hogan; Email: [email protected] Abstract This review provides an update on what is currently known about wombat reproductive biology and reports on attempts made to manipulate and/or enhance wombat reproduction as part of the development of artificial reproductive technology (ART) in this taxon. Over the last decade, the logistical difficulties associated with monitoring a nocturnal and semi-fossorial species have largely been overcome, enabling new features of wombat physiology and behaviour to be elucidated. Despite this progress, captive propagation rates are still poor and there are areas of wombat reproductive biology that still require attention, e.g. further characterisation of the oestrous cycle and oestrus. Numerous advances in the use of ART have also been recently developed in the Vombatidae but despite this research, practical methods of manipulating wombat reproduction for the purposes of obtaining research material or for artificial breeding are not yet available. Improvement of the propagation, genetic diversity and management of wombat populations requires a thorough understanding of Vombatidae reproduction. While semen collection and cryopreservation in wombats is fairly straightforward there is currently an inability to detect, induce or synchronise oestrus/ovulation and this is an impeding progress in the development of artificial insemination in this taxon.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Effects of Eucalypt Plant Monoterpenes on Koala
    www.nature.com/scientificreports OPEN Efects of Eucalypt Plant Monoterpenes on Koala (Phascolarctos Cinereus) Cytokine Expression In Vitro Caroline Marschner*, Mark B. Krockenberger & Damien P. Higgins Protective immunity is crucial for survival of any species, though the koala as a specialist feeder adapted to an exclusive diet of eucalypts that contain plant secondary metabolites of varying toxicity and of immunomodulatory property. Being constantly exposed to such dietary chemicals it raises the question of their immune efects in a specialist eucalypt feeder. This study demonstrates that natural levels of circulating eucalypt plant secondary metabolites have dose dependent in vitro efects on cytokine expression of koala peripheral blood mononuclear cells, suggesting a potential trade-of of reduced function in multiple arms of the immune system associated with koala’s use of its specialized dietary niche. Widespread in the Australian landscape, eucalypts comprise an easily accessible food resource for some foli- vores, such as the koala (Phascolarctos cinereus), the ringtail possum (Pseudocheirus peregrinus) and greater glider (Petauroides volans) that are able to exploit this dietary niche. Te koala is able to utilise this resource exclusively for nutrition and shelter1 even though chemical defences render eucalypt leaves unpalatable, of low nutritional value, and even toxic. Tannin and lignin (up to 30% DM) bind valuable leaf proteins2,3 and cell wall carbohy- drates4 in the gastrointestinal tract of herbivores. Most leaf fats are either indigestible waxes2 or toxic terpenoids. Monoterpenes, an abundant group of terpenoids in eucalypts, are of small molecular weight and highly lipo- philic, hence are readily absorbable from the gut wall of eucalypt folivores5, and enter the circulation5–10.
    [Show full text]
  • Bearing up Well? Understanding the Past, Present and Future of Australia's Koalas
    Gondwana Research 25 (2014) 1186–1201 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr GR focus review Bearing up well? Understanding the past, present and future of Australia's koalas Karen H. Black a,⁎, Gilbert J. Price b, Michael Archer a, Suzanne J. Hand a a School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia b Department of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia article info abstract Article history: The modern Koala Phascolarctos cinereus is the last surviving member of a once diverse family Phascolarctidae Received 20 October 2013 (Marsupialia, Phascolarctomorphia). Nine genera and at least 16 species of koala are known. Late Oligocene sed- Received in revised form 17 December 2013 iments of central Australia record the oldest fossils and highest species diversity. Five species are known from the Accepted 22 December 2013 early to middle Miocene rainforest assemblages of the Riversleigh World Heritage Area, Queensland. With the Available online 30 December 2013 onset of dryer conditions after the middle Miocene climatic optimum (~16 Ma), rainforest habitats contracted Handling Editor: M. Santosh resulting in the apparent extinction of three koala lineages (Litokoala, Nimiokoala, Priscakoala). Phascolarctos first appears in the fossil record during the Pliocene and the modern species around 350 ka. Despite a dramatic Keywords: decline in taxonomic diversity to a
    [Show full text]
  • Koalas and Climate Change
    KOALAS AND CLIMATE CHANGE Hungry for CO2 cuts © Daniele Sartori Summary • Increasing frequency and intensity of droughts can force Koalas to descend from trees in search of water or • Koalas are iconic animals native to Australia. They new habitats. This makes them particularly vulnerable to are true habitat and food specialists, only ever inhabiting wild and domestic predators, as well as to road traffic, forests and woodlands where Eucalyptus trees are often resulting in death. present. • Koala populations are reported to be declining • Increasing atmospheric CO levels will reduce the 2 probably due to malnutrition, the sexually-transmitted nutritional quality of Eucalyptus leaves, causing nutrient disease chlamydia, and habitat destruction. shortages in the species that forage on them. As a result, Koalas may no longer be able to meet their nutritional • Koalas have very limited capability to adapt to rapid, demands, resulting in malnutrition and starvation. human-induced climate change, making them very vulnerable to its negative impacts. The IUCN Red List of Threatened Species ™ KOALAS AND CLIMATE CHANGE • Koalas are particularly vulnerable to the effects of elevated CO2 levels on plant nutritional quality, as they rely on them for food. The potential impacts of these changes on the world’s food chains are enormous. Australian icon, the Koala (Phascolarctos cinereus), is a tree-dwelling marsupial found in eastern and southern Australia. Marsupials are mammals whose young are born at a very undeveloped stage before completing their development in a pouch. The Koala is not a bear, though this name has persisted outside Australia since English- speaking settlers from the late 18th century likened it to a bear.
    [Show full text]
  • Sarcoptes Scabiei: an Important Exotic Pathogen of Wombats
    Under the Microscope Sarcoptes scabiei: an important exotic pathogen of wombats Sarcoptes scabiei is a parasitic astigmatid favourable for survival of the mite when mite, which causes scabies in people and Lee F Skerratt off the host. It is thought that the sarcoptic mange in mammals (Figure 1). School of Veterinary and duration of mite survival off the host is a Importantly, it is an emerging disease in Biomedical Sciences key component affecting transmission James Cook University, wildlife throughout the world 1. The mite Townsville 4811 between wombats because wombats are originates from a human ancestor and is Australia. generally antisocial and avoid contact thought to have spread to domestic and Tel: 617 4781 4838 with one another 9. Wombats rely on then free-living animals 2, 3. Based on the Fax: 617 4779 1526 burrows for diurnal shelter and recent emergence of sarcoptic mange in E-mail: [email protected] transmission may occur when wombats Australian wildlife and Aboriginal share burrows. Burrows enhance the communities, it is thought that Sarcoptes Epidemiology in wombat survival of mites when off the host by scabiei was probably introduced to populations providing a stable temperate Australia by the Europeans and their environment. animals 3,4. The mitochondrial genetic Sarcoptic mange generally occurs at low similarity of mites from Australian wildlife prevalence (0 - 15%) in common wombat Epidemics of sarcoptic mange occur and domestic animals supports this 3, 5. In populations throughout southeast sporadically within wombat populations 7,8 Australian wildlife, sarcoptic mange has Australia . Its low prevalence is and appear to be mainly associated with been reported in the common wombat attributed to high mortality and immunity introduction of S.
    [Show full text]
  • Hairy-Nosed Wombat (Lasiorhinus Latifrons)
    Understanding the causes of human–wombat conflict and exploring non-lethal damage mitigation strategies for the southern hairy-nosed wombat (Lasiorhinus latifrons) Casey O’Brien Submitted for the Degree of Doctor of Philosophy School of Biological Sciences University of Adelaide April 2019 Page | 1 Page | 2 Table of Contents Table of Contents ...................................................................................................................... 3 List of Figures ........................................................................................................................... 6 List of Tables ............................................................................................................................. 9 Declaration .............................................................................................................................. 12 Acknowledgements .................................................................................................................. 13 Abstract .................................................................................................................................... 16 Chapter 1. General Introduction ............................................................................................ 18 1.1 Human–wildlife conflict ........................................................................................................... 19 1.2 Conflicts with agriculture ........................................................................................................
    [Show full text]
  • A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
    www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition.
    [Show full text]
  • Artificial Insemination in Marsupials
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchOnline at James Cook University Available online at www.sciencedirect.com Theriogenology 71 (2009) 176–189 www.theriojournal.com Artificial insemination in marsupials John C. Rodger a,*, Damien B.B.P. Paris b, Natasha A. Czarny a, Merrilee S. Harris a, Frank C. Molinia c, David A. Taggart d, Camryn D. Allen e, Stephen D. Johnston e a School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia b Department of Equine Sciences, Faculty of Veterinary Medicine, Universiteit Utrecht, 3584 CM Utrecht, The Netherlands c Landcare Research, Private Bag 92170, Auckland 1142, New Zealand d Royal Zoological Society of South Australia, Frome Rd, Adelaide, SA 5000, Australia e School of Animal Studies, The University of Queensland, Gatton 4343, Australia Abstract Assisted breeding technology (ART), including artificial insemination (AI), has the potential to advance the conservation and welfare of marsupials. Many of the challenges facing AI and ART for marsupials are shared with other wild species. However, the marsupial mode of reproduction and development also poses unique challenges and opportunities. For the vast majority of marsupials, there is a dearth of knowledge regarding basic reproductive biology to guide an AI strategy. For threatened or endangered species, only the most basic reproductive information is available in most cases, if at all. Artificial insemination has been used to produce viable young in two marsupial species, the koala and tammar wallaby. However, in these species the timing of ovulation can be predicted with considerably more confidence than in any other marsupial.
    [Show full text]