Numerical Optimization of Industrial Processes

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Optimization of Industrial Processes Czech Technical University in Prague Faculty of Electrical Engineering Department of Control Engineering Bachelor’s thesis Numerical optimization of industrial processes Lenka Caletková Supervisor: Ing. Jan Šulc Study Programme: Cybernetics and Robotics Field of Study: Systems and control Date: May 2013 iv Acknowledgements I would like to show my greatest appreciation to my supervisor Ing. Jan Šulc, who was always willing to help me with this project - even in his extra time - during the last two semesters. Without his encouragement and guidance this project would not have materialized. Many thanks belong to all my friends, who supported me in my tough times. Last but not least, I want to thank my supportive sister Jana and my great parents, who enabled me to study at the CTU, always stood by my side and gave me all their love. Abstract This thesis handles the conception of numerical optimizations and presents Python libraries, which are able to solve optimization problems. It compares their usability, stability and computing possibilities. All these aspects were tested on two specific industrial processes - control of the tunnel ventilation and heating systems control in buildings. A functional code in Python programming language for performance optimization of tunnel ventilation represents the outcome of this thesis. Abstrakt Tato bakalářská práce se věnuje pojmu numerické optimalizace a prezentuje knihovny pro- gramovacího jazyka Python, které je možné použít pro řešení optimalizačních úloh. Zároveň porovnává jejich použitelnost, stabilitu a výpočetní schopnosti. Všechny tyto aspekty byly testovány na dvou konkrétních průmyslových procesech - řízení ventilace v tunelech a řízení tepelných systémů v budovách. Výstup této práce představuje funkční kód v jazyce Python, který má za úkol optimalizovat výkon při ventilaci tunelu. vi Contents 1 Introduction1 1.1 Outline of the thesis................................2 2 Numerical optimization3 2.1 Sub-fields of numerical optimization.......................3 2.1.1 Convex optimization............................3 2.1.1.1 Least-squares problems.....................4 2.1.1.2 Linear programming.......................4 2.1.1.3 Semidefinite programming....................4 2.1.1.4 Quadratic programming.....................4 2.1.2 Other optimization problems.......................5 2.1.2.1 Non-linear programming.....................5 2.2 Practical examples of using optimization.....................5 2.2.1 Embedded optimization..........................5 2.2.2 Portfolio optimization...........................5 2.2.3 Data fitting.................................5 2.2.4 Model predictive control (MPC).....................6 3 Python libraries7 3.1 Licenses.......................................7 3.1.1 GPL.....................................7 3.1.2 BSD, CPL and MIT licenses........................8 3.2 Python libraries for optimization problems....................9 3.2.1 SciPy and its package Optimize......................9 3.2.2 CVXOPT.................................. 11 3.2.2.1 Examples of using CVXOPT.................. 12 3.2.3 CVXPY................................... 12 3.2.4 APMonitor................................. 13 3.2.4.1 Examples of using APMonitor................. 14 3.2.5 OpenOpt.................................. 15 4 Testing of code for special industrial processes 16 4.1 Industrial processes................................. 16 4.1.1 Tunnel ventilation control......................... 16 4.1.2 Control of building heating system.................... 18 ix CONTENTS x 4.2 Comparison..................................... 19 4.2.1 Ventilation control of the tunnel Blanka................. 19 4.2.1.1 MATLAB and fmincon..................... 20 4.2.1.2 SciPy............................... 20 4.2.1.3 APMonitor............................ 21 4.2.1.4 OpenOpt............................. 21 4.2.2 Heating system control of CTU’s building................ 22 4.2.2.1 MATLAB and quadprog..................... 22 4.2.2.2 CVXOPT............................. 22 4.2.2.3 OpenOpt............................. 22 5 Conclusion 24 A Implementation 28 A.1 Quadratic programming.............................. 29 A.1.1 CVXOPT.................................. 29 A.1.2 OpenOpt.................................. 30 A.2 Non-linear programming (NLP).......................... 31 A.2.1 OpenOpt.................................. 33 A.3 SciPy........................................ 34 A.4 APMonitor..................................... 36 Chapter 1 Introduction In the last century, the term “mathematical optimization” was brought to light thanks to works of great mathematicians like Fermat, Lagrange, Newton or Gauss. They defined the important basics, which created a path for the nowadays known definition of numerical optimization. This field had been developed during decades, but the ’boom’ of this concept has took place in the last 20 years, when the computer-time came. It was almost impossible to solve even simple optimization problems by ourselves, but with computers, there was a chance to improve and use this strong concept. It is spreading out through many fields - like economics, chemistry, energetics and many others. Numerical optimization is in these days an important part of control systems, because we can achieve many savings through this ‘tool’. At our faculty we are using optimization for ventilation control of complex road tunnels, chemical processes, or heating of buildings [24, 10]. To show the potential of this method, let us show you an example. Our control department has been using optimization, accurately Model predictive control, for heating system of our faculty building and the savings has been between 15 and 30 percent of energy in comparison to the previous heating control system [10]. The aim of this thesis is to find and test possible Python libraries, that can be utilized for numerical optimization of some processes. The numerical computing environment MAT- LAB is usually used for this purpose. It is very popular in academic domain and verified in practise and can be described as a stable and robust software, but it is really expensive in commercial sphere. Therefore small companies can not afford this software, so Python and some of its libraries offer a great chance to create software tools also for such clients. This thesis should find Python libraries, which could be a serious competition for MATLAB. 1 CHAPTER 1. INTRODUCTION 2 1.1 Outline of the thesis • Chapter 1- Introduction presents the subject and aims of this thesis. • Chapter 2- Numerical Optimization explains this concept, divides it into the sub-fields and shows us some practical examples. • Chapter 3- Python libraries lists all the used software and describes their possi- bilities to solve different types of optimization. This part includes few sample codes, which demonstrate the differences among the libraries. • Chapter 4- Testing of code for special industrial processes describes the im- plementation of this thesis. That means comparison of used software for two concrete industrial processes - Heating control of the CTU1 building in Prague and the Venti- lation control of the tunnel Blanka. • Chapter 5- Conclusion describes the advantages and disadvantages of tried software, chooses the best possible Python library for tunnel ventilation control and presents possible future improvements. 1The abbreviation ‘CTU’ presents the Czech Technical University in Prague. Chapter 2 Numerical optimization Before starting writing a code, we should first understand, what numerical or mathematical optimization means. The word ‘optimal’ is often used, but not always correctly. To describe something as optimal, we first have to define the conditions, for which we can consider this solution is truly optimal. Mathematical optimization or just optimization has two parts - objective function (or cost function) and constraints, which define the set, in which we are looking for the optimal solution. In general first we have to define an optimization problem and then we seek the best solver for this problem. Let us define the mathematical optimization problem. For optimization variable x = (x1; :::; xn) minimize f0(x) (2.1) subject to fi(x) ≤ bi; i = 1; :::; m: n n The f0 : R −! R is the objective function and fi : R −! R are constraint functions and the constants bi represent the bounds of the constraints [5, pp. 1]. Our demanding optimal solution x∗ has to fulfil for any real z, which satisfies the con- ∗ ∗ straints f0(z) ≥ f0(x ). This vector x is global extreme and “the smallest objective value among all vectors that satisfy the constraints”[5]. 2.1 Sub-fields of numerical optimization Although the optimization can be divided into many sub-fields, we will have a closer look only at few of them - especially on that sub-fields, that will used for our industrial processes. 2.1.1 Convex optimization This sub-field studies the cases, when the objective function and the constraint set are convex (concave) for minimization (maximization). And this case guarantees, that we are able to find global minimum (maximum) of this function. Therefore a lot of mathematicians and engineers try to describe an optimization problem as a convex or concave, because it ensures that they will find the sought optimum. Mr. Boyd and Mr. Vandenberghe wrote an important script [5] about this part of numerical optimization. 3 CHAPTER 2. NUMERICAL OPTIMIZATION 4 2.1.1.1 Least-squares problems This sub-field is one of the simplest convex optimization problems, because it does not contain any constraints and
Recommended publications
  • Click to Edit Master Title Style
    Click to edit Master title style MINLP with Combined Interior Point and Active Set Methods Jose L. Mojica Adam D. Lewis John D. Hedengren Brigham Young University INFORM 2013, Minneapolis, MN Presentation Overview NLP Benchmarking Hock-Schittkowski Dynamic optimization Biological models Combining Interior Point and Active Set MINLP Benchmarking MacMINLP MINLP Model Predictive Control Chiller Thermal Energy Storage Unmanned Aerial Systems Future Developments Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University Overview of Benchmark Testing NLP Benchmark Testing 1 1 2 3 3 min J (x, y,u) APOPT , BPOPT , IPOPT , SNOPT , MINOS x Problem characteristics: s.t. 0 f , x, y,u t Hock Schittkowski, Dynamic Opt, SBML 0 g(x, y,u) Nonlinear Programming (NLP) Differential Algebraic Equations (DAEs) 0 h(x, y,u) n m APMonitor Modeling Language x, y u MINLP Benchmark Testing min J (x, y,u, z) 1 1 2 APOPT , BPOPT , BONMIN x s.t. 0 f , x, y,u, z Problem characteristics: t MacMINLP, Industrial Test Set 0 g(x, y,u, z) Mixed Integer Nonlinear Programming (MINLP) 0 h(x, y,u, z) Mixed Integer Differential Algebraic Equations (MIDAEs) x, y n u m z m APMonitor & AMPL Modeling Language 1–APS, LLC 2–EPL, 3–SBS, Inc. Oct 9, 2013 APMonitor.com APOPT.com Brigham Young University NLP Benchmark – Summary (494) 100 90 80 APOPT+BPOPT APOPT 70 1.0 BPOPT 1.0 60 IPOPT 3.10 IPOPT 50 2.3 SNOPT Percentage (%) 6.1 40 Benchmark Results MINOS 494 Problems 5.5 30 20 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Not worse than 2 times slower than
    [Show full text]
  • Click to Edit Master Title Style
    Click to edit Master title style APMonitor Modeling Language John Hedengren Brigham Young University Advanced Process Solutions, LLC http://apmonitor.com Overview of APM Software as a service accessible through: MATLAB, Python, Web-browser interface Linux / Windows / Mac OS / Android platforms Solvers 1 1 2 3 3 APOPT , BPOPT , IPOPT , SNOPT , MINOS Problem characteristics: min J (x, y,u, z) Large-scale x s.t. 0 f , x, y,u, z Nonlinear Programming (NLP) t Mixed Integer NLP (MINLP) 0 g(x, y,u, z) Multi-objective 0 h(x, y,u, z) n m m Real-time systems x, y u z Differential Algebraic Equations (DAEs) 1 – APS, LLC 2 – EPL 3 – SBS, Inc. Oct 14, 2012 APMonitor.com Advanced Process Solutions, LLC Overview of APM Vector / matrix algebra with set notation Automatic Differentiation st nd Exact 1 and 2 Derivatives Large-scale, sparse systems of equations Object-oriented access Thermo-physical properties Database of preprogrammed models Parallel processing Optimization with uncertain parameters Custom solver or model connections Oct 14, 2012 APMonitor.com Advanced Process Solutions, LLC Unique Features of APM Initialization with nonlinear presolve minJ(x, y,u) x s.t. 0 f ,x, y,u min J (x, y,u) t 0 g(x, y,u) 0h(x, y,u) x minJ(x, y,u) x s.t. 0 f ,x, y,u s.t. 0 f , x, y,u t 0 g(x, y,u) t 0 h(x, y,u) minJ(x, y,u) x s.t. 0 f ,x, y,u t 0g(x, y,u) 0h(x, y,u) 0 g(x, y,u) minJ(x, y,u) x s.t.
    [Show full text]
  • Notes 1: Introduction to Optimization Models
    Notes 1: Introduction to Optimization Models IND E 599 September 29, 2010 IND E 599 Notes 1 Slide 1 Course Objectives I Survey of optimization models and formulations, with focus on modeling, not on algorithms I Include a variety of applications, such as, industrial, mechanical, civil and electrical engineering, financial optimization models, health care systems, environmental ecology, and forestry I Include many types of optimization models, such as, linear programming, integer programming, quadratic assignment problem, nonlinear convex problems and black-box models I Include many common formulations, such as, facility location, vehicle routing, job shop scheduling, flow shop scheduling, production scheduling (min make span, min max lateness), knapsack/multi-knapsack, traveling salesman, capacitated assignment problem, set covering/packing, network flow, shortest path, and max flow. IND E 599 Notes 1 Slide 2 Tentative Topics Each topic is an introduction to what could be a complete course: 1. basic linear models (LP) with sensitivity analysis 2. integer models (IP), such as the assignment problem, knapsack problem and the traveling salesman problem 3. mixed integer formulations 4. quadratic assignment problems 5. include uncertainty with chance-constraints, stochastic programming scenario-based formulations, and robust optimization 6. multi-objective formulations 7. nonlinear formulations, as often found in engineering design 8. brief introduction to constraint logic programming 9. brief introduction to dynamic programming IND E 599 Notes 1 Slide 3 Computer Software I Catalyst Tools (https://catalyst.uw.edu/) I AIMMS - optimization software (http://www.aimms.com/) Ming Fang - AIMMS software consultant IND E 599 Notes 1 Slide 4 What is Mathematical Programming? Mathematical programming refers to \programming" as a \planning" activity: as in I linear programming (LP) I integer programming (IP) I mixed integer linear programming (MILP) I non-linear programming (NLP) \Optimization" is becoming more common, e.g.
    [Show full text]
  • Treball (1.484Mb)
    Treball Final de Màster MÀSTER EN ENGINYERIA INFORMÀTICA Escola Politècnica Superior Universitat de Lleida Mòdul d’Optimització per a Recursos del Transport Adrià Vall-llaura Salas Tutors: Antonio Llubes, Josep Lluís Lérida Data: Juny 2017 Pròleg Aquest projecte s’ha desenvolupat per donar solució a un problema de l’ordre del dia d’una empresa de transports. Es basa en el disseny i implementació d’un model matemàtic que ha de permetre optimitzar i automatitzar el sistema de planificació de viatges de l’empresa. Per tal de poder implementar l’algoritme s’han hagut de crear diversos mòduls que extreuen les dades del sistema ERP, les tracten, les envien a un servei web (REST) i aquest retorna un emparellament òptim entre els vehicles de l’empresa i les ordres dels clients. La primera fase del projecte, la teòrica, ha estat llarga en comparació amb les altres. En aquesta fase s’ha estudiat l’estat de l’art en la matèria i s’han repassat molts dels models més importants relacionats amb el transport per comprendre’n les seves particularitats. Amb els conceptes ben estudiats, s’ha procedit a desenvolupar un nou model matemàtic adaptat a les necessitats de la lògica de negoci de l’empresa de transports objecte d’aquest treball. Posteriorment s’ha passat a la fase d’implementació dels mòduls. En aquesta fase m’he trobat amb diferents limitacions tecnològiques degudes a l’antiguitat de l’ERP i a l’ús del sistema operatiu Windows. També han sorgit diferents problemes de rendiment que m’han fet redissenyar l’extracció de dades de l’ERP, el càlcul de distàncies i el mòdul d’optimització.
    [Show full text]
  • GEKKO Documentation Release 1.0.1
    GEKKO Documentation Release 1.0.1 Logan Beal, John Hedengren Aug 31, 2021 Contents 1 Overview 1 2 Installation 3 3 Project Support 5 4 Citing GEKKO 7 5 Contents 9 6 Overview of GEKKO 89 Index 91 i ii CHAPTER 1 Overview GEKKO is a Python package for machine learning and optimization of mixed-integer and differential algebraic equa- tions. It is coupled with large-scale solvers for linear, quadratic, nonlinear, and mixed integer programming (LP, QP, NLP, MILP, MINLP). Modes of operation include parameter regression, data reconciliation, real-time optimization, dynamic simulation, and nonlinear predictive control. GEKKO is an object-oriented Python library to facilitate local execution of APMonitor. More of the backend details are available at What does GEKKO do? and in the GEKKO Journal Article. Example applications are available to get started with GEKKO. 1 GEKKO Documentation, Release 1.0.1 2 Chapter 1. Overview CHAPTER 2 Installation A pip package is available: pip install gekko Use the —-user option to install if there is a permission error because Python is installed for all users and the account lacks administrative priviledge. The most recent version is 0.2. You can upgrade from the command line with the upgrade flag: pip install--upgrade gekko Another method is to install in a Jupyter notebook with !pip install gekko or with Python code, although this is not the preferred method: try: from pip import main as pipmain except: from pip._internal import main as pipmain pipmain(['install','gekko']) 3 GEKKO Documentation, Release 1.0.1 4 Chapter 2. Installation CHAPTER 3 Project Support There are GEKKO tutorials and documentation in: • GitHub Repository (examples folder) • Dynamic Optimization Course • APMonitor Documentation • GEKKO Documentation • 18 Example Applications with Videos For project specific help, search in the GEKKO topic tags on StackOverflow.
    [Show full text]
  • Component-Oriented Acausal Modeling of the Dynamical Systems in Python Language on the Example of the Model of the Sucker Rod String
    Component-oriented acausal modeling of the dynamical systems in Python language on the example of the model of the sucker rod string Volodymyr B. Kopei, Oleh R. Onysko and Vitalii G. Panchuk Department of Computerized Mechanical Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine ABSTRACT Typically, component-oriented acausal hybrid modeling of complex dynamic systems is implemented by specialized modeling languages. A well-known example is the Modelica language. The specialized nature, complexity of implementation and learning of such languages somewhat limits their development and wide use by developers who know only general-purpose languages. The paper suggests the principle of developing simple to understand and modify Modelica-like system based on the general-purpose programming language Python. The principle consists in: (1) Python classes are used to describe components and their systems, (2) declarative symbolic tools SymPy are used to describe components behavior by difference or differential equations, (3) the solution procedure uses a function initially created using the SymPy lambdify function and computes unknown values in the current step using known values from the previous step, (4) Python imperative constructs are used for simple events handling, (5) external solvers of differential-algebraic equations can optionally be applied via the Assimulo interface, (6) SymPy package allows to arbitrarily manipulate model equations, generate code and solve some equations symbolically. The basic set of mechanical components (1D translational “mass”, “spring-damper” and “force”) is developed. The models of a sucker rods string are developed and simulated using these components. The comparison of results of the sucker rod string simulations with practical dynamometer cards and Submitted 22 March 2019 Accepted 24 September 2019 Modelica results verify the adequacy of the models.
    [Show full text]
  • A Case Study to Help You Think About Your Project
    Wind Turbine Optimization a case study to help you think about your project Andrew Ning ME 575 Three broad areas of optimization (with some overlap) Convex Gradient-Based Gradient-Free Today we will focus on gradient-based, but for some projects the other areas are more important. In higher dimensional space, analytic gradients become increasingly important #iterations # design vars There is a difference between developing for analysis vs optimization Vy(1 + a0) plane of rotation φ V (1 a) W x − There is a difference between developing for analysis vs optimization Vy(1 + a0) plane of rotation φ V (1 a) W x − 1 a 2 C = − c σ0 CT =4a(1 a) T sin φ n − ✓ ◆ 2 1+a0 2 2 C = c σ0λ CQ =4a0(1 + a0) tan φλ Q cos φ t r r ✓ ◆ There is a difference between developing for analysis vs optimization Vy(1 + a0) plane of rotation φ V (1 a) W x − 1 1 a = 2 a0 = 4sin φ +1 4sinφ cos φ 1 cnσ0 ctσ0 − There is a difference between developing for analysis vs optimization use Parameters y use ProgGen Converg Skew correction use WTP_Data n CALL GetCoefs Declarations reset induction !Converg & Return Initialize induction vars < MaxIter CALL FindZC CALL NewtRaph reset induction Initial guess (AxInd / TanInd) n & y CALL NewtRaph MaxIter ZFound Converg CALL BinSearch < Converg ! y n AxIndLo = AxInd -1 n AxIndHi = AxInd +1 AxIndLo = -0.5 Converg AxIndHi = 0.6 CALL BinSearch y n Skew correction Converg AxIndLo = -1.0 CALL BinSearch AxIndHi = -0.4 y CALL GetCoefs n Converg AxIndLo = 0.59 CALL BinSearch AxIndHi = 2.5 Return y y Converg Skew correction CALL GetCoefs Return n AxIndLo = -1.0 CALL BinSearch AxIndHi = 2.5 y Converg Skew correction CALL GetCoefs Return n Return Sometimes a new solution approach is needed… Vy(1 + a0) plane of rotation φ Vx(1 a) W − sin φ V cos φ (φ)= x =0 R 1 a − V (1 + a ) − y 0 Sometimes a new solution approach is needed… Algorithm Avg.
    [Show full text]
  • Nonlinear Modeling, Estimation and Predictive Control in Apmonitor
    Brigham Young University BYU ScholarsArchive Faculty Publications 2014-11-05 Nonlinear Modeling, Estimation and Predictive Control in APMonitor John Hedengren Brigham Young University, [email protected] Reza Asgharzadeh Shishavan Brigham Young University Kody M. Powell University of Utah Thomas F. Edgar University of Texas at Austin Follow this and additional works at: https://scholarsarchive.byu.edu/facpub Part of the Chemical Engineering Commons BYU ScholarsArchive Citation Hedengren, John; Asgharzadeh Shishavan, Reza; Powell, Kody M.; and Edgar, Thomas F., "Nonlinear Modeling, Estimation and Predictive Control in APMonitor" (2014). Faculty Publications. 1667. https://scholarsarchive.byu.edu/facpub/1667 This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Computers and Chemical Engineering 70 (2014) 133–148 Contents lists available at ScienceDirect Computers and Chemical Engineering j ournal homepage: www.elsevier.com/locate/compchemeng Nonlinear modeling, estimation and predictive control in APMonitor a,∗ a b b John D. Hedengren , Reza Asgharzadeh Shishavan , Kody M. Powell , Thomas F. Edgar a Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, United States b The University of Texas at Austin, Austin, TX 78712, United States a r t i c l e i n f o a b s t r a c t Article history: This paper describes nonlinear methods in model building, dynamic data reconciliation, and dynamic Received 10 August 2013 optimization that are inspired by researchers and motivated by industrial applications.
    [Show full text]
  • Datascientist Manual
    DATASCIENTIST MANUAL . 2 « Approcherait le comportement de la réalité, celui qui aimerait s’epanouir dans l’holistique, l’intégratif et le multiniveaux, l’énactif, l’incarné et le situé, le probabiliste et le non linéaire, pris à la fois dans l’empirique, le théorique, le logique et le philosophique. » 4 (* = not yet mastered) THEORY OF La théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés PROBABILITY par le hasard et l'incertitude. Elle consistue le socle des statistiques appliqué. Rubriques ↓ Back to top ↑_ Notations Formalisme de Kolmogorov Opération sur les ensembles Probabilités conditionnelles Espérences conditionnelles Densités & Fonctions de répartition Variables aleatoires Vecteurs aleatoires Lois de probabilités Convergences et théorèmes limites Divergences et dissimilarités entre les distributions Théorie générale de la mesure & Intégration ------------------------------------------------------------------------------------------------------------------------------------------ 6 Notations [pdf*] Formalisme de Kolmogorov Phé nomé né alé atoiré Expé riéncé alé atoiré L’univérs Ω Ré alisation éléméntairé (ω ∈ Ω) Evé némént Variablé aléatoiré → fonction dé l’univér Ω Opération sur les ensembles : Union / Intersection / Complémentaire …. Loi dé Augustus dé Morgan ? Independance & Probabilités conditionnelles (opération sur des ensembles) Espérences conditionnelles 8 Variables aleatoires (discret vs reel) … Vecteurs aleatoires : Multiplét dé variablés alé atoiré (discret vs reel) … Loi marginalés Loi
    [Show full text]
  • Airtime-Based Resource Allocation Modeling for Network Slicing in IEEE 802.11 Rans P
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2020.2977906, IEEE Communications Letters JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Airtime-based Resource Allocation Modeling for Network Slicing in IEEE 802.11 RANs P. H. Isolani, N. Cardona, C. Donato, G. A. Perez,´ J. M. Marquez-Barja, L. Z. Granville, and S. Latre´ Abstract—In this letter, we propose an airtime-based Resource Nowadays, advanced 5G services and applications have Allocation (RA) model for network slicing in IEEE 802.11 stringent Quality of Service (QoS) requirements, which make Radio Access Networks (RANs). We formulate this problem as a the RA problem even more complex. To cope with dynamic Quadratically Constrained Quadratic Program (QCQP), where the overall queueing delay of the system is minimized while and unstable wireless environments and to meet QoS re- strict Ultra-Reliable Low Latency Communication (URLLC) quirements, network slices might be instantiated, modified, constraints are respected. We evaluated our model using three and terminated at runtime. Therefore, such slices have to different solvers where the optimal and feasible sets of airtime be properly and dynamically managed. To the best of our configurations were computed. We also validated our model with knowledge, this is the first work to exploit the flexibility of experimentation in real hardware. Our results show that the solution time for computing optimal and feasible configurations slice airtime allocation considering the IEEE 802.11 RAN re- vary according to the slice’s demand distribution and the number source availability and the stringent latency Key Performance of slices to be allocated.
    [Show full text]
  • Combined Scheduling and Control
    Books Combined Scheduling and Control Edited by John D. Hedengren and Logan Beal Printed Edition of the Special Issue Published in Processes www.mdpi.com/journal/processes MDPI Combined Scheduling and Control Books Special Issue Editors John D. Hedengren Logan Beal MDPI Basel Beijing Wuhan Barcelona Belgrade MDPI Special Issue Editors John D. Hedengren Logan Beal Brigham Young University Brigham Young University USA USA Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Processes (ISSN 2227-9717) in 2017 (available at: http://www.mdpi.com/journal/processes/special_issues/Combined_Scheduling). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Books Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year Article number, page range. First Edition 2018 ISBN 978-3-03842-805-3 (Pbk) ISBN 978-3-03842-806-0 (PDF) Cover photo courtesy of John D. Hedengren and Logan Beal. Articles in this volume are Open Access and distributed under the Creative Commons Attribution license (CC BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is © 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). MDPI Table of Contents About the Special Issue Editors ....................................
    [Show full text]
  • Optimization of Battery Storage Profitability with Wind Energy
    Optimization of Battery Storage Profitability with Wind Energy Joseph Bloxham, Baichuan Liu, John Hedengren, Logan Beal Date 4/20/2018 Table of Contents Table of Contents ................................................................................................................ ii List of Figures ...................................................................................................................... iii List of Tables ....................................................................................................................... iv Optimization of Battery Storage Profitability with Wind Energy ....................................... 1 Abstract .............................................................................................................................. 1 Introduction and Background............................................................................................. 1 Modeling Framework ......................................................................................................... 2 Software ......................................................................................................................... 2 Model Overview ............................................................................................................. 2 Model Assumptions ....................................................................................................... 3 Input Data .....................................................................................................................
    [Show full text]