New Insights Into the Origin and Relationships of Blastoid Echinoderms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Paleoecology and Biogeography of Ordovician Edrioasteroids
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2011 The Paleoecology and Biogeography of Ordovician Edrioasteroids Rene Anne Lewis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Paleontology Commons Recommended Citation Lewis, Rene Anne, "The Paleoecology and Biogeography of Ordovician Edrioasteroids. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/1094 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rene Anne Lewis entitled "The Paleoecology and Biogeography of Ordovician Edrioasteroids." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Geology. Michael L. McKinney, Major Professor We have read this dissertation and recommend its acceptance: Colin D. Sumrall, Linda C. Kah, Arthur C. Echternacht Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) THE PALEOECOLOGY AND BIOGEOGRAPHY OF ORDOVICIAN EDRIOASTEROIDS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville René Anne Lewis August 2011 Copyright © 2011 by René Anne Lewis All rights reserved. -
University of Michigan University Library
CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.XIX, NO.8, pp. 105-114 (1 pl., 1 fig.) NOVEMBER25, 1964 A NEW SPIRACULATE BLASTOID, PYRAMIBLASTUS, FROM THE MISSISSIPPIAN HAMPTON FORMATION OF IOWA BY DONALD B. MACURDA, JR. MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PaEONTOLOGY Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLUME XIX 1. Silicified Trilobites from the Devonian Jeffersonville Limestone at the Falls of the Ohio, by Erwin C. Stumm. Pages 1-14, with 3 plates. 2. Two Gastropods from the Lower Cretaceous (Albian) of Coahuila, Mexico, by Lewis B. Kellum and Kenneth E. Appelt. Pages 15-22, with 2 figures. 3. Corals of the Traverse Group of Michigan, Part XII, The Small-celled Species of Favosites and Emmonsia, by Erwin C. Stumm and John H. Tyler. Pages 23-36, with 7 plates. 4. Redescription of Syntypes of the Bryozoan Species Rhombotrypa quadrata (Rominger), by Roger J. Cuffey and T. G. Perry. Pages 37-45, with 2 plates. 5. Rare Crustaceans from the Upper Devonian Chagrin Shale in Northern Ohio, by Myron T. -
Progress in Echinoderm Paleobiology
Journal of Paleontology, 91(4), 2017, p. 579–581 Copyright © 2017, The Paleontological Society 0022-3360/17/0088-0906 doi: 10.1017/jpa.2017.20 Progress in echinoderm paleobiology Samuel Zamora1,2 and Imran A. Rahman3 1Instituto Geológico y Minero de España (IGME), C/Manuel Lasala, 44, 9ºB, 50006, Zaragoza, Spain 〈[email protected]〉 2Unidad Asociada en Ciencias de la Tierra, Universidad de Zaragoza-IGME, Zaragoza, Spain 3Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom 〈[email protected]〉 Echinoderms are a diverse and successful phylum of exclusively Universal elemental homology (UEH) has proven to be one marine invertebrates that have an extensive fossil record dating of the most powerful approaches for understanding homology back to Cambrian Stage 3 (Zamora and Rahman, 2014). There in early pentaradial echinoderms (Sumrall, 2008, 2010; Sumrall are five extant classes of echinoderms (asteroids, crinoids, and Waters, 2012; Kammer et al., 2013). This hypothesis echinoids, holothurians, and ophiuroids), but more than 20 focuses on the elements associated with the oral region, extinct groups, all of which are restricted to the Paleozoic identifying possible homologies at the level of specific plates. (Sumrall and Wray, 2007). As a result, to fully appreciate the Two papers, Paul (2017) and Sumrall (2017), deal with the modern diversity of echinoderms, it is necessary to study their homology of plates associated with the oral area in early rich fossil record. pentaradial echinoderms. The former contribution describes and Throughout their existence, echinoderms have been an identifies homology in various ‘cystoid’ groups and represents a important component of marine ecosystems. -
A Probable Case of Heterochrony in the Solutan
A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938 FLEUR NOAILLES, BERTRAND LEFEBVRE & LIBOR KAIÈKA The morphology of the Late Ordovician solutan Dendrocystites is reevaluated based on more than 300 specimens from the Letná and Zahořany formations (Prague Basin, Czech Republic). This genus is reported for the first time from the Bohdalec Formation, and its presence is confirmed in the Vinice Formation. The morphology of all specimens of the stratigraphically older species D. barrandei (Sandbian) is identical to that of small to medium-size individuals of D. sedgwicki (Katian). Distinctive characters of D. sedgwicki occur only in the largest specimens, and are all size-related (more asymmetrical thecal outlines, stronger ornamentation, rosetting pattern of thecal plates, proliferation of platelets in the proxistele). Consequently, the transition from D. barrandei to D. sedgwicki is interpreted as the result of heterochronic processes, with the largest individuals of D. sedgwicki displaying hyperadult morphologies (hyper- morphosis). Dendrocystites is locally abundant in both the Letná and Zahořany formations, but extremely rare in the deeper deposits of the Vinice and Bohdalec formations. This pattern coincides closely with first order fluctuations of the sea-level in the Prague Basin. The life orientation and implied feeding strategy of Dendrocystites and other solutans are both critically discussed. Several independent lines of evidence suggest that solutans were more likely detritus-feeders. Finally, it is proposed that two morphologically distinct patterns of dististele organization were elaborated independently from the polyplated, undifferentiated stalk-like appendage of Coleicarpus (plesiomorphic condition). -
PUBLICATIONS by JAMES SPRINKLE 1965 -- Sprinkle, James
PUBLICATIONS BY JAMES SPRINKLE 1965 -- Sprinkle, James. 1965. Stratigraphy and sedimentary petrology of the lower Lodgepole Formation of southwestern Montana. M.I.T. Department of Geology and Geophysics, unpublished Senior Thesis, 29 p. (see #56 and 66 below) 1966 1. Sprinkle, James and Gutschick, R. C. 1966. Blastoids from the Sappington Formation of southwest Montana (Abst.). Geological Society of America Special Paper 87:163-164. 1967 2. Sprinkle, James and Gutschick, R. C. 1967. Costatoblastus, a channel fill blastoid from the Sappington Formation of Montana. Journal of Paleon- tology, 41(2):385-402. 1968 3. Sprinkle, James. 1968. The "arms" of Caryocrinites, a Silurian rhombiferan cystoid (Abst.). Geological Society of America Special Paper 115:210. 1969 4. Sprinkle, James. 1969. The early evolution of crinozoan and blastozoan echinoderms (Abst.). Geological Society of America Special Paper 121:287-288. 5. Robison, R. A. and Sprinkle, James. 1969. A new echinoderm from the Middle Cambrian of Utah (Abst.). Geological Society of America Abstracts with Programs, 1(5):69. 6. Robison, R. A. and Sprinkle, James. 1969. Ctenocystoidea: new class of primitive echinoderms. Science, 166(3912):1512-1514. 1970 -- Sprinkle, James. 1970. Morphology and Evolution of Blastozoan Echino- derms. Harvard University Department of Geological Sciences, unpublished Ph.D. Thesis, 433 p. (see #8 below) 1971 7. Sprinkle, James. 1971. Stratigraphic distribution of echinoderm plates in the Antelope Valley Limestone of Nevada and California. U.S. Geological Survey Professional Paper 750-D (Geological Survey Research 1971):D89-D98. 1973 8. Sprinkle, James. 1973. Morphology and Evolution of Blastozoan Echino- derms. Harvard University, Museum of Comparative Zoology Special Publication, 283 p. -
001-012 Primeras Páginas
PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries. -
Lifestyle of the Octoradiate Eoandromeda in the Ediacaran
Lifestyle of the Octoradiate Eoandromeda in the Ediacaran Authors: Wang, Ye, Wang, Yue, Tang, Feng, Zhao, Mingsheng, and Liu, Pei Source: Paleontological Research, 24(1) : 1-13 Published By: The Palaeontological Society of Japan URL: https://doi.org/10.2517/2019PR001 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Paleontological-Research on 15 Feb 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Bing Search Engine Paleontological Research, vol. 24, no. 1, pp. 1–13, JanuaryEoandromeda 1, 2020 ’s Lifestyle 1 © by the Palaeontological Society of Japan doi:10.2517/2019PR001 Lifestyle of the Octoradiate Eoandromeda in the Ediacaran YE WANG1, YUE WANG1, FENG TANG2, MINGSHENG ZHAO3 and PEI LIU1 1Resource and Environmental Engineering College, Guizhou University, Huanx 550025, Guiyang, Guizhou, China (e-mail: [email protected]) 2Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Street 100037, Beijing, China 3College of Paleontology, Shenyang Normal Univeristy, 253 Huanhe N Street 110034, Shengyang, Liaoning, China Received May 14, 2018; Revised manuscript accepted January 26, 2019 Abstract. -
The Cambrian Substrate Revolution and the Early Evolution of Attachment in MARK Suspension-Feeding Echinoderms
Earth-Science Reviews 171 (2017) 478–491 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The Cambrian Substrate Revolution and the early evolution of attachment in MARK suspension-feeding echinoderms ⁎ Samuel Zamoraa,b, , Bradley Delinec, J. Javier Álvarod, Imran A. Rahmane a Instituto Geológico y Minero de España, C/Manuel Lasala, 44, 9B, Zaragoza 50006, Spain b Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013-7012, USA c University of West Georgia, Carrollton, GA, USA d Instituto de Geociencias (CSIC-UCM), c/José Antonio Novais 12, 28040 Madrid, Spain e Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK ARTICLE INFO ABSTRACT Keywords: The Cambrian, characterized by the global appearance of diverse biomineralized metazoans in the fossil record Palaeoecology for the first time, represents a pivotal point in the history of life. This period also documents a major change in Evolution the nature of the sea floor: Neoproterozoic-type substrates stabilized by microbial mats were replaced by un- fl Sea oor consolidated soft substrates with a well-developed mixed layer. The effect of this transition on the ecology and Attachment evolution of benthic metazoans is termed the Cambrian Substrate Revolution (CSR), and this is thought to have impacted greatly on early suspension-feeding echinoderms in particular. According to this paradigm, most echinoderms rested directly on non-bioturbated soft substrates as sediment attachers and stickers during the Cambrian Epoch 2. As the substrates became increasingly disturbed by burrowing, forming a progressively thickening mixed layer, echinoderms developed new strategies for attaching to firm and hard substrates. -
Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution
Zamora, S., Rahman, I. A., & Smith, A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7(6), [e38296]. https://doi.org/10.1371/journal.pone.0038296 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0038296 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution Samuel Zamora1, Imran A. Rahman2, Andrew B. Smith1* 1 Department of Palaeontology, The Natural History Museum, London, United Kingdom, 2 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom Abstract Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. -
GY 112L Earth History
GY 112L Earth History Lab 11 The Mesozoic: Part Two GY 112L Instructors: Douglas Haywick, James Connors, Mary Anne Connors Department of Earth Sciences, University of South Alabama Fifth Edition: August 2009© The Fine Print Contents of these lab exercises are the intellectual property of the authors, particularly Dr. Doug Haywick. Contents cannot be reproduced outside of the University of South Alabama “family” (faculty and students) without the permission of D. Haywick. Internet users can seek this permission by contacting Dr. Haywick through the web address provided below. This manual is constantly being updated and occasionally, even improved. Typos, grammatical errors and sections that make no sense whatsoever may, or may not, be intentional. If you find an error, show it to your instructor. You may get bonus points. More likely you will be told to go away The recipes that are included in some sections are intended to prove that you can eat anything as long as you serve it with plenty of ketchup. Neither Haywick, nor the Connors are responsible for any food poisoning that might occur if you actually try them. http:/www.southalabama.edu/geology/haywick 1 Week Eleven The Mesozoic, Part Two: Molluscs (Cephalopods), Echinoderms and Alabama Stratigraphy Background: Well the good news is that we are rapidly approaching the end of this course. The bad news is that we are rapidly approaching the end of this course and we still have several important animal groups to consider. When we last visited the molluscs two weeks ago, we only had time to consider the gastropods and bivalves.