Msc in Computer Science Optimization in Operations Research

Total Page:16

File Type:pdf, Size:1020Kb

Msc in Computer Science Optimization in Operations Research h t t p :// o r o . u n i v - n a n t e s . f r Bruxelles Nantes Double Diplôme International Postgraduate Program MSc in Computer Science Optimization in Operations Research graphes et programmation intelligence programmation optimisation mathématique computationnelle par contraintes multi-objectif aide multicritère optimisation optimisation bioinformatique à la décision non-linéaire de la supply-chain Mot de présentation page 3 Environnement de la formation : présentation, contexte, objectifs, adossements à la recherche, soutiens industriels sommaire page 4 © PAM-Université de Nantes © PAM-Université Programme de la formation : L’étudiant et sa formation : présentation du programme, double diplôme, mobilité, thèmes scientifiques principaux diplômés, distinctions page 14 page 23 2 Mot de présentation Dr. Xavier Gandibleux, Dr. Bernard Fortz, Dr. Fabien Lehuédé, chargé professeur, coordinateur professeur, coordinateur pour de recherche, correspondant du master pour l’Université de Nantes l’Université libre de Bruxelles pour l’École des mines de Nantes Après avoir vu quatre promotions de diplômés, la formation de master en informatique « optimisation en recherche opérationnelle (ORO) » de l’Université de Nantes s’enorgueillit d’être proposée depuis la rentrée académique 2012 en double diplôme avec l’Université libre de Bruxelles. Cette brochure est destinée à informer nos futurs étudiants de master 1 et 2 sur ce dispositif de double diplôme, mais aussi de revenir sur l’originalité, les objectifs, le contenu et l’organisation de cette formation. Structures soutenant la formation : Un flashback sur les quatre années écoulées est donné en terme de mobilité, stages et devenir de nos diplômés. Quatre Université de Nantes ans c’est aussi le temps nécessaire pour se prouver et asseoir une reconnaissance de la formation auprès d’entreprises et www.univ-nantes.fr d’unités de recherche. Des entreprises qui soutiennent notre formation s’expriment ici quant à l’importance et à la place Université libre de Bruxelles des compétences scientifiques et techniques en recherche opérationnelle dans notre société. Même si le programme de www.ulb.ac.be École des mines de Nantes la formation est en continuelle évolution afin de s’adapter à de nouveaux besoins, nous saisissons l’opportunité de cette www.mines-nantes.fr brochure pour donner une présentation détaillée du programme et des spécificités qu’il présente aujourd’hui. Région Pays de la Loire www.paysdelaloire.fr Nous tenons à remercier l’ensemble des structures qui soutiennent la formation de master en informatique « optimisation Ministère des affaires étrangères et européennes www.diplomatie.gouv.fr en recherche opérationnelle (ORO) ». Une attention particulière revient à la région Pays de la Loire qui par ses multiples Wallonie-Bruxelles International soutiens nous a permis de réaliser la présente brochure, mais qui accompagne aussi financièrement depuis quatre ans nos www.wbi.be étudiants lors de leur mobilité internationale. International Postgraduate Program Double Diplôme Nantes Bruxelles 3 Deux villes et trois institutions Université de Nantes, très étroitement enseignement et recherche. Faculté des Sciences et Techniques Elle organise près de 40 programmes de 1er cycle Coordinateur du diplôme pour (bachelier) et 235 Masters (2e cycle), et participe la partie française à 20 Écoles doctorales où près de 1 700 doctorats Nantes L’Université de Nantes, créée il y a 50 ans, est sont en cours. Avec quatre Prix Nobel (trois Nobel Nantes est une ville d’histoire tournée vers son avenir. Cette aujourd’hui l’une des grandes universités pluridis- scientifiques et un Nobel de la paix), une Médaille © Mines Nantes/PixMachine-Franck-Gallen métropole-portuaire, de 590 000 habitants dont 290 000 ciplinaires françaises et se développe sur un ter- Fields, deux Prix Abel, trois Prix Wolf, deux Prix résidants dans Nantes, est particulièrement renommée en ritoire attractif ayant une expansion économique Marie Curie et 29% des Prix Francqui attribués, France pour sa qualité de vie et son effervescence culturelle, et démographique forte et continue depuis deux l’ULB est également une grande université de et fait partie des villes françaises les plus dynamiques en décennies. Implantée à Nantes, Saint-Nazaire et recherche reconnue par la communauté académique matière de croissance économique et démographique. Située La Roche-sur-Yon, elle accueille 34 000 étudiants. mondiale. Riche de plus de 175 ans de réussites, la au carrefour de la Bretagne, de l’Anjou et de la Vendée, elle Avec 11 facultés et UFR, 8 instituts et une école Faculté des Sciences de l’ULB compte aujourd’hui est au bord d’un fleuve sauvage, la Loire, et proche de l’océan. environ 2 000 étudiants, répartis dans 9 bacheliers © PAM-Université de Nantes/ Maxime Pateau © PAM-Université d’ingénieurs, l’Université de Nantes propose plus Son modèle de développement durable basé sur la confiance de 300 diplômes dans presque tous les domaines (appelés licences en France) et 16 masters, ainsi dans l’innovation, l’attention à la cohésion sociale et de la connaissance dont « sciences, technologie, que 500 chercheurs travaillant au sein de 11 dépar- l’engagement dans la protection de l’environnement a désigné santé ». Mer, santé, matériaux et STIC (sciences et tements de recherche. Nantes Capitale européenne de l’environnement en 2013. Avec technologies de l’information et de la communica- 51 000 étudiants dont 34 000 à l’université, Nantes est un pôle tion) figurent parmi ses pôles d’excellence en re- École des mines de Nantes d’enseignement supérieur majeur. cherche. La Faculté des Sciences et des Techniques Partenaire habilité pour délivrer le diplôme de l’Université de Nantes accueille chaque année L’École des mines de Nantes est une école plus de 4000 étudiants, au sein de 7 mentions de d’ingénieurs généralistes membre de l’Institut Bruxelles licence et 12 mentions de master, ainsi qu’environ Mines-Télécom, le 1er groupe de grandes écoles Le village Bruocsela (qui signifie « habitation des marais ») 650 personnels dans 6 départements et 30 struc- d’ingénieur et de management de France. Elle ac- est devenu Bruxelles, ville mondiale qui a fêté son millénaire en tures de recherche. cueille sur son campus près de 1 000 étudiants dont 1979. Capitale de la Belgique et de l’Union européenne, Bruxelles 35% étrangers. Formations, recherches et transferts est une ville à l’histoire importante, au patrimoine riche et Université libre de Bruxelles, de technologies sont assurés en partenariat avec au folklore vivant. Bilingue français-néerlandais, la Région Faculté des Sciences les entreprises. Référence dans la formation des in- Bruxelles-Capitale est divisée en 19 communes, dont Bruxelles- Partenaire conventionné pour délivrer génieurs comme dans la recherche, l’École s’impose ville, et compte plus d’un million d’habitants. La ville abrite de le double diplôme dans deux domaines d’excellence : les sciences et prestigieuses universités qui peuvent se targuer de plusieurs prix Fondée en 1834, et actuellement forte de 24 000 technologies de l’énergie et de l’environnement et Nobel dont l’ Université libre de Bruxelles, la Vrije Universiteit étudiants dont 32% sont d’origine étrangère, les sciences et technologies de l’information. Le Brussel, ainsi que des grandes écoles et des centres de recherche l’Université libre de Bruxelles (ULB) est ouverte master ORO offre un lieu d’expression à son exper- actifs dans de nombreux domaines. à l’Europe et au monde. Composée de 13 facul- tise en optimisation, aide à la décision et gestion de © Université libre de Bruxelles tés, écoles et instituts spécialisés, l’ULB couvre la supply-chain. aujourd’hui toutes les disciplines en associant 4 Une formation en science du numérique spécialisée en « recherche opérationnelle » La spécialité « recherche opérationnelle » tique, et bioinformatique sont visibles internationalement. Ces dernières années Nantes a été organisateur de manifestations scientifiques majeures comme les En deux mots, la recherche opérationnelle désigne les méthodes scientifiques conférences « Principles and Practice of Constraint Programming » en 2006, utilisables pour élaborer de meilleures décisions. La spécialité est « Evolutionary Multi-Criterion Optimization » en 2009, « EURO Working Group pluridisciplinaire avec des ancrages en informatique, mathématiques on Locational Analysis » en 2011 et « Integration of AI and OR Techniques in appliquées, économie, et science de l’ingénieur. Elle propose des modèles Constraint Programming for Combinatorial Optimization Problems » en 2012. conceptuels pour analyser des situations complexes et permet d’éclairer les choix du décideur sous l’angle de l’efficience. Les formations en recherche La recherche opérationnelle à l’ULB © www.guidnet.com opérationnelle sont largement répandues dans les pays anglo-saxons et se présentent sous la dénomination « Operations Research and Management Répartie sur trois unités (IRIDIA, GOM et SMG), la recherche opérationnelle Sciences (OR/MS) ». à l’Université libre de Bruxelles est internationalement connue par les tra- vaux conduits par Marco Dorigo (Prix d’excellence Marie Curie en 2003) sur Que faire avec une formation les métaheuristiques à base de colonies de fourmis et Thomas Stützle sur la en recherche opérationnelle ? recherche locale stochastique, par Martine Labbé (Présidente d’EURO, asso- ciation des sociétés européennes de recherche opérationnelle entre 2007 et Une formation en recherche opérationnelle donne des fondations
Recommended publications
  • Using the COIN-OR Server
    Using the COIN-OR Server Your CoinEasy Team November 16, 2009 1 1 Overview This document is part of the CoinEasy project. See projects.coin-or.org/CoinEasy. In this document we describe the options available to users of COIN-OR who are interested in solving opti- mization problems but do not wish to compile source code in order to build the COIN-OR projects. In particular, we show how the user can send optimization problems to a COIN-OR server and get the solution result back. The COIN-OR server, webdss.ise.ufl.edu, is 2x Intel(R) Xeon(TM) CPU 3.06GHz 512MiB L2 1024MiB L3, 2GiB DRAM, 4x73GiB scsi disk 2xGigE machine. This server allows the user to directly access the following COIN-OR optimization solvers: • Bonmin { a solver for mixed-integer nonlinear optimization • Cbc { a solver for mixed-integer linear programs • Clp { a linear programming solver • Couenne { a solver for mixed-integer nonlinear optimization problems and is capable of global optiomization • DyLP { a linear programming solver • Ipopt { an interior point nonlinear optimization solver • SYMPHONY { mixed integer linear solver that can be executed in either parallel (dis- tributed or shared memory) or sequential modes • Vol { a linear programming solver All of these solvers on the COIN-OR server may be accessed through either the GAMS or AMPL modeling languages. In Section 2.1 we describe how to use the solvers using the GAMS modeling language. In Section 2.2 we describe how to call the solvers using the AMPL modeling language. In Section 3 we describe how to call the solvers using a command line executable pro- gram OSSolverService.exe (or OSSolverService for Linux/Mac OS X users { in the rest of the document we refer to this executable using a .exe extension).
    [Show full text]
  • Polyhedral Outer Approximations in Convex Mixed-Integer Nonlinear
    Jan Kronqvist Polyhedral Outer Approximations in Polyhedral Outer Approximations in Convex Mixed-Integer Nonlinear Programming Approximations in Convex Polyhedral Outer Convex Mixed-Integer Nonlinear Programming Jan Kronqvist PhD Thesis in Process Design and Systems Engineering Dissertations published by Process Design and Systems Engineering ISSN 2489-7272 Faculty of Science and Engineering 978-952-12-3734-8 Åbo Akademi University 978-952-12-3735-5 (pdf) Painosalama Oy Åbo 2018 Åbo, Finland 2018 2018 Polyhedral Outer Approximations in Convex Mixed-Integer Nonlinear Programming Jan Kronqvist PhD Thesis in Process Design and Systems Engineering Faculty of Science and Engineering Åbo Akademi University Åbo, Finland 2018 Dissertations published by Process Design and Systems Engineering ISSN 2489-7272 978-952-12-3734-8 978-952-12-3735-5 (pdf) Painosalama Oy Åbo 2018 Preface My time as a PhD student began back in 2014 when I was given a position in the Opti- mization and Systems Engineering (OSE) group at Åbo Akademi University. It has been a great time, and many people have contributed to making these years a wonderful ex- perience. During these years, I was given the opportunity to teach several courses in both environmental engineering and process systems engineering. The opportunity to teach these courses has been a great experience for me. I want to express my greatest gratitude to my supervisors Prof. Tapio Westerlund and Docent Andreas Lundell. Tapio has been a true source of inspiration and a good friend during these years. Thanks to Tapio, I have been able to be a part of an inter- national research environment.
    [Show full text]
  • Performance of Optimization Software - an Update
    Performance of Optimization Software - an Update INFORMS Annual 2011 Charlotte, NC 13-18 November 2011 H. D. Mittelmann School of Math and Stat Sciences Arizona State University 1 Services we provide • Guide to Software: "Decision Tree" • http://plato.asu.edu/guide.html • Software Archive • Software Evaluation: "Benchmarks" • Archive of Testproblems • Web-based Solvers (1/3 of NEOS) 2 We maintain the following NEOS solvers (8 categories) Combinatorial Optimization * CONCORDE [TSP Input] Global Optimization * ICOS [AMPL Input] Linear Programming * bpmpd [AMPL Input][LP Input][MPS Input][QPS Input] Mixed Integer Linear Programming * FEASPUMP [AMPL Input][CPLEX Input][MPS Input] * SCIP [AMPL Input][CPLEX Input][MPS Input] [ZIMPL Input] * qsopt_ex [LP Input][MPS Input] [AMPL Input] Nondifferentiable Optimization * condor [AMPL Input] Semi-infinite Optimization * nsips [AMPL Input] Stochastic Linear Programming * bnbs [SMPS Input] * DDSIP [LP Input][MPS Input] 3 We maintain the following NEOS solvers (cont.) Semidefinite (and SOCP) Programming * csdp [MATLAB_BINARY Input][SPARSE_SDPA Input] * penbmi [MATLAB Input][MATLAB_BINARY Input] * pensdp [MATLAB_BINARY Input][SPARSE_SDPA Input] * sdpa [MATLAB_BINARY Input][SPARSE_SDPA Input] * sdplr [MATLAB_BINARY Input][SDPLR Input][SPARSE_SDPA Input] * sdpt3 [MATLAB_BINARY Input][SPARSE_SDPA Input] * sedumi [MATLAB_BINARY Input][SPARSE_SDPA Input] 4 Overview of Talk • Current and Selected(*) Benchmarks { Parallel LP benchmarks { MILP benchmark (MIPLIB2010) { Feasibility/Infeasibility Detection benchmarks
    [Show full text]
  • Julia: a Modern Language for Modern ML
    Julia: A modern language for modern ML Dr. Viral Shah and Dr. Simon Byrne www.juliacomputing.com What we do: Modernize Technical Computing Today’s technical computing landscape: • Develop new learning algorithms • Run them in parallel on large datasets • Leverage accelerators like GPUs, Xeon Phis • Embed into intelligent products “Business as usual” will simply not do! General Micro-benchmarks: Julia performs almost as fast as C • 10X faster than Python • 100X faster than R & MATLAB Performance benchmark relative to C. A value of 1 means as fast as C. Lower values are better. A real application: Gillespie simulations in systems biology 745x faster than R • Gillespie simulations are used in the field of drug discovery. • Also used for simulations of epidemiological models to study disease propagation • Julia package (Gillespie.jl) is the state of the art in Gillespie simulations • https://github.com/openjournals/joss- papers/blob/master/joss.00042/10.21105.joss.00042.pdf Implementation Time per simulation (ms) R (GillespieSSA) 894.25 R (handcoded) 1087.94 Rcpp (handcoded) 1.31 Julia (Gillespie.jl) 3.99 Julia (Gillespie.jl, passing object) 1.78 Julia (handcoded) 1.2 Those who convert ideas to products fastest will win Computer Quants develop Scientists prepare algorithms The last 25 years for production (Python, R, SAS, DEPLOY (C++, C#, Java) Matlab) Quants and Computer Compress the Scientists DEPLOY innovation cycle collaborate on one platform - JULIA with Julia Julia offers competitive advantages to its users Julia is poised to become one of the Thank you for Julia. Yo u ' v e k i n d l ed leading tools deployed by developers serious excitement.
    [Show full text]
  • Open Source Tools for Optimization in Python
    Open Source Tools for Optimization in Python Ted Ralphs Sage Days Workshop IMA, Minneapolis, MN, 21 August 2017 T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Outline 1 Introduction 2 COIN-OR 3 Modeling Software 4 Python-based Modeling Tools PuLP/DipPy CyLP yaposib Pyomo T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Caveats and Motivation Caveats I have no idea about the background of the audience. The talk may be either too basic or too advanced. Why am I here? I’m not a Sage developer or user (yet!). I’m hoping this will be a chance to get more involved in Sage development. Please ask lots of questions so as to guide me in what to dive into! T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Mathematical Optimization Mathematical optimization provides a formal language for describing and analyzing optimization problems. Elements of the model: Decision variables Constraints Objective Function Parameters and Data The general form of a mathematical optimization problem is: min or max f (x) (1) 8 9 < ≤ = s.t. gi(x) = bi (2) : ≥ ; x 2 X (3) where X ⊆ Rn might be a discrete set. T.K. Ralphs (Lehigh University) Open Source Optimization August 21, 2017 Types of Mathematical Optimization Problems The type of a mathematical optimization problem is determined primarily by The form of the objective and the constraints.
    [Show full text]
  • Arxiv:1804.07332V1 [Math.OC] 19 Apr 2018
    Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia Ole Kr¨oger,Carleton Coffrin, Hassan Hijazi, Harsha Nagarajan Los Alamos National Laboratory, Los Alamos, New Mexico, USA Abstract. Nonconvex mixed-integer nonlinear programs (MINLPs) rep- resent a challenging class of optimization problems that often arise in engineering and scientific applications. Because of nonconvexities, these programs are typically solved with global optimization algorithms, which have limited scalability. However, nonlinear branch-and-bound has re- cently been shown to be an effective heuristic for quickly finding high- quality solutions to large-scale nonconvex MINLPs, such as those arising in infrastructure network optimization. This work proposes Juniper, a Julia-based open-source solver for nonlinear branch-and-bound. Leverag- ing the high-level Julia programming language makes it easy to modify Juniper's algorithm and explore extensions, such as branching heuris- tics, feasibility pumps, and parallelization. Detailed numerical experi- ments demonstrate that the initial release of Juniper is comparable with other nonlinear branch-and-bound solvers, such as Bonmin, Minotaur, and Knitro, illustrating that Juniper provides a strong foundation for further exploration in utilizing nonlinear branch-and-bound algorithms as heuristics for nonconvex MINLPs. 1 Introduction Many of the optimization problems arising in engineering and scientific disci- plines combine both nonlinear equations and discrete decision variables. Notable examples include the blending/pooling problem [1,2] and the design and opera- tion of power networks [3,4,5] and natural gas networks [6]. All of these problems fall into the class of mixed-integer nonlinear programs (MINLPs), namely, minimize: f(x; y) s.t.
    [Show full text]
  • Introduction to the COIN-OR Optimization Suite
    The COIN-OR Optimization Suite: Algegraic Modeling Ted Ralphs COIN fORgery: Developing Open Source Tools for OR Institute for Mathematics and Its Applications, Minneapolis, MN T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Outline 1 Introduction 2 Solver Studio 3 Traditional Modeling Environments 4 Python-Based Modeling 5 Comparative Case Studies T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Outline 1 Introduction 2 Solver Studio 3 Traditional Modeling Environments 4 Python-Based Modeling 5 Comparative Case Studies T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Algebraic Modeling Languages Generally speaking, we follow a four-step process in modeling. Develop an abstract model. Populate the model with data. Solve the model. Analyze the results. These four steps generally involve different pieces of software working in concert. For mathematical programs, the modeling is often done with an algebraic modeling system. Data can be obtained from a wide range of sources, including spreadsheets. Solution of the model is usually relegated to specialized software, depending on the type of model. T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Modeling Software Most existing modeling software can be used with COIN solvers. Commercial Systems GAMS MPL AMPL AIMMS Python-based Open Source Modeling Languages and Interfaces Pyomo PuLP/Dippy CyLP (provides API-level interface) yaposib T.K. Ralphs (Lehigh University) COIN-OR October 15, 2018 Modeling Software (cont’d) Other Front Ends (mostly open source) FLOPC++ (algebraic modeling in C++) CMPL MathProg.jl (modeling language built in Julia) GMPL (open-source AMPL clone) ZMPL (stand-alone parser) SolverStudio (spreadsheet plug-in: www.OpenSolver.org) Open Office spreadsheet R (RSymphony Plug-in) Matlab (OPTI) Mathematica T.K.
    [Show full text]
  • Couenne: a User's Manual
    couenne: a user’s manual Pietro Belotti⋆ Dept. of Mathematical Sciences, Clemson University Clemson SC 29634. Abstract. This is a short user’s manual for the couenne open-source software for global optimization. It provides downloading and installation instructions, an explanation to all options available in couenne, and suggestions on when to use some of its features. 1 Introduction couenne is an Open Source code for solving Global Optimization problems, i.e., problems of the form (P) min f(x) s.t. gj(x) ≤ 0 ∀j ∈ M l u xi ≤ xi ≤ xi ∀i ∈ N0 Z I xi ∈ ∀i ∈ N0 ⊆ N0, n n where f : R → R and, for all j ∈ M, gj : R → R are multivariate (possibly nonconvex) functions, n = |N0| is the number of variables, and x = (xi)i∈N0 is the n-vector of variables. We assume that f and all gj’s are factorable, i.e., they are expressed as Ph Qk ηhk(x), where all functions ηhk(x) are univariate. couenne is part of the COIN-OR infrastructure for Operations Research software1. It is a reformulation-based spatial branch&bound (sBB) [10,11,12], and it implements: – linearization; – branching; – heuristics to find feasible solutions; – bound reduction. Its main purpose is to provide the Optimization community with an Open- Source tool that can be specialized to handle specific classes of MINLP problems, or improved by adding more efficient linearization, branching, heuristic, and bound reduction techniques. ⋆ Email: [email protected] 1 See http://www.coin-or.org Web resources. The homepage of couenne is on the COIN-OR website: http://www.coin-or.org/Couenne and shows a brief description of couenne and some useful links.
    [Show full text]
  • Pyomo and Jump – Modeling Environments for the 21St Century
    Qi Chen and Braulio Brunaud Pyomo and JuMP – Modeling environments for the 21st century EWO Seminar Carnegie Mellon University March 10, 2017 1.All the information provided is coming from the standpoint of two somewhat expert users in Pyomo and Disclaimer JuMP, former GAMS users 2. All the content is presented to the best of our knowledge 2 The Optimization Workflow . These tasks usually involve many tools: Data Input – Databases – Excel – GAMS/AMPL/AIMMS/CPLEX Data – Tableau Manipulation . Can a single tool be used to complete the entire workflow? Optimization Analysis Visualization 3 Optimization Environments Overview Visualization End User ● Different input sources ● Easy to model ● AMPL: Specific modeling constructs ○ Piecewise ○ Complementarity Modeling conditions ○ Logical Implications ● Solver independent models ● Developing complex algorithms can be challenging ● Large number of solvers available Advanced Optimization algorithms Expert ● Commercial 4 Optimization Environments Overview Visualization End User ● Different input sources ● Build input forms ● Easy to model ● Multiplatform: ○ Standalone Modeling ○ Web ○ Mobile ● Solver independent models ● Build visualizations ● Commercial Advanced Optimization algorithms Expert 5 Optimization Environments Overview Visualization End User ● Different input sources ● Hard to model ● Access to the full power of a solver ● Access to a broad range of tools Modeling ● Solver-specific models ● Building visualizations is hard ● Open source and free Advanced Optimization Expert algorithms solver
    [Show full text]
  • CME 338 Large-Scale Numerical Optimization Notes 2
    Stanford University, ICME CME 338 Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2019 Notes 2: Overview of Optimization Software 1 Optimization problems We study optimization problems involving linear and nonlinear constraints: NP minimize φ(x) n x2R 0 x 1 subject to ` ≤ @ Ax A ≤ u; c(x) where φ(x) is a linear or nonlinear objective function, A is a sparse matrix, c(x) is a vector of nonlinear constraint functions ci(x), and ` and u are vectors of lower and upper bounds. We assume the functions φ(x) and ci(x) are smooth: they are continuous and have continuous first derivatives (gradients). Sometimes gradients are not available (or too expensive) and we use finite difference approximations. Sometimes we need second derivatives. We study algorithms that find a local optimum for problem NP. Some examples follow. If there are many local optima, the starting point is important. x LP Linear Programming min cTx subject to ` ≤ ≤ u Ax MINOS, SNOPT, SQOPT LSSOL, QPOPT, NPSOL (dense) CPLEX, Gurobi, LOQO, HOPDM, MOSEK, XPRESS CLP, lp solve, SoPlex (open source solvers [7, 34, 57]) x QP Quadratic Programming min cTx + 1 xTHx subject to ` ≤ ≤ u 2 Ax MINOS, SQOPT, SNOPT, QPBLUR LSSOL (H = BTB, least squares), QPOPT (H indefinite) CLP, CPLEX, Gurobi, LANCELOT, LOQO, MOSEK BC Bound Constraints min φ(x) subject to ` ≤ x ≤ u MINOS, SNOPT LANCELOT, L-BFGS-B x LC Linear Constraints min φ(x) subject to ` ≤ ≤ u Ax MINOS, SNOPT, NPSOL 0 x 1 NC Nonlinear Constraints min φ(x) subject to ` ≤ @ Ax A ≤ u MINOS, SNOPT, NPSOL c(x) CONOPT, LANCELOT Filter, KNITRO, LOQO (second derivatives) IPOPT (open source solver [30]) Algorithms for finding local optima are used to construct algorithms for more complex optimization problems: stochastic, nonsmooth, global, mixed integer.
    [Show full text]
  • Combined Scheduling and Control
    Books Combined Scheduling and Control Edited by John D. Hedengren and Logan Beal Printed Edition of the Special Issue Published in Processes www.mdpi.com/journal/processes MDPI Combined Scheduling and Control Books Special Issue Editors John D. Hedengren Logan Beal MDPI Basel Beijing Wuhan Barcelona Belgrade MDPI Special Issue Editors John D. Hedengren Logan Beal Brigham Young University Brigham Young University USA USA Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Processes (ISSN 2227-9717) in 2017 (available at: http://www.mdpi.com/journal/processes/special_issues/Combined_Scheduling). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Books Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year Article number, page range. First Edition 2018 ISBN 978-3-03842-805-3 (Pbk) ISBN 978-3-03842-806-0 (PDF) Cover photo courtesy of John D. Hedengren and Logan Beal. Articles in this volume are Open Access and distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is © 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). MDPI Table of Contents About the Special Issue Editors ....................................
    [Show full text]
  • Computational Optimization - Dnsc 8392
    COMPUTATIONAL OPTIMIZATION - DNSC 8392 School of Business – The George Washington University INSTRUCTOR: DR. MIGUEL A. LEJEUNE Office: FUNGER HALL, 406 Phone: 202-994-6576 E-mail: [email protected] Office Hours: On appointment Time: Wednesday, 3:30PM – 6PM Place: Duques 262 OVERVIEW This course is about the description, design, and programming of efficient computational methods for large-scale optimization problems. Examples of such problems abound and can be found in network design, transportation, supply chain, production and distribution, data mining, health care, treatment optimization, vaccination strategies, military operations, vehicle or crew routing and scheduling, facility location, financial asset allocation, telecommunications, capacity allocation problems. These problems can take multiple forms (single- vs. multi-objective; deterministic vs. stochastic; continuous vs. integer; convex vs. non-convex, etc.). Despite their continuous improvement, academic and commercial optimization software are not always sufficient to satisfy the ever increasing demand from industry for solving large instances of such problems. In order to develop successful methods for large-scale challenging problems, it is essential to effectively integrate relaxation, reformulation, decomposition methods as well as search algorithms that exploit structural properties of the problems of interest. Such approaches can yield provably optimal solutions or good approximate solutions to large-scale problems in practice. The course will provide students guidance to efficiently formulate optimization problems and to derive algorithms for the solution of large-scale and data-driven optimization problems that are hard to solve. The course will acquaint the students with the software, optimization solvers, and programming languages 1 used by professionals to code and model industry-size optimization problems.
    [Show full text]