Combined Scheduling and Control

Total Page:16

File Type:pdf, Size:1020Kb

Combined Scheduling and Control Books Combined Scheduling and Control Edited by John D. Hedengren and Logan Beal Printed Edition of the Special Issue Published in Processes www.mdpi.com/journal/processes MDPI Combined Scheduling and Control Books Special Issue Editors John D. Hedengren Logan Beal MDPI Basel Beijing Wuhan Barcelona Belgrade MDPI Special Issue Editors John D. Hedengren Logan Beal Brigham Young University Brigham Young University USA USA Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Processes (ISSN 2227-9717) in 2017 (available at: http://www.mdpi.com/journal/processes/special_issues/Combined_Scheduling). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Books Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year Article number, page range. First Edition 2018 ISBN 978-3-03842-805-3 (Pbk) ISBN 978-3-03842-806-0 (PDF) Cover photo courtesy of John D. Hedengren and Logan Beal. Articles in this volume are Open Access and distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is © 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). MDPI Table of Contents About the Special Issue Editors ..................................... v Preface to ”Combined Scheduling and Control” ............................ vii John Hedengren and Logan Beal Special Issue: Combined Scheduling and Control doi: 10.3390/pr6030024 . 1 Dimitri Lefebvre Dynamical Scheduling and Robust Control in Uncertain Environments with Petri Nets for DESs doi: 10.3390/pr5040054 . 4 Girish Joglekar Using Simulation for Scheduling and Rescheduling of Batch Processes doi: 10.3390/pr5040066 . 20 Dhruv Gupta, Christos T. Maravelias A General State-Space Formulation for Online Scheduling doi: 10.3390/pr5040069 . 38 Fernando Nunes de Barros, Aparajith Bhaskar and Ravendra Singh A Validated Model for Design and Evaluation of Control Architectures for a Continuous Tablet Compaction Process Books doi: 10.3390/pr5040076 . 69 Logan D. R. Beal, Damon Petersen, Guilherme Pila, Brady Davis, Derek Prestwich, Sean Warnick and John D. Hedengren Economic Benefit from Progressive Integration of Scheduling and Control for Continuous Chemical Processes doi: 10.3390/pr5040084 . 101 Damon Peterson, Logan D. R. Beal, Derek Prestwich, Sean Warnick and John D. Hedengren Combined Noncyclic Scheduling and Advanced Control for Continuous Chemical Processes doi: 10.3390/pr5040083 . 121 Ali M. Sahlodin and Paul I. Barton Efficient Control Discretization Based on Turnpike Theory for Dynamic Optimization doi: 10.3390/pr5040085 . 143 iii MDPI Books MDPI About the Special Issue Editors John D. Hedengren is Associate Professor at Brigham Young University in the Chemical Engineering Department, leading the PRISM (Process Research and Intelligent System Modeling) group. He is a chemical engineer by training with a B.S. and M.S. degree from Brigham Young University, and a Ph.D. from the University of Texas at Austin. His area of expertise is in process dynamics, control, and optimization with applications in fiber optic monitoring, automation of oil and gas processes, unmanned aerial systems, systems biology, and grid-scale energy systems. He has extensive experience in automation and modeling complex systems. Automation software (APMonitor) he developed has been applied in many industries world-wide including unmanned aircraft systems, chemicals manufacturing, and in energy production. Logan Beal is a Graduate Research Assistant at Brigham Young University in the Chemical Engineering Department. He leads the PRISM research group on combined scheduling and control and is the key contributor to the National Science Foundation award, "EAGER: Cyber-Manufacturing with Multi- echelon Control and Scheduling". His prior work experience includes optimization research with ExxonMobil and automation at Knoll's Atomic Power Lab. His current research is in developing a computing platform for large-scale dynamic optimization with the GEKKO package for Python. He is also developing a novel approach to nonlinear programming by combining elements of interior point methods and active set Sequential Quadratic Programming (SQP). Books v MDPI Books MDPI Preface to “Combined Scheduling and Control” Scheduling and control are typically viewed as separate applications because of historical factors such as limited computing resources. Now that algorithms and computing resources have advanced, there are new efforts to have short-term decisions (control) interact or merge with longer-term decisions (scheduling). A new generation of numerical optimization methods are evolving to capture additional benefits and unify the approach to manufacturing process automation. This special issue is a collection of some of the latest advancements in scheduling and control for both batch and continuous processes. It contains developments with multi-scale problem formulation, software for the new class of problems, and a survey of the strengths and weaknesses of successive levels of integration. John D. Hedengren and Logan Beal Special Issue Editors Books vii MDPI MDPI Books processes Editorial Special Issue: Combined Scheduling and Control John Hedengren * and Logan Beal Department of Chemical Engineering, Process Research and Intelligent Systems Modeling (PRISM), Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-477-7341 Received: 1 March 2018; Accepted: 2 March 2018; Published: 7 March 2018 This Special Issue (SI) of Processes, “Combined Scheduling and Control,” includes approaches to formulating combined objective functions, multi-scale approaches to integration, mixed discrete and continuous formulations, estimation of uncertain control and scheduling states, mixed integer and nonlinear programming advances, benchmark development, comparison of centralized and decentralized methods, and software that facilitates the creation of new applications and long-term sustainment of benefits. Contributions acknowledge strengths, weaknesses, and potential further advancements, along with a demonstration of improvement over current industrial best-practice. Advanced optimization algorithms and increased computational resources are opening new possibilities to integrate control and scheduling. Some of the most popular advanced control methods today were conceptualized decades ago. Over a time span of 30 years, computers have increased in speed by about 17,000 times and algorithms such as integer programming have a speedup of approximately 150,000 times on some benchmark problems. With the combined hardware and software Books improvements, benchmark problems can now be solved 2.5 billion times faster; i.e., applications that formerly required 120 years to solve are now completed in 5 s [1]. New computing architectures and algorithms advance the frontier of solving larger scale and more complex integrated problems. Recent work demonstrates economic and operational incentives for merging scheduling and control. The accepted publications cover a range of topics and methods for combining control and scheduling. There were many submissions to the special issue, and about 50% were accepted for publication. The seven that were accepted have novel approaches, summary surveys, and illustrative examples that validate the methods and motivate further investigation. The articles are summarized below. Lefebvre, D. Dynamical Scheduling and Robust Control in Uncertain Environments with Petri Nets for DESs [2]. This paper is about the incremental computation of control sequences for discrete event systems in uncertain environments through implementation of timed Petri nets. The robustness of the resulting trajectory is also evaluated according to risk probability. A sufficient condition is provided to compute robust trajectories. The proposed results are applicable to a large class of discrete event systems, in particular in the domains of flexible manufacturing. Joglekar, G. Using Simulation for Scheduling and Rescheduling of Batch Processes [3]. This paper uses a BATCHES simulation model to accurately represent the complex recipes and operating rules typically encountered in batch process manufacturing. By using the advanced capabilities of the simulator (such as modeling assignment decisions, coordination logic, and plant operation rules), very reliable and verifiable schedules can be generated for the underlying process. Scheduling methodologies for a one-segment recipe and a rescheduling methodology for day-to-day decisions are presented. Gupta, D.; Maravelias, C. A General State-Space Formulation for Online Scheduling [4]. This paper presents a generalized state-space model formulation particularly motivated by an online scheduling perspective, which allows for the modeling of (1) task-delays and unit breakdowns; (2) fractional delays and unit downtimes when using a discrete-time grid; (3) variable batch-sizes; (4) robust scheduling through the use of conservative yield estimates and processing times; Processes 2018, 6, 24 1 www.mdpi.com/journal/processes
Recommended publications
  • Using the COIN-OR Server
    Using the COIN-OR Server Your CoinEasy Team November 16, 2009 1 1 Overview This document is part of the CoinEasy project. See projects.coin-or.org/CoinEasy. In this document we describe the options available to users of COIN-OR who are interested in solving opti- mization problems but do not wish to compile source code in order to build the COIN-OR projects. In particular, we show how the user can send optimization problems to a COIN-OR server and get the solution result back. The COIN-OR server, webdss.ise.ufl.edu, is 2x Intel(R) Xeon(TM) CPU 3.06GHz 512MiB L2 1024MiB L3, 2GiB DRAM, 4x73GiB scsi disk 2xGigE machine. This server allows the user to directly access the following COIN-OR optimization solvers: • Bonmin { a solver for mixed-integer nonlinear optimization • Cbc { a solver for mixed-integer linear programs • Clp { a linear programming solver • Couenne { a solver for mixed-integer nonlinear optimization problems and is capable of global optiomization • DyLP { a linear programming solver • Ipopt { an interior point nonlinear optimization solver • SYMPHONY { mixed integer linear solver that can be executed in either parallel (dis- tributed or shared memory) or sequential modes • Vol { a linear programming solver All of these solvers on the COIN-OR server may be accessed through either the GAMS or AMPL modeling languages. In Section 2.1 we describe how to use the solvers using the GAMS modeling language. In Section 2.2 we describe how to call the solvers using the AMPL modeling language. In Section 3 we describe how to call the solvers using a command line executable pro- gram OSSolverService.exe (or OSSolverService for Linux/Mac OS X users { in the rest of the document we refer to this executable using a .exe extension).
    [Show full text]
  • Click to Edit Master Title Style
    Click to edit Master title style MINLP with Combined Interior Point and Active Set Methods Jose L. Mojica Adam D. Lewis John D. Hedengren Brigham Young University INFORM 2013, Minneapolis, MN Presentation Overview NLP Benchmarking Hock-Schittkowski Dynamic optimization Biological models Combining Interior Point and Active Set MINLP Benchmarking MacMINLP MINLP Model Predictive Control Chiller Thermal Energy Storage Unmanned Aerial Systems Future Developments Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University Overview of Benchmark Testing NLP Benchmark Testing 1 1 2 3 3 min J (x, y,u) APOPT , BPOPT , IPOPT , SNOPT , MINOS x Problem characteristics: s.t. 0 f , x, y,u t Hock Schittkowski, Dynamic Opt, SBML 0 g(x, y,u) Nonlinear Programming (NLP) Differential Algebraic Equations (DAEs) 0 h(x, y,u) n m APMonitor Modeling Language x, y u MINLP Benchmark Testing min J (x, y,u, z) 1 1 2 APOPT , BPOPT , BONMIN x s.t. 0 f , x, y,u, z Problem characteristics: t MacMINLP, Industrial Test Set 0 g(x, y,u, z) Mixed Integer Nonlinear Programming (MINLP) 0 h(x, y,u, z) Mixed Integer Differential Algebraic Equations (MIDAEs) x, y n u m z m APMonitor & AMPL Modeling Language 1–APS, LLC 2–EPL, 3–SBS, Inc. Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University NLP Benchmark – Summary (494) 100 90 80 APOPT+BPOPT APOPT 70 1.0 BPOPT 1.0 60 IPOPT 3.10 IPOPT 50 2.3 SNOPT Percentage (%) 6.1 40 Benchmark Results MINOS 494 Problems 5.5 30 20 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Not worse than 2 times slower than
    [Show full text]
  • Polyhedral Outer Approximations in Convex Mixed-Integer Nonlinear
    Jan Kronqvist Polyhedral Outer Approximations in Polyhedral Outer Approximations in Convex Mixed-Integer Nonlinear Programming Approximations in Convex Polyhedral Outer Convex Mixed-Integer Nonlinear Programming Jan Kronqvist PhD Thesis in Process Design and Systems Engineering Dissertations published by Process Design and Systems Engineering ISSN 2489-7272 Faculty of Science and Engineering 978-952-12-3734-8 Åbo Akademi University 978-952-12-3735-5 (pdf) Painosalama Oy Åbo 2018 Åbo, Finland 2018 2018 Polyhedral Outer Approximations in Convex Mixed-Integer Nonlinear Programming Jan Kronqvist PhD Thesis in Process Design and Systems Engineering Faculty of Science and Engineering Åbo Akademi University Åbo, Finland 2018 Dissertations published by Process Design and Systems Engineering ISSN 2489-7272 978-952-12-3734-8 978-952-12-3735-5 (pdf) Painosalama Oy Åbo 2018 Preface My time as a PhD student began back in 2014 when I was given a position in the Opti- mization and Systems Engineering (OSE) group at Åbo Akademi University. It has been a great time, and many people have contributed to making these years a wonderful ex- perience. During these years, I was given the opportunity to teach several courses in both environmental engineering and process systems engineering. The opportunity to teach these courses has been a great experience for me. I want to express my greatest gratitude to my supervisors Prof. Tapio Westerlund and Docent Andreas Lundell. Tapio has been a true source of inspiration and a good friend during these years. Thanks to Tapio, I have been able to be a part of an inter- national research environment.
    [Show full text]
  • Performance of Optimization Software - an Update
    Performance of Optimization Software - an Update INFORMS Annual 2011 Charlotte, NC 13-18 November 2011 H. D. Mittelmann School of Math and Stat Sciences Arizona State University 1 Services we provide • Guide to Software: "Decision Tree" • http://plato.asu.edu/guide.html • Software Archive • Software Evaluation: "Benchmarks" • Archive of Testproblems • Web-based Solvers (1/3 of NEOS) 2 We maintain the following NEOS solvers (8 categories) Combinatorial Optimization * CONCORDE [TSP Input] Global Optimization * ICOS [AMPL Input] Linear Programming * bpmpd [AMPL Input][LP Input][MPS Input][QPS Input] Mixed Integer Linear Programming * FEASPUMP [AMPL Input][CPLEX Input][MPS Input] * SCIP [AMPL Input][CPLEX Input][MPS Input] [ZIMPL Input] * qsopt_ex [LP Input][MPS Input] [AMPL Input] Nondifferentiable Optimization * condor [AMPL Input] Semi-infinite Optimization * nsips [AMPL Input] Stochastic Linear Programming * bnbs [SMPS Input] * DDSIP [LP Input][MPS Input] 3 We maintain the following NEOS solvers (cont.) Semidefinite (and SOCP) Programming * csdp [MATLAB_BINARY Input][SPARSE_SDPA Input] * penbmi [MATLAB Input][MATLAB_BINARY Input] * pensdp [MATLAB_BINARY Input][SPARSE_SDPA Input] * sdpa [MATLAB_BINARY Input][SPARSE_SDPA Input] * sdplr [MATLAB_BINARY Input][SDPLR Input][SPARSE_SDPA Input] * sdpt3 [MATLAB_BINARY Input][SPARSE_SDPA Input] * sedumi [MATLAB_BINARY Input][SPARSE_SDPA Input] 4 Overview of Talk • Current and Selected(*) Benchmarks { Parallel LP benchmarks { MILP benchmark (MIPLIB2010) { Feasibility/Infeasibility Detection benchmarks
    [Show full text]
  • Notes 1: Introduction to Optimization Models
    Notes 1: Introduction to Optimization Models IND E 599 September 29, 2010 IND E 599 Notes 1 Slide 1 Course Objectives I Survey of optimization models and formulations, with focus on modeling, not on algorithms I Include a variety of applications, such as, industrial, mechanical, civil and electrical engineering, financial optimization models, health care systems, environmental ecology, and forestry I Include many types of optimization models, such as, linear programming, integer programming, quadratic assignment problem, nonlinear convex problems and black-box models I Include many common formulations, such as, facility location, vehicle routing, job shop scheduling, flow shop scheduling, production scheduling (min make span, min max lateness), knapsack/multi-knapsack, traveling salesman, capacitated assignment problem, set covering/packing, network flow, shortest path, and max flow. IND E 599 Notes 1 Slide 2 Tentative Topics Each topic is an introduction to what could be a complete course: 1. basic linear models (LP) with sensitivity analysis 2. integer models (IP), such as the assignment problem, knapsack problem and the traveling salesman problem 3. mixed integer formulations 4. quadratic assignment problems 5. include uncertainty with chance-constraints, stochastic programming scenario-based formulations, and robust optimization 6. multi-objective formulations 7. nonlinear formulations, as often found in engineering design 8. brief introduction to constraint logic programming 9. brief introduction to dynamic programming IND E 599 Notes 1 Slide 3 Computer Software I Catalyst Tools (https://catalyst.uw.edu/) I AIMMS - optimization software (http://www.aimms.com/) Ming Fang - AIMMS software consultant IND E 599 Notes 1 Slide 4 What is Mathematical Programming? Mathematical programming refers to \programming" as a \planning" activity: as in I linear programming (LP) I integer programming (IP) I mixed integer linear programming (MILP) I non-linear programming (NLP) \Optimization" is becoming more common, e.g.
    [Show full text]
  • Julia: a Modern Language for Modern ML
    Julia: A modern language for modern ML Dr. Viral Shah and Dr. Simon Byrne www.juliacomputing.com What we do: Modernize Technical Computing Today’s technical computing landscape: • Develop new learning algorithms • Run them in parallel on large datasets • Leverage accelerators like GPUs, Xeon Phis • Embed into intelligent products “Business as usual” will simply not do! General Micro-benchmarks: Julia performs almost as fast as C • 10X faster than Python • 100X faster than R & MATLAB Performance benchmark relative to C. A value of 1 means as fast as C. Lower values are better. A real application: Gillespie simulations in systems biology 745x faster than R • Gillespie simulations are used in the field of drug discovery. • Also used for simulations of epidemiological models to study disease propagation • Julia package (Gillespie.jl) is the state of the art in Gillespie simulations • https://github.com/openjournals/joss- papers/blob/master/joss.00042/10.21105.joss.00042.pdf Implementation Time per simulation (ms) R (GillespieSSA) 894.25 R (handcoded) 1087.94 Rcpp (handcoded) 1.31 Julia (Gillespie.jl) 3.99 Julia (Gillespie.jl, passing object) 1.78 Julia (handcoded) 1.2 Those who convert ideas to products fastest will win Computer Quants develop Scientists prepare algorithms The last 25 years for production (Python, R, SAS, DEPLOY (C++, C#, Java) Matlab) Quants and Computer Compress the Scientists DEPLOY innovation cycle collaborate on one platform - JULIA with Julia Julia offers competitive advantages to its users Julia is poised to become one of the Thank you for Julia. Yo u ' v e k i n d l ed leading tools deployed by developers serious excitement.
    [Show full text]
  • Treball (1.484Mb)
    Treball Final de Màster MÀSTER EN ENGINYERIA INFORMÀTICA Escola Politècnica Superior Universitat de Lleida Mòdul d’Optimització per a Recursos del Transport Adrià Vall-llaura Salas Tutors: Antonio Llubes, Josep Lluís Lérida Data: Juny 2017 Pròleg Aquest projecte s’ha desenvolupat per donar solució a un problema de l’ordre del dia d’una empresa de transports. Es basa en el disseny i implementació d’un model matemàtic que ha de permetre optimitzar i automatitzar el sistema de planificació de viatges de l’empresa. Per tal de poder implementar l’algoritme s’han hagut de crear diversos mòduls que extreuen les dades del sistema ERP, les tracten, les envien a un servei web (REST) i aquest retorna un emparellament òptim entre els vehicles de l’empresa i les ordres dels clients. La primera fase del projecte, la teòrica, ha estat llarga en comparació amb les altres. En aquesta fase s’ha estudiat l’estat de l’art en la matèria i s’han repassat molts dels models més importants relacionats amb el transport per comprendre’n les seves particularitats. Amb els conceptes ben estudiats, s’ha procedit a desenvolupar un nou model matemàtic adaptat a les necessitats de la lògica de negoci de l’empresa de transports objecte d’aquest treball. Posteriorment s’ha passat a la fase d’implementació dels mòduls. En aquesta fase m’he trobat amb diferents limitacions tecnològiques degudes a l’antiguitat de l’ERP i a l’ús del sistema operatiu Windows. També han sorgit diferents problemes de rendiment que m’han fet redissenyar l’extracció de dades de l’ERP, el càlcul de distàncies i el mòdul d’optimització.
    [Show full text]
  • Open Source Tools for Optimization in Python
    Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints.
    [Show full text]
  • Arxiv:1804.07332V1 [Math.OC] 19 Apr 2018
    Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia Ole Kr¨oger,Carleton Coffrin, Hassan Hijazi, Harsha Nagarajan Los Alamos National Laboratory, Los Alamos, New Mexico, USA Abstract. Nonconvex mixed-integer nonlinear programs (MINLPs) rep- resent a challenging class of optimization problems that often arise in engineering and scientific applications. Because of nonconvexities, these programs are typically solved with global optimization algorithms, which have limited scalability. However, nonlinear branch-and-bound has re- cently been shown to be an effective heuristic for quickly finding high- quality solutions to large-scale nonconvex MINLPs, such as those arising in infrastructure network optimization. This work proposes Juniper, a Julia-based open-source solver for nonlinear branch-and-bound. Leverag- ing the high-level Julia programming language makes it easy to modify Juniper's algorithm and explore extensions, such as branching heuris- tics, feasibility pumps, and parallelization. Detailed numerical experi- ments demonstrate that the initial release of Juniper is comparable with other nonlinear branch-and-bound solvers, such as Bonmin, Minotaur, and Knitro, illustrating that Juniper provides a strong foundation for further exploration in utilizing nonlinear branch-and-bound algorithms as heuristics for nonconvex MINLPs. 1 Introduction Many of the optimization problems arising in engineering and scientific disci- plines combine both nonlinear equations and discrete decision variables. Notable examples include the blending/pooling problem [1,2] and the design and opera- tion of power networks [3,4,5] and natural gas networks [6]. All of these problems fall into the class of mixed-integer nonlinear programs (MINLPs), namely, minimize: f(x; y) s.t.
    [Show full text]
  • GEKKO Documentation Release 1.0.1
    GEKKO Documentation Release 1.0.1 Logan Beal, John Hedengren Aug 31, 2021 Contents 1 Overview 1 2 Installation 3 3 Project Support 5 4 Citing GEKKO 7 5 Contents 9 6 Overview of GEKKO 89 Index 91 i ii CHAPTER 1 Overview GEKKO is a Python package for machine learning and optimization of mixed-integer and differential algebraic equa- tions. It is coupled with large-scale solvers for linear, quadratic, nonlinear, and mixed integer programming (LP, QP, NLP, MILP, MINLP). Modes of operation include parameter regression, data reconciliation, real-time optimization, dynamic simulation, and nonlinear predictive control. GEKKO is an object-oriented Python library to facilitate local execution of APMonitor. More of the backend details are available at What does GEKKO do? and in the GEKKO Journal Article. Example applications are available to get started with GEKKO. 1 GEKKO Documentation, Release 1.0.1 2 Chapter 1. Overview CHAPTER 2 Installation A pip package is available: pip install gekko Use the —-user option to install if there is a permission error because Python is installed for all users and the account lacks administrative priviledge. The most recent version is 0.2. You can upgrade from the command line with the upgrade flag: pip install--upgrade gekko Another method is to install in a Jupyter notebook with !pip install gekko or with Python code, although this is not the preferred method: try: from pip import main as pipmain except: from pip._internal import main as pipmain pipmain(['install','gekko']) 3 GEKKO Documentation, Release 1.0.1 4 Chapter 2. Installation CHAPTER 3 Project Support There are GEKKO tutorials and documentation in: • GitHub Repository (examples folder) • Dynamic Optimization Course • APMonitor Documentation • GEKKO Documentation • 18 Example Applications with Videos For project specific help, search in the GEKKO topic tags on StackOverflow.
    [Show full text]
  • Introduction to the COIN-OR Optimization Suite
    The COIN-OR Optimization Suite: Algegraic Modeling Ted Ralphs COIN fORgery: Developing Open Source Tools for OR Institute for Mathematics and Its Applications, Minneapolis, MN T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Outline 1 Introduction 2 Solver Studio 3 Traditional Modeling Environments 4 Python-Based Modeling 5 Comparative Case Studies T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Outline 1 Introduction 2 Solver Studio 3 Traditional Modeling Environments 4 Python-Based Modeling 5 Comparative Case Studies T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Algebraic Modeling Languages Generally speaking, we follow a four-step process in modeling. Develop an abstract model. Populate the model with data. Solve the model. Analyze the results. These four steps generally involve different pieces of software working in concert. For mathematical programs, the modeling is often done with an algebraic modeling system. Data can be obtained from a wide range of sources, including spreadsheets. Solution of the model is usually relegated to specialized software, depending on the type of model. T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Modeling Software Most existing modeling software can be used with COIN solvers. Commercial Systems GAMS MPL AMPL AIMMS Python-based Open Source Modeling Languages and Interfaces Pyomo PuLP/Dippy CyLP (provides API-level interface) yaposib T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Modeling Software (cont’d) Other Front Ends (mostly open source) FLOPC++ (algebraic modeling in C++) CMPL MathProg.jl (modeling language built in Julia) GMPL (open-source AMPL clone) ZMPL (stand-alone parser) SolverStudio (spreadsheet plug-in: www.OpenSolver.org) Open Office spreadsheet R (RSymphony Plug-in) Matlab (OPTI) Mathematica T.K.
    [Show full text]
  • A Case Study to Help You Think About Your Project
    Wind Turbine Optimization a case study to help you think about your project Andrew Ning ME 575 Three broad areas of optimization (with some overlap) Convex Gradient-Based Gradient-Free Today we will focus on gradient-based, but for some projects the other areas are more important. In higher dimensional space, analytic gradients become increasingly important #iterations # design vars There is a difference between developing for analysis vs optimization Vy(1 + a0) plane of rotation φ V (1 a) W x − There is a difference between developing for analysis vs optimization Vy(1 + a0) plane of rotation φ V (1 a) W x − 1 a 2 C = − c σ0 CT =4a(1 a) T sin φ n − ✓ ◆ 2 1+a0 2 2 C = c σ0λ CQ =4a0(1 + a0) tan φλ Q cos φ t r r ✓ ◆ There is a difference between developing for analysis vs optimization Vy(1 + a0) plane of rotation φ V (1 a) W x − 1 1 a = 2 a0 = 4sin φ +1 4sinφ cos φ 1 cnσ0 ctσ0 − There is a difference between developing for analysis vs optimization use Parameters y use ProgGen Converg Skew correction use WTP_Data n CALL GetCoefs Declarations reset induction !Converg & Return Initialize induction vars < MaxIter CALL FindZC CALL NewtRaph reset induction Initial guess (AxInd / TanInd) n & y CALL NewtRaph MaxIter ZFound Converg CALL BinSearch < Converg ! y n AxIndLo = AxInd -1 n AxIndHi = AxInd +1 AxIndLo = -0.5 Converg AxIndHi = 0.6 CALL BinSearch y n Skew correction Converg AxIndLo = -1.0 CALL BinSearch AxIndHi = -0.4 y CALL GetCoefs n Converg AxIndLo = 0.59 CALL BinSearch AxIndHi = 2.5 Return y y Converg Skew correction CALL GetCoefs Return n AxIndLo = -1.0 CALL BinSearch AxIndHi = 2.5 y Converg Skew correction CALL GetCoefs Return n Return Sometimes a new solution approach is needed… Vy(1 + a0) plane of rotation φ Vx(1 a) W − sin φ V cos φ (φ)= x =0 R 1 a − V (1 + a ) − y 0 Sometimes a new solution approach is needed… Algorithm Avg.
    [Show full text]