Bio2 Ch01-Wilson

Total Page:16

File Type:pdf, Size:1020Kb

Bio2 Ch01-Wilson CHAPTER 1 Introduction EDWARD O. WILSON Pellegrino University Professor, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts “Biodiversity,” the term and concept, has been a remarkable event in recent cultural evolution: 10 years ago the word did not exist, except perhaps through occasional idiosyncratic use. Today it is one of the most commonly used expres- sions in the biological sciences and subsequently has become a household word. It was born “BioDiversity” during the National Forum on BioDiversity, held in Washington, D.C., on September 21-24, 1986, under the auspices of the National Academy of Sciences and the Smithsonian Institution. The proceedings of the forum, published in 1988 under the title BioDiversity (later to be cited with less than bibliographical accuracy by most authors as Biodiversity), became a best- seller for the National Academy Press. By the summer of 1992, as a key topic of the Rio environmental summit meeting, biodiversity had moved to center stage as one of the central issues of scientific and political concern world-wide. So what is it? Biologists are inclined to agree that it is, in one sense, every- thing. Biodiversity is defined as all hereditarily based variation at all levels of organization, from the genes within a single local population or species, to the species composing all or part of a local community, and finally to the communi- ties themselves that compose the living parts of the multifarious ecosystems of the world. The key to the effective analysis of biodiversity is the precise defini- tion of each level of organization when it is being addressed. Even though the study of biodiversity can be traced back as far as Aristotle, what finally has given it such extraordinarily widespread attention is the real- ization that it is disappearing. In the late 1970s and through the 1980s, the first convincing estimates were made of the rate of tropical deforestation, which translates to the areal loss of habitat where most of living diversity is concen- 1 2 / BIODIVERSITY II trated. This information led to disturbingly high estimates of the rates of loss of species in these forests. The magnitude of erosion also drew attention to ongo- ing extinction in other habitats, from deserts to coral reefs, at all levels of bio- logical organization from alleles to entire local ecosystems. It became clear that the decline of Earth’s biodiversity was serious. Worse, unlike toxic pollution and ozone depletion, it cannot be reversed. Scientists who once had devoted their careers to bits and pieces of bio- diversity now became holists, or at least more approving of the holistic approach, and they were energized by a new sense of mission. For the good of society as a whole, they now realized that the classification of such organisms as braconid wasps and lauraceous shrubs mattered. Moreover, the ecologists also were in- cluded: the processes by which natural communities are assembled and their constituent species maintained have central importance in both science and the real world. The study of diversity subsumed old problems in systematics and ecology, and specialists in these and in related fields of biology began to talk in common parlance as never before. Just as significantly, physical scientists, so- cial scientists, geographers, and artists were drawn into the colloquy. The sub- ject consequently has begun to be reshaped into a new, often surprisingly eclec- tic field of inquiry. Today we now hear regularly of “biodiversity science” and “biodiversity studies.” Since the 1986 National Forum on BioDiversity, there has been an exponen- tial rise in research and technical innovation. Scientists appreciate that only a tiny fraction of biodiversity on Earth has been explored, and that its origin and maintenance pose some of the most fundamental problems of the biological sci- ences. These problems are also among the least technically tractable. Those who have cut into the outer surface of ecology and evolution suspect that mo- lecular and cell biology eventually will prove simple by comparison. The present volume is a 10-year report on the state of the art in biodiversity studies, with an emphasis on concept formation and technique. Overall, it makes a striking contrast with the original BioDiversity, showing how extraordinarily far we have come and at the same time mapping how far scientists yet must travel in their reinvigorated exploration of the biosphere. Some scientists and policy-makers have worried that the magnitude of the biodiversity we now know to be present in the world’s habitats is so enormous, the cost of exploring and documenting it so overwhelming, and the number of biologists who can analyze and document it so small that the goal of understand- ing the diversity of the world’s species is unattainable. The central message of this volume is, to the contrary, that the potential benefits of knowing and con- serving this biodiversity are too great and the costs of losing it are too high to take a path of least resistance. By documenting the infrastructure of knowledge and institutions that already are in place, this volume suggests that there is a cost-effective and feasible way of approaching the conservation of the world’s biological resources. The key to a cost-effective solution to the biodiversity INTRODUCTION / 3 crisis lies in the collaboration of museums, research institutions, and universi- ties; the pooling of human and financial resources; and the shared use of physi- cal and institutional structures that are already present. Rather than building the knowledge, institutional and physical infrastructure for documenting bio- diversity from the ground up, we need to build upon preexisting infrastructure and increase support for systematics, training, and museums. This volume is an outgrowth of one such endeavor, the recent establish- ment of a Consortium for Systematics and Biodiversity between the Smithsonian Institution, the University of Maryland at College Park, the U.S. Department of Agriculture Systematics Laboratories, the University of Maryland Biotechnol- ogy Institute, and the American Type Culture Collection. The Consortium, dedi- cated to enhancing the conceptual understanding and documentation of bio- diversity of organisms (from viruses and bacteria to invertebrate and vertebrate animals, protists, fungi, algae and higher plants) in living and nonliving mu- seum collections, represents the type of cooperation that will be necessary for us to cost-effectively understand and protect our natural resources. 4 / BIODIVERSITY II CHAPTER 2 Biodiversity: What Is It? THOMAS E. LOVEJOY Counselor to the Secretary for Biodiversity and Environmental Affairs, Smithsonian Institution, Washington, D.C. Biodiversity has to be thought of in a number of different ways. One would begin by looking at the overall perspective of evolutionary time and more spe- cifically by looking at a great radiation (such as that of the Hawaiian honey- creepers) from a single ancestor. Another way of viewing biodiversity is as a characteristic of natural communities. For instance, a forest in Southern New England characteristically will contain about 20 or 30 tree species, but in a marshy area in Southern New England or farther north, forests are composed of only two or three species. In contrast, a tropical forest, such as in Amazonian Peru, will contain hundreds of species of trees. Therefore, natural communities each have their own characteristic biodiversity, both in terms of numbers and composition of species. Another way of looking at biodiversity is globally and collectively. While the number of species currently described is on the order of 1.4 million, the big question is how many species are there totally? Current estimates of the total number of species run from 10-100 million. One can break it down and look at certain segments of global totals, such as the diversity of higher plants, number of species, or expressed as sheer weight (biomass). The degree of knowledge about biodiversity varies with both location and taxon (classificatory groups of organisms). For example, the British insect fauna is much better known than the Australian insect fauna. (Indeed I believe that there are so many naturalists in Britain that it is impossible for a bird to lay an egg without three people, includ- ing at least one cleric, recording it). Within Australia, vertebrates are better known than insects. That relation is true throughout most of the world, because 7 8 / BIODIVERSITY II we have tended toward vertebrate chauvinism in the exploration of biodiversity (Wilson, 1985). Another way to think about biodiversity is where it is most concentrated. The best known concentration, of course, is in tropical forests—those places near the equator where there is enough moisture sufficiently evenly distributed through the year to maintain a tropical forest formation. These forests comprise roughly 7% of the dry land surface of the Earth and may hold more than 50% of all species. The reality, however, is that we do not know precisely how much biodiversity is concentrated in a particular biological formation. A characteris- tic pattern of biodiversity is a general increase in numbers of species as one approaches the equator. For example, São Paulo, just within the tropics, holds 100 times more species of ants than Tierra del Fuego, and the number at the equator will be even higher than at São Paulo (MacArthur, 1972). This is a pattern that repeats itself again and again for many groups of organisms, but, of course, not all. The marine realm has more representations of the major group- ings of life than those on land, and the realm of soil biology is so poorly explored that it is hard to tell what rich forms of life might exist there. So as we learn more about life on Earth, the relative proportions of where life on Earth is con- centrated can be expected to change.
Recommended publications
  • Labile Evolution of Display Traits in Bowerbirds Indicates Reduced Effects of Phylogenetic Constraint
    Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint " # # RAB KUSMIERSKI , GERALD BORGIA , ALBERT UY " ROSS H.CROZIER " School of Genetics and Human Variation, La Trobe Uniersit, Bundoora, Victoria 3083, Australia # Department of Zoolog, Uniersit of Marland, College Park, MD 20742, USA SUMMARY Bowerbirds (Ptilonorhynchidae) have among the most exaggerated sets of display traits known, including bowers, decorated display courts and bright plumage, that differ greatly in form and degree of elaboration among species. Mapping bower and plumage traits on an independently derived phylogeny constructed from mitochondrial cytochrome b sequences revealed large differences in display traits between closely related species and convergences in both morphological and behavioural traits. Plumage characters showed no effect of phylogenetic inertia, although bowers exhibited some constraint at the more fundamental level of design, but above which they appeared free of constraint. Bowers and plumage characters, therefore, are poor indicators of phylogenetic relationship in this group. Testing Gilliard’s (1969) transferral hypothesis indicated some support for the idea that the focus of display has shifted from bird to bower in avenue-building species, but not in maypole-builders or in bowerbirds as a whole. maypole-builders (Amblornis, four spp.; Prionodura) in- 1. INTRODUCTION clude the orange-crested males of A. macgregoriae, which Bowerbirds (Ptilonorhynchidae) form a monophyletic decorate a sapling with horizontally interwoven sticks. family (Kusmierski et al. 1993) (eight genera, 19 species) The dull-coloured, monomorphic A. inornatus of endemic to Australia and New Guinea, and are unique western Irian Jaya (Arfak and Wandamen mountains) in the bird world in constructing and using a bower in and the orange-crested, dimorphic A.
    [Show full text]
  • Hym.: Eulophidae) New Larval Ectoparasitoids of Tuta Absoluta (Meyreck) (Lep.: Gelechidae)
    J. Crop Prot. 2016, 5 (3): 413-418______________________________________________________ Research Article Two species of the genus Elachertus Spinola (Hym.: Eulophidae) new larval ectoparasitoids of Tuta absoluta (Meyreck) (Lep.: Gelechidae) Fatemeh Yarahmadi1*, Zohreh Salehi1 and Hossein Lotfalizadeh2 1. Ramin Agriculture and Natural Resources University, Mollasani, Ahvaz, Iran. 2. East-Azarbaijan Research Center for Agriculture and Natural Resources, Tabriz, Iran. Abstract: This is the first report of two ectoparasitoid wasps, Elachertus inunctus (Nees, 1834) in Iran and Elachertus pulcher (Erdös, 1961) (Hym.: Eulophidae) in the world, that parasitize larvae of the tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lep.: Gelechiidae). The specimens were collected from tomato fields and greenhouses in Ahwaz, Khouzestan province (south west of Iran). Both species are new records for fauna of Iran. The knowledge about these parasitoids is still scanty. The potential of these parasitoids for biological control of T. absoluta in tomato fields and greenhouses should be investigated. Keywords: tomato leaf miner, parasitoids, identification, biological control Introduction12 holometabolous insects, the overall range of hosts and biologies in eulophid wasps is remarkably The Eulophidae is one of the largest families of diverse (Gauthier et al., 2000). Chalcidoidea. The chalcid parasitoid wasps attack Species of the genus Elachertus Spinola, 1811 insects from many orders and also mites. Many (Hym.: Eulophidae) are primary parasitoids of a eulophid wasps parasitize several pests on variety of lepidopteran larvae. Some species are different crops. They can regulate their host's polyphagous that parasite hosts belonging to populations in natural conditions (Yefremova and different insect families. The larvae of these Myartseva, 2004). Eulophidae are composed of wasps are often gregarious and their pupae can be four subfamilies, Entedoninae (Förster, 1856), observed on the surface of plant leaves or the Euderinae (Lacordaire, 1866), Eulophinae body of their host.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Nota Lepidopterologica
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nota lepidopterologica Jahr/Year: 2005 Band/Volume: 28 Autor(en)/Author(s): Agassiz David J.L. Artikel/Article: Book Review Barry Goater, Matthias Nuss & Wolfgang Speidel. Pyraloidea I (Crambidae: Acentropinae, Evergestinae, Heliothelinae, Schoenobiinae, Scopariinae). - In: Peter Huemer & Ole Karsholt (eds.), Microlepidoptera of Europe, Volume 4 161-162 ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Notalepid. 28 (3/4): 159-161 161 The species was described from 24 cT and 29 collected on Tagarsky island (river Yenisey, near Minusinsk). Afterwards, it was only mentioned as a member of Cossidae (Daniel 1955; Schoorl 1990; Yakovlev 2004), and only on the basis of the detailed original description. After a thorough analysis of Koshantschikov's description, Vladimir V. Dubatolov (Novosibirsk, Russia) assumed that the taxon could belong to Brachodidae. The same assumption was admitted by Axel Kallies (Australia). My study of the type material shows that the taxon does in fact belong to Brachodidae and that it is conspecific with Brachodes appendiculata (Esper, 1783), a species known from South and Central Europe, southern Urals, northern Kazakhstan, and southern Siberia (Zagulyaev 1978). Acknowledgements I am grateful to S. Yu. Sinev (St. Petersburg) for his help during my work with the type material of the Zoological Institute, Russian Academy of Sciences, to V. V. Dubatolov (Novosibirsk) and Axel Kallies (Australia) for their fruitful comments on the analysis of the Stygia gerassimovii description, to J. W. Schoorl jr. (Holland) for his help in my search for rare publications, to Thomas Witt (Germany) for his all-round support of this investigation, and to V.
    [Show full text]
  • Evergestis Alborivulalis (Eversmann, 1843) in the Palaearctic (Lepidoptera: Crambidae, Evergestinae)
    Natura Somogyiensis 23 211-220 Ka pos vár, 2013 Disjunct distribution of Evergestis alborivulalis (Eversmann, 1843) in the Palaearctic (Lepidoptera: Crambidae, Evergestinae) FAZEKAS IMRE Regiograf Institute, Majális tér 17/A, H-300 Komló, Hungary, e-mail: [email protected] FAZEKAS , I.: Disjunct distribution of Evergestis alborivulalis (Eversmann, 1843) in the Palaearctic. Abstract: Data on the geographical distribution of Evergestis alborivulalis (Eversmann, 1843) in Palaearctic are given, with maps. Biological data and habitats of the species are presented. Structure of genitalia and morphological characteristic of wings are illustrated in colour. With 13 figures. Keywords: Lepidoptera, Crambidae, Evergestis alborivulalis, bionomics, distribution, Palaearctic. Introduction The distribution patterns and life cycle of Evergestis alborivulalis have been of long- standing interest to researchers. The species was originally described from Russian material from the Ural region (EVERSMANN 1843). Systematically, E. alborivulalis belongs to the order Lepidoptera, family Crambidae, subfamily Evergestinae. There is very little information about the geographical range and bionomics of this species. Nobody has ever correlated and mapped distributional information already published in different works. Here, a map of its distribution in Eurasia is shown. Even though it is inevitably sketchy, it demonstrates the highly localised occurrence of E. alborivulalis. Until now, there has been no information about the larva and food plant, and little was known about the habitat preferences. In the last few years, intensive and systematic surveys in Hungary have been made by the author. Our database can be found in text. Detailed information can now be given about the habitat in Hungary. Natura 2000 habi- tat types of priority interest for the conservation of this moth have been selected.
    [Show full text]
  • Luth Wfu 0248D 10922.Pdf
    SCALE-DEPENDENT VARIATION IN MOLECULAR AND ECOLOGICAL PATTERNS OF INFECTION FOR ENDOHELMINTHS FROM CENTRARCHID FISHES BY KYLE E. LUTH A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADAUTE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2016 Winston-Salem, North Carolina Approved By: Gerald W. Esch, Ph.D., Advisor Michael V. K. Sukhdeo, Ph.D., Chair T. Michael Anderson, Ph.D. Herman E. Eure, Ph.D. Erik C. Johnson, Ph.D. Clifford W. Zeyl, Ph.D. ACKNOWLEDGEMENTS First and foremost, I would like to thank my PI, Dr. Gerald Esch, for all of the insight, all of the discussions, all of the critiques (not criticisms) of my works, and for the rides to campus when the North Carolina weather decided to drop rain on my stubborn head. The numerous lively debates, exchanges of ideas, voicing of opinions (whether solicited or not), and unerring support, even in the face of my somewhat atypical balance of service work and dissertation work, will not soon be forgotten. I would also like to acknowledge and thank the former Master, and now Doctor, Michael Zimmermann; friend, lab mate, and collecting trip shotgun rider extraordinaire. Although his need of SPF 100 sunscreen often put our collecting trips over budget, I could not have asked for a more enjoyable, easy-going, and hard-working person to spend nearly 2 months and 25,000 miles of fishing filled days and raccoon, gnat, and entrail-filled nights. You are a welcome camping guest any time, especially if you do as good of a job attracting scorpions and ants to yourself (and away from me) as you did on our trips.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Two New Species of Paraphilopterus Mey, 2004 (Phthiraptera: Ischnocera: Philopteridae)
    Zootaxa 3873 (2): 155–164 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3873.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:D78B845A-99D8-423E-B520-C3DD83E3C87F Two new species of Paraphilopterus Mey, 2004 (Phthiraptera: Ischnocera: Philopteridae) from New Guinean bowerbirds (Passeriformes: Ptilonorhynchidae) and satinbirds (Passeriformes: Cnemophilidae) DANIEL R. GUSTAFSSON1,2 & SARAH E. BUSH1 1Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, Utah, 84112, USA 2Corresponding author. E-mail: [email protected] Abstract Two new species of Paraphilopterus Mey, 2004 are described and named. Paraphilopterus knutieae n. sp. is described from two subspecies of Macgregor's bowerbirds: Amblyornis macgregoriae nubicola Schodde & McKean, 1973 and A. m. kombok Schodde & McKean, 1973, and Sanford's bowerbird: Archboldia sanfordi (Mayr & Gilliard, 1950) (Ptilono- rhynchidae). Paraphilopterus meyi n. sp. is described from two subspecies of crested satinbirds: Cnemophilus macgrego- rii macgregorii De Vis, 1890 and C. m. sanguineus Iredale, 1948 (Cnemophilidae). These new louse species represent the first records of the genus Paraphilopterus outside Australia, as well as from host families other than the Corcoracidae. The description of Paraphilopterus is revised and expanded based on the additional new species, including the first de- scription of the male of this genus. Also, we provide a key to the species of Paraphilopterus. Key words: Phthiraptera, Ischnocera, Philopteridae, Paraphilopterus, chewing lice, new species, Ptilonorhynchidae, Cnemophilidae, New Guinea Introduction Mey (2004: 188) described the new genus Paraphilopterus based on a single female louse from the Australian host Corcorax melanoramphos (Vieillot, 1817) (Corcoracidae).
    [Show full text]
  • Neodermata: Gyrocotylidea)
    FOLIA PARASITOLOGICA 57[3]: 173–184, 2010 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://www.paru.cas.cz/folia/ Ultrastructure of the ovarian follicles, oviducts and oocytes of Gyrocotyle urna (Neodermata: Gyrocotylidea) Larisa G. Poddubnaya1, Roman Kuchta2, Tomáš Scholz2 and Willi E.R. Xylander3 1 Institute of Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl Province, Russia; 2 Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic; 3 Senckenberg Museum für Naturkunde Görlitz, Postfach 300 154, 02806 Görlitz, Germany Abstract: An ultrastructural study of the ovarian follicles and their associated oviducts of the cestode Gyrocotyle urna Grube et Wagener, 1852, a parasite from the spiral valve of the rabbit fish,Chimaera monstrosa L., was undertaken. Each follicle gives rise to follicular oviduct, which opens into one of the five collecting ducts, through which pass mature oocytes. These collecting ducts open into an ovarian receptacle which, in turn, opens via a muscular sphincter (the oocapt) to the main oviduct. The maturation of oocytes surrounded by the syncytial interstitial cells within the ovarian follicles of G. urna follows a pattern similar to that in Eucestoda. The ooplasm of mature oocytes contain lipid droplets (2.0 × 1.8 µm) and cortical granules (0.26 × 0.19 µm). The cytoplasm of primary and secondary oocytes contains centrioles, indicating the presence of the so-called “centriole cycle” during ������������������������oocyte �����������������divisions. A mor- phological variation between different oviducts was observed. The luminal surface of the follicular and the collecting oviducts is smooth.
    [Show full text]
  • In the Ancient Times Hippocrates, Aristotle, and Galen Appreciated the Animal Nature of Tapeworms
    1 In the ancient times Hippocrates, Aristotle, and Galen appreciated the animal nature of tapeworms. The Arabs susgested that segments passed with the faeces were a separate species of parasite from tapeworms: they called these segments the cucuribitini, after their similarity to cucumber seeds. Andry, in 1718, was first to illustrate the scolex of a tapeworm from a human. Sexually mature tapeworms live in the intestine or its diverticula ( rarely in the coelum) of all classes of vertebrates. These are a group of parasites which are fairly common in both domestic animals and wild animals, and humans. CLASS CESTODA This class differs from the Trematoda in having a tape-like body with no body cavity and alimentarty canal. There is a wide variation in length, ranging from a few milimeters to several meters. The body is segmented, each segment containing one and sometimes two sets of male and female reproductive organs. Almost all the tapeworms of veterinary importance are in the order Cyclophylidea, two exceptions being in the order Pseudophyllidea. During their life cycle, one or two ( or more ) intermediated host are required in each of which the tapeworm undergo a phase of their development. Order : Cyclophyllidea Family : Taenidae Genus : Taenia, Echinococcus Family : Anoplocephalidae Genus : Anoplocephala, Paranoplocephala, Monezia, Thysanosoma,Thysaniezia, Stilesia, Avitellina Family : Dilepididae Genus : Dipylidium , Amoebotaenia, Choanotaenia, Joyeuxiella, Diplopylidium Family : Paruterinidae Genus : Metroliasthes Family : Davaineidae
    [Show full text]
  • Parallel Evolution of Bower-Building Behavior in Two Groups of Bowerbirds Suggested by Phylogenomics
    SUPPLEMENT TO: Parallel Evolution of Bower-Building Behavior in Two Groups of Bowerbirds Suggested by Phylogenomics Per G.P. Ericson 1 *, Martin Irestedt 1, Johan A.A. Nylander 1, Les Christidis 2, Leo Joseph 3, Yanhua Qu 1, 4 * 1 Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, SE-104 05, Stockholm, Sweden 2 School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia, School of BioSciences, University of Melbourne, Parkville, VIC, Australia 3 Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, ACT 2601, Australia 4 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China CONTENT 1. MATERIAL AND METHODS (DETAILED DESCRIPTION) 2. FURTHER DETAILS ABOUT SYSTEMATIC RELATIONSHIPS OBSERVED 3. DATA REPOSITORIES 4. SUPPLEMENTARY FIGURES S1-S5 5. SUPPLEMENTARY TABLES S1-S2 1. MATERIAL AND METHODS (DETAILED DESCRIPTION) Taxon Sampling In the study, we include all traditionally recognized bowerbird species as well as representatives for each of the morphologically and genetically distinct populations of the genus Ailuroedus that recently were elevated from status as subspecies to full species (Irestedt et al. 2016). The number of Ailuroedus species thus increased from the traditionally recognized three species (buccoides, crassirostris and melanotis; species epithets used for brevity when possible) to ten (buccoides, stonii, geislerorum, crassirostris, maculosus, melanocephalus, astigmaticus, arfakianus, jobiensis and melanotis). We used cryo-frozen tissue samples for most taxa, but for twelve individuals DNA was extracted from toe pad samples of museum study skins (Table S1 available on Dryad). We base our information on mating system, sexual plumage dimorphism, and building of courts and bowers on Gilliard (1969), Diamond (1986a), Kusmierski et al.
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]