Downloaded from Bioscientifica.Com at 09/26/2021 09:35:42AM Via Free Access
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endo4 PRINT.Indb
Contents 1 Tumours of the pituitary gland 11 Spindle epithelial tumour with thymus-like differentiation 123 WHO classifi cation of tumours of the pituitary 12 Intrathyroid thymic carcinoma 125 Introduction 13 Paraganglioma and mesenchymal / stromal tumours 127 Pituitary adenoma 14 Paraganglioma 127 Somatotroph adenoma 19 Peripheral nerve sheath tumours 128 Lactotroph adenoma 24 Benign vascular tumours 129 Thyrotroph adenoma 28 Angiosarcoma 129 Corticotroph adenoma 30 Smooth muscle tumours 132 Gonadotroph adenoma 34 Solitary fi brous tumour 133 Null cell adenoma 37 Haematolymphoid tumours 135 Plurihormonal and double adenomas 39 Langerhans cell histiocytosis 135 Pituitary carcinoma 41 Rosai–Dorfman disease 136 Pituitary blastoma 45 Follicular dendritic cell sarcoma 136 Craniopharyngioma 46 Primary thyroid lymphoma 137 Neuronal and paraneuronal tumours 48 Germ cell tumours 139 Gangliocytoma and mixed gangliocytoma–adenoma 48 Secondary tumours 142 Neurocytoma 49 Paraganglioma 50 3 Tumours of the parathyroid glands 145 Neuroblastoma 51 WHO classifi cation of tumours of the parathyroid glands 146 Tumours of the posterior pituitary 52 TNM staging of tumours of the parathyroid glands 146 Mesenchymal and stromal tumours 55 Parathyroid carcinoma 147 Meningioma 55 Parathyroid adenoma 153 Schwannoma 56 Secondary, mesenchymal and other tumours 159 Chordoma 57 Haemangiopericytoma / Solitary fi brous tumour 58 4 Tumours of the adrenal cortex 161 Haematolymphoid tumours 60 WHO classifi cation of tumours of the adrenal cortex 162 Germ cell tumours 61 TNM classifi -
Endocrine Pathology (537-577)
LABORATORY INVESTIGATION THE BASIC AND TRANSLATIONAL PATHOLOGY RESEARCH JOURNAL LI VOLUME 99 | SUPPLEMENT 1 | MARCH 2019 2019 ABSTRACTS ENDOCRINE PATHOLOGY (537-577) MARCH 16-21, 2019 PLATF OR M & 2 01 9 ABSTRACTS P OSTER PRESENTATI ONS EDUCATI ON C O M MITTEE Jason L. Hornick , C h air Ja mes R. Cook R h o n d a K. Y a nti s s, Chair, Abstract Revie w Board S ar a h M. Dr y and Assign ment Co m mittee Willi a m C. F a q ui n Laura W. La mps , Chair, C ME Subco m mittee C ar ol F. F ar v er St e v e n D. Billi n g s , Interactive Microscopy Subco m mittee Y uri F e d ori w Shree G. Shar ma , Infor matics Subco m mittee Meera R. Ha meed R aj a R. S e et h al a , Short Course Coordinator Mi c h ell e S. Hir s c h Il a n W ei nr e b , Subco m mittee for Unique Live Course Offerings Laksh mi Priya Kunju D a vi d B. K a mi n s k y ( Ex- Of ici o) A n n a M ari e M ulli g a n Aleodor ( Doru) Andea Ri s h P ai Zubair Baloch Vi nita Parkas h Olca Bast urk A nil P ar w a ni Gregory R. Bean , Pat h ol o gist-i n- Trai ni n g D e e p a P atil D a ni el J. -
Endocrine Surgery Goals and Objectives
Lenox Hill Hospital Department of Surgery Endocrine Surgery Goals and Objectives Medical Knowledge and Patient Care: Residents must demonstrate knowledge and application of the pathophysiology and epidemiology of the diseases listed below for this rotation, with the pertinent clinical and laboratory findings, differential diagnosis and therapeutic options including preventive measures, and procedural knowledge. They must show that they are able to gather accurate and relevant information using medical interviewing, physical examination, appropriate diagnostic workup, and use of information technology. They must be able to synthesize and apply information in the clinical setting to make informed recommendations about preventive, diagnostic and therapeutic options, based on clinical judgement, scientific evidence, and patient preferences. They should be able to prescribe, perform, and interpret surgical procedures listed below for this rotation. All Residents are expected to understand: 1. Normal physiology and anatomy of the thyroid glands. 2. Normal physiology and anatomy of the parathyroid glands. 3. Normal physiology and anatomy of the adrenal glands 4. Normal physiology of the pancreatic neuroendocrine cells. 5. Normal physiology of the pituitary gland. Disease-Based Learning Objectives: Hyperfunctioning Thyroid and Hypothyroid State: 1. Physiology of Grave’s disease and toxic goiter. 2. Management of a patient in hyperthyroid storm. 3. Medical and surgical treatment options for hyperthyroidism. 4. Physiology of Hashimoto’s thyroiditis and hypothyroidism. Thyroid Neoplasm: 1. Workup of a cold thyroid nodule. 2. Surgical management of papillary, follicular, medullary, and anaplastic thyroid carcinoma. 3. Adjuvant therapy for thyroid neoplasms. 4. Postoperative medical management and long-term follow-up of thyroid cancer. Hyperparathyroidism: 1. Diagnosis and work-up of hypercalcemia and primary, secondary, and tertiary hyperparathyroidism. -
Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: an Overview Comparing Pediatric and Adult Populations
cancers Review Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations 1, 2, 2 3 Aline Rangel-Pozzo y, Luiza Sisdelli y, Maria Isabel V. Cordioli , Fernanda Vaisman , Paola Caria 4,*, Sabine Mai 1,* and Janete M. Cerutti 2 1 Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; [email protected] 2 Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; [email protected] (L.S.); [email protected] (M.I.V.C.); [email protected] (J.M.C.) 3 Instituto Nacional do Câncer, Rio de Janeiro, RJ 22451-000, Brazil; [email protected] 4 Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy * Correspondence: [email protected] (P.C.); [email protected] (S.M.); Tel.: +1-204-787-2135 (S.M.) These authors contributed equally to this paper. y Received: 29 September 2020; Accepted: 26 October 2020; Published: 27 October 2020 Simple Summary: Papillary thyroid carcinoma (PTC) represents 80–90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence clinical and biological behavior in both children and adults. In this review, we focus on the comparison between pediatric and adult PTC, highlighting genetic alterations, telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers. Abstract: Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population. -
RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients Shumei Kato1, Vivek Subbiah2, Erica Marchlik3, Sheryl K
Published OnlineFirst September 28, 2016; DOI: 10.1158/1078-0432.CCR-16-1679 Personalized Medicine and Imaging Clinical Cancer Research RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients Shumei Kato1, Vivek Subbiah2, Erica Marchlik3, Sheryl K. Elkin3, Jennifer L. Carter3, and Razelle Kurzrock1 Abstract Purpose: Aberrations in genetic sequences encoding the tyrosine (52/88)], cell cycle–associated genes [39.8% (35/88)], the PI3K kinase receptor RET lead to oncogenic signaling that is targetable signaling pathway [30.7% (27/88)], MAPK effectors [22.7% with anti-RET multikinase inhibitors. Understanding the compre- (20/88)], or other tyrosine kinase families [21.6% (19/88)]. hensive genomic landscape of RET aberrations across multiple RET fusions were mutually exclusive with MAPK signaling cancers may facilitate clinical trial development targeting RET. pathway alterations. All 72 patients harboring coaberrations Experimental Design: We interrogated the molecular portfolio had distinct genomic portfolios, and most [98.6% (71/72)] of 4,871 patients with diverse malignancies for the presence of had potentially targetable coaberrations with either an FDA- RET aberrations using Clinical Laboratory Improvement Amend- approved or an investigational agent. Two cases with lung ments–certified targeted next-generation sequencing of 182 or (KIF5B-RET) and medullary thyroid carcinoma (RET M918T) 236 gene panels. thatrespondedtoavandetanib(multikinase RET inhibitor)- Results: Among diverse cancers, RET aberrations were iden- containing regimen are shown. tified in 88 cases [1.8% (88/4, 871)], with mutations being Conclusions: RET aberrations were seen in 1.8% of diverse the most common alteration [38.6% (34/88)], followed cancers, with most cases harboring actionable, albeit dis- by fusions [30.7% (27/88), including a novel SQSTM1-RET] tinct, coexisting alterations. -
Validation of Algorithms to Identify Pancreatic Cancer and Thyroid Neoplasms from Health Insurance Claims Data in a 10-Year Foll
Validation of Algorithms to Identify Pancreatic Cancer and Thyroid Neoplasms From Health Insurance Claims Data in a 10-Year Follow-Up Study Caihua Liang, MD, PhD1*; Monica L Bertoia, MPH, PhD1; C Robin Clifford, MS1; Yan Ding, MSc1; Qing Qiao, MD, PhD2; Joshua J Gagne, PharmD, ScD1,3; David D Dore, PharmD, PhD1 1Optum Epidemiology, Boston, MA/Ann Arbor, MI, USA; 2Global Medical Affair AstraZeneca, Gothenburg, Sweden; 3Division of Pharmacoepidemiology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, USA. *Corresponding author: [email protected]. This study was funded through a research contract between Optum Epidemiology and AstraZeneca. Background Methods (cont.) Identification of cancer events in health insurance claims data can be Figure 1. Pancreatic cancer and thyroid neoplasm relaxed and restricted challenging and subject to misclassification. Given the low incidence of algorithms certain cancers, robust performance evaluation requires a large sample size PANCREATIC CANCER THYROID NEOPLASMS with long-term follow-up. ICD-9 Codes ICD-9 Codes (Malignant neoplasm of …) 193 Malignant neoplasm of thyroid gland 157.X … pancreas 226 Benign neoplasm of thyroid gland Objective 157.0 … head of pancreas 157.1 … body of pancreas Thyroid Cancer Benign Thyroid Neoplasm To validate algorithms for potential incident pancreatic cancer and thyroid 157.2 … tail of pancreas neoplasms in a 10-year follow-up study using a health insurance claims 157.3 … pancreatic duct Restricted Algorithm: Restricted Algorithm: 157.4 … islets of Langerhans a+b+c a+b+c database. 157.8 … other specified sites of Relaxed Algorithm: Relaxed Algorithm: pancreas a+b or a+c a+b or a+c 157.9 … pancreas, part unspecified Data Source a. -
BLU-667 Is a Potent and Highly Selective RET Inhibitor in Development for RET-Driven Thyroid Cancers
BLU-667 is a potent and highly selective RET inhibitor in development for RET-driven thyroid cancers Rami Rahal, PhD Blueprint Medicines July 30, 2017 Disclosure ▪ Employee and shareholder of Blueprint Medicines ▪ BLU-667 is an investigational agent currently in development by Blueprint Medicines 2 REarranged during Transfection (RET) ▪ Receptor tyrosine kinase that transduces signals from GDNF-family ligands ▪ One of the first oncogenic kinase fusions cloned from an epithelial tumor Mulligan, NRC, 2014 NRC, Mulligan, 1987 1990 1993 2012 2013 2014 2015 RET = RTK Papillary Thyroid Medullary Thyroid Lung CMML Colon, Breast, Inflammatory Cancer Cancer (MTC) Adeno Salivary, Myofibroblastic PTC1 = RET Ovarian Tumors Tumors 3 RET Kinase Fusions and Mutations are Oncogenic RET fusions RET mutations Kinase RET + Dimerization domain Fusion Partner ECD M918T V804L/M * * * * * Dimerization domain Kinase RET/PTC Fusion Kinase ▪ ~10% of papillary thyroid cancer ▪ ~60% of medullary thyroid cancer patients (MTC) patients harbor oncogenic ▪ 1-2% of NSCLC patients RET mutations ▪ <1% of patients with colon, ovary, ▪ M918T is the most prevalent RET breast, or hematological cancer mutation 4 Kinase Inhibitors Approved for Treating MTC were Not Designed to Selectively Inhibit RET ▪ Broad kinome activity with potent inhibition of VEGFR-2 ▪ Off-target related dose limiting toxicities hamper ability to inhibit fully RET VEGFR-2 RET Overall Compound Intended Serious adverse Biochem. Biochem. Response (Trade Name) Target(s) events IC50 (nM) IC50 (nM) Rate in MTC Cabozantinib Perforations and VEGFR-2 / MET 2 11 27% (Cometriq) fistulas; hemorrhage QT prolongation; Vandetanib VEGFR-2 / EGFR 4 4 Torsades de pointes; 44% (Calpresa*) sudden death *Only available through Calpresa REMS due to safety concerns 5 BLU-667: a Highly Potent and Selective RET Inhibitor 1. -
Supplemental Table
Supplementary Information DMD-AR-2020-000131 Evaluation of the disconnect between hepatocyte and microsome intrinsic clearance and in vitro in vivo extrapolation performance. Beth Williamson, Stephanie Harlfinger, Dermot F McGinnity Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK. Table S1. Compound physicochemical properties and in vitro ADME data. ACD ACD ACD Human Hep CLint Human Mic CLint Human Main Name MW Ion Class HBD HBA TPSA LogD 6 fuinc pKa A1 pKa B1 LogP (µL/min/x10 ) (µL/min/mg) fup isoform Chlorpromazine 318.9 Base 2 32 9.6 3.4 5.4 20 39 0.060 0.026 CYP2D6 Prochlorperazine 374.0 Base 3 35 7.7 3.6 4.8 12 2 0.023 0.141 CYP2D6 Dipyridamole 504.6 Neutral 4 12 145 6.5 3.8 0.3 28 96 0.407 0.048 UGT Erlotinib 393.4 Neutral 1 7 75 5.5 3.3 3.0 5 20 0.504 0.052 CYP3A Promethazine 284.4 Base 2 32 9.1 2.8 4.6 9 1 0.144 0.090 CYP2D6 Propranolol 259.4 Base 2 3 41 9.5 1.3 3.3 10 29 0.467 0.243 CYP2D6 Rosiglitazone 357.4 Neutral 1 5 97 6.3 6.5 2.5 2.8 13 37 0.514 0.003 Other Ondansetron 293.4 Base 4 40 6.8 1.6 2.8 3 8 0.842 0.435 CYP3A Amsacrine 393.5 Neutral 2 5 89 8.2 3.1 3.2 11 40 0.434 0.007 CYP1A Antazoline 265.4 Base 1 3 28 10.3 1.4 3.6 52 195 0.726 0.562 CYP3A Gefitinib 446.9 Base 1 7 69 7.0 3.7 3.7 4 44 0.214 0.035 CYP3A Edaravone 174.2 Neutral 1 3 33 2.7 0.5 1.1 2 65 0.828 0.001 UGT Semaxanib 238.3 Neutral 2 2 45 13.2 1.5 3.4 3.0 28 68 0.036 0.031 CYP3A Verapamil 454.6 Base 6 64 8.1 2.6 4.0 23 180 0.548 0.155 CYP3A Imatinib 493.6 Base 2 7 86 13.3 7.6 2.5 3.1 3 35 0.405 -
Significance of RAS Mutations in Thyroid Benign Nodules and Non
cancers Review Significance of RAS Mutations in Thyroid Benign Nodules and Non-Medullary Thyroid Cancer Vincenzo Marotta 1 , Maurizio Bifulco 2 and Mario Vitale 3,* 1 UOC Clinica Endocrinologica e Diabetologica, AOU S. Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy; [email protected] 2 Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80100 Naples, Italy; [email protected] 3 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy * Correspondence: [email protected]; Tel.: +39-089-672-753 Simple Summary: Only about 4% of thyroid nodules are carcinomas and require surgery. Fine- needle aspiration cytology is the most accurate tool to distinguish benign from malignant thyroid nodules, however it yields an indeterminate result in about 30% of the cases, posing diagnostic and prognostic dilemmas. Testing for genetic mutations, including those of RAS, has been proposed for indeterminate cytology to solve these dilemmas and support the clinician decision making process. A passionate debate is ongoing on the biological and clinical significance of RAS mutations, calling into question the utility of RAS as tumor marker. Recently, the description of a new entity of non- invasive follicular thyroid neoplasm and the accurate review of more recent analyses demonstrate that RAS mutations have limited utility in both the diagnostic and prognostic setting of thyroid nodular disease. Citation: Marotta, V.; Bifulco, M.; Abstract: Thyroid nodules are detected in up to 60% of people by ultrasound examination. Most Vitale, M. Significance of RAS of them are benign nodules requiring only follow up, while about 4% are carcinomas and require Mutations in Thyroid Benign surgery. -
2018 Updates for Neoplasms of the Thyroid
12/11/2018 2018 Updates for Neoplasms of the Thyroid 1 2 0 1 8 - 2019 FCDS WEBCAST SERIES 1 2 / 1 3 / 2 0 1 8 S T E V E N P E A C E , C T R CDC & Florida DOH Attribution 2 “Funding for this conference was made possible (in part) by the Centers for Disease Control and Prevention. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the US Government.” FCDS would also like to acknowledge the Florida Department of Health for its support of the Florida Cancer Data System, including the development, printing and distribution of materials for the 2018 FCDS Annual Conference and the 2018-2019 FCDS Webcast Series under state contract CODJU. The findings and conclusions in this series are those of the author(s) and do not necessarily represent the official position of the Florida Department of Health. 1 12/11/2018 FLccSC LMS – CEU Quiz –FCDS IDEA 3 2017 - Florida Changed How FCDS Awards CEUs for FCDS Webcasts Attendees must take and pass a 3-5 question CEU Quiz to get CEUs CEU Awards are Restricted to Attendees with a FLccSC LMS Account The CEU Quiz will be posted to FLccSC 1-2 hours after the webcast ends Only registered FLccSC Users will be given access to the CEU Quiz Florida attendees must have a Florida FLccSC Account to take the Quiz South Carolina attendees must have a South Carolina FLccSC Account -
Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in Vitro and in Vivo
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Genetik Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in vitro and in vivo - Towards Response Prediction in Cancer Therapy with Kinase Inhibitors Michaela Bairlein Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ. -Prof. Dr. K. Schneitz Prüfer der Dissertation: 1. Univ.-Prof. Dr. A. Gierl 2. Hon.-Prof. Dr. h.c. A. Ullrich (Eberhard-Karls-Universität Tübingen) 3. Univ.-Prof. A. Schnieke, Ph.D. Die Dissertation wurde am 07.01.2010 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 19.04.2010 angenommen. FOR MY PARENTS 1 Contents 2 Summary ................................................................................................................................................................... 5 3 Zusammenfassung .................................................................................................................................................... 6 4 Introduction .............................................................................................................................................................. 8 4.1 Cancer .............................................................................................................................................................. -
Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib a C Ezra Y
Published OnlineFirst October 20, 2020; DOI: 10.1158/1078-0432.CCR-20-2278 CLINICAL CANCER RESEARCH | RESEARCH BRIEFS: CLINICAL TRIAL BRIEF REPORT Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib A C Ezra Y. Rosen1, Melissa L. Johnson2, Sarah E. Clifford3, Romel Somwar4, Jennifer F. Kherani5, Jieun Son3, Arrien A. Bertram3, Monika A. Davare6, Eric Gladstone4, Elena V. Ivanova7, Dahlia N. Henry5, Elaine M. Kelley3, Mika Lin3, Marina S.D. Milan3, Binoj C. Nair5, Elizabeth A. Olek5, Jenna E. Scanlon3, Morana Vojnic4, Kevin Ebata5, Jaclyn F. Hechtman4, Bob T. Li1,8, Lynette M. Sholl9, Barry S. Taylor10, Marc Ladanyi4, Pasi A. Janne€ 3, S. Michael Rothenberg5, Alexander Drilon1,8, and Geoffrey R. Oxnard3 ABSTRACT ◥ Purpose: The RET proto-oncogene encodes a receptor tyrosine Results: MET amplification was identified in posttreatment kinase that is activated by gene fusion in 1%–2% of non–small biopsies in 4 patients with RET fusion–positive NSCLC treated with cell lung cancers (NSCLC) and rarely in other cancer types. selpercatinib. In at least one case, MET amplification was clearly Selpercatinib is a highly selective RET kinase inhibitor that has evident prior to therapy with selpercatinib. We demonstrate that recently been approved by the FDA in lung and thyroid cancers increased MET expression in RET fusion–positive tumor cells causes with activating RET gene fusions and mutations. Molecular resistance to selpercatinib, and this can be overcome by combining mechanisms of acquired resistance to selpercatinib are poorly selpercatinib with crizotinib. Using SPPs, selpercatinib with crizo- understood.