Robocza Wersja Wykazu Polskich Nazw Geograficznych Świata © Copyright by Główny Geodeta Kraju 2013

Total Page:16

File Type:pdf, Size:1020Kb

Robocza Wersja Wykazu Polskich Nazw Geograficznych Świata © Copyright by Główny Geodeta Kraju 2013 Robocza wersja wykazu polskich nazw geograficznych świata W wykazie uwzględnione zostały wyłącznie te obiekty geograficzne, dla których Komisja Standaryzacji Nazw Geograficznych poza Granicami Rzeczypospolitej Polskiej zaleca stosowanie polskich nazw (tj. egzonimów lub pseudoegzonimów). Robocza wersja wykazu zawiera zalecane polskie nazwy wg stanu na 13 lutego 2013 r. – do czasu ostatecznej publikacji lista tych nazw może ulec niewielkim zmianom. Układ wykazu bazuje na układzie zastosowanym w zeszytach „Nazewnictwa geograficznego świata”. Wykaz podzielono na części odpowiadające częściom świata (Europa, Azja, Afryka, Ameryka Północna, Ameryka Południowa, Australia i Oceania, Antarktyka, formy podmorskie). Każda z części rozpoczyna się listą zalecanych nazw oceanów oraz wielkich regionów, które swym zasięgiem przekraczają z reguły powierzchnie kilku krajów. Następnie zamieszczono nazwy według państw i terytoriów. Z kolei nazwy poszczególnych obiektów geograficznych ułożono z podziałem na kategorie obiektów. W ramach poszczególnych kategorii nazwy ułożono alfabetycznie w szyku właściwym (prostym). Hasła odnoszące się do poszczególnych obiektów geograficznych zawierają zalecaną nazwę polską, a następnie nazwę oryginalną, w języku urzędowym (endonim) – lub nazwy oryginalne, jeśli obowiązuje więcej niż jeden język urzędowy albo dany obiekt ma ustalone nazwy w kilku językach. Jeżeli podawane są polskie nazwy wariantowe (np. Mała Syrta; Zatoka Kabiska), to nazwa pierwsza w kolejności jest tą, którą Komisja uważa za właściwszą, uznając jednak pozostałe za dopuszczalne (wyjątek stanowią tu długie (oficjalne) nazwy niektórych jednostek administracyjnych). Czasem podawana jest tylko polska nazwa – oznacza to, że dany obiekt geograficzny nie jest nazywany w kraju, w którym jest położony lub nie odnaleziono poprawnej lokalnej nazwy tego obiektu. W przypadku nazw wariantowych w językach urzędowych na pierwszym miejscu podawano nazwę główną danego obiektu. Dla niektórych obiektów podano także, w nawiasie na końcu hasła, bardziej znane polskie nazwy historyczne. Dla wszystkich obiektów (za wyjątkiem oceanów oraz wielkich regionów) podano współrzędne geograficzne – dla obiektów punktowych i powierzchniowych współrzędne środka, dla liniowych początku i końca; w przypadku obiektów transgranicznych podano zarówno współrzędne fragmentu obiektu leżącego w danym państwie/terytorium, jak i całego obiektu. W wykazie starano się podać oficjalne formy endonimów, pochodzące z narodowych wykazów nazewniczych, map topograficznych i innych oficjalnych źródeł. Kiedy okazywało się to niemożliwe, korzystano z najbardziej wiarygodnych publikacji międzynarodowych. Dlatego niekiedy formy nazw urzędowych mogą budzić wątpliwości, bo choć ich ustalanie odbywało się z dużą starannością, to jednak napotykano czasem na trudne do pokonania przeszkody. Mogły one wynikać z braków w materiałach źródłowych, a nawet, bo i to się zdarzało, z różnych, sprzecznych wersji nazewnictwa podawanych w oficjalnych publikacjach instytucji rządowych lub organów ustawodawczych. Dla nazw w językach posługujących się pismami niełacińskimi podano zapis zlatynizowany zgodnie z zasadami, które Komisja zaleca do stosowania w Polsce dla nazw geograficznych z danego języka. W przypadku większości takich języków podano zapis zarówno w polskiej transkrypcji, jak i w transliteracji. Wyjątkiem jest tu kilka języków azjatyckich. Wykaz będzie zawierał skorowidz polskich nazw. Publikacja wykazu planowana jest na drugą połowę 2013 roku. Komisja Standaryzacji Nazw Geograficznych będzie wdzięczna za wszelkie uwagi dotyczące tej publikacji, przede wszystkim za uwagi krytyczne. © Copyright by Główny Geodeta Kraju 2013 1 FORMY PODMORSKIE OCEAN ARKTYCZNY Prądy morskie Prąd Baffina; Baffin Current; Baffin Island Current; 70°N, 66°W (67°N, 61°W) [również Ocean Atlantycki] Prąd Nowej Ziemi; Novaya Zemlya Current; 75°N, 54°E Prąd Północnoislandzki; North Iceland Current; 67°N, 21°W Prąd Przylądka Północnego; North Cape Current; 71°N, 30°E Prąd Transarktyczny; Trans-Arctic Current; 87°N, 90°E Prąd Wschodniogrenlandzki; East Greenland Current; 74°N, 18°W (69°N, 23°W) [również Ocean Atlantycki] Prąd Wschodnioislandzki; East Iceland Current; 67°N, 14°W (65°N, 12°W) [również Ocean Atlantycki] Prąd Zachodniogrenlandzki; West Greenland Current; 72°N, 57°W (67°N, 55°W) [również Ocean Atlantycki] Prąd Zachodniospitsbergeński; West Spitsbergen Current; Spitsbergen Current; West Svalbard Current; 80°N, 8°E (78°N, 10°E) [również Ocean Atlantycki] Grzbiety Grzbiet Gakkela; Grzbiet Nansena; Gakkel Ridge; 87°N, 60°W Grzbiet Geofizyków; Geofizikov Spur; 84°30′N, 163°00′E Grzbiet Łomonosowa; Lomonosov Ridge; 88°N, 135°E Grzbiet Mendelejewa; Mendeleev Rise; Mendeleev Ridge; 85°N, 160°W Grzbiet Mohna; Mohns Ridge; 73°N, 5°E [również Ocean Atlantycki] Progi Próg Grenlandzko‐Islandzki; Greenland-Iceland Rise; 67°N, 27°W [również Ocean Atlantycki] Krawędzie Krawędź Grenlandzka; Greenland Fracture Zone; 75°30′N, 0°30′E Krawędź Spitsbergeńska; Próg Nansena; Spitsbergen Fracture Zone; Nansen Fracture Zone; 80°N, 1°E Wyniesienia Wyniesienie Beauforta; Beaufort Terrace; 73°N, 140°W Wyniesienie Czukockie; Chukchi Plateau; 78°N, 165°W Wyniesienie Jermaka; Yermak Plateau; 81°N, 6°E Wyniesienie Murmańskie; Ławica Murmańska; Murman Rise; 70°30′N, 36°30′E Wyniesienie Środkowokarskie; Central Kara Rise; 80°N, 80°E Baseny Basen Amundsena; Fram Basin; Amundsen Basin; 88°N, 90°E Basen Baffina; Baffin Basin; 73°N, 67°W Basen Eurazjatycki; Eurasia Basin; 87°N, 80°E [wspólna nazwa dla Basenu Amundsena i Basenu Nansena] Basen Grenlandzki; Greenland Basin; 75°N, 5°W Basen Kanadyjski; Canada Basin; 79°N, 140°W Basen Makarowa; Makarov Basin; 87°N, 170°E Basen Nansena; Nansen Basin; 84°N, 60°E 2 Równiny Równina Kanadyjska; Canada Abyssal Plain; 76°30′N, 150°00′W Ławice Ławica Spitsbergeńska; Bjornoya Bank; Spitsbergen Bank; 75°30′N, 22°00′E Rowy Rów Leny; Lena Trough; 82°N, 4°W Rów Nowej Ziemi; Novaya Zemlya Trough; East Novaya Zemlya Trough; 73°30′N, 60°00′E Rów Świętej Anny; Saint Anna Trough; Svyataya Anna Trough; 81°N, 70°E Rów Woronina; Voronin Trough; 81°N, 85°E Rynny Rynna Wyspy Niedźwiedziej; Bear Island Trough; Barents Trough; 75°N, 29°E OCEAN ATLANTYCKI Prądy morskie Prąd Angolski; Angola Current; 4°S, 9°E Prąd Antylski; Antilles Current; 22°N, 70°W Prąd Azorski; Azores Current; 40°N, 30°W Prąd Baffina; Baffin Current; Baffin Island Current; 64°N, 63°W (67°N, 61°W) [również Ocean Arktyczny] Prąd Benguelski; Benguela Current; 20°S, 10°E Prąd Brazylijski; Brazil Current; 20°S, 38°W Prąd Falklandzki; Falkland Current; 45°S, 62°W Prąd Florydzki; Florida Current; 25°N, 80°W Prąd Gujański; Guyana Current; 5°N, 50°W Prąd Gwinejski; Guinea Current; 4°N, 4°W Prąd Irmingera; Irminger Current; 63°N, 25°W Prąd Jukatański; Yucatan Current; 22°N, 88°W Prąd Kanaryjski; Canary Current; Canaries Current; 25°N, 20°W Prąd Karaibski; Caribbean Current; 14°N, 70°W Prąd Labradorski; Labrador Current; 57°N, 60°W Prąd Łomonosowa; Lomonosov Current; 1°S, 20°W [pod Prądem Południoworównikowym i Równikowym Prądem Wstecznym] Prąd Meksykański; Mexican Current; 24°N, 96°W Prąd Norweski; Norway Current; Norwegian Current; 70°N, 16°E Prąd Północnoatlantycki; North Atlantic Current; 50°N, 30°W Prąd Północnorównikowy; North Equatorial Current; 15°N, 40°W [również Ocean Spokojny] Prąd Południowoatlantycki; South Atlantic Current; 42°S, 20°W [część Prądu Wiatrów Zachodnich] Prąd Południoworównikowy; South Equatorial Current; 5°S, 15°W [również Ocean Indyjski, Ocean Spokojny] Prąd Przylądka Horn; Cape Horn Current; 56°S, 62°W (57°S, 67°W) [część Prądu Wiatrów Zachodnich; również Ocean Spokojny] Prąd Wiatrów Zachodnich; Antarktyczny Prąd Okołobiegunowy; West Wind Drift; Antarctic Circumpolar Current; 42°S, 20°W [również Ocean Indyjski, Ocean Spokojny; hist.: Dryf Wiatrów Zachodnich] Prąd Wschodniogrenlandzki; East Greenland Current; 65°N, 36°W (69°N, 23°W) [również Ocean Arktyczny] Prąd Wschodnioislandzki; East Iceland Current; 64°N, 11°W (65°N, 12°W) [również Ocean Arktyczny] 3 Prąd Zachodniogrenlandzki; West Greenland Current; 62°N, 50°W (67°N, 55°W) [również Ocean Arktyczny] Prąd Zachodniospitsbergeński; West Spitsbergen Current; Spitsbergen Current; West Svalbard Current; 76°N, 14°E (78°N, 10°E) [również Ocean Arktyczny] Prąd Zatokowy; Golfsztrom; Gulf Stream; Gulf Stream Current; 40°N, 55°W Prąd Zielonego Przylądka; Cape Verde Current; 18°N, 20°W [prąd okresowy] Równikowy Prąd Wsteczny; Equatorial Counter Current; 6°N, 20°W [również Ocean Indyjski, Ocean Spokojny; na Oceanach Atlantyckim i Indyjskim jest to prąd okresowy] Grzbiety Grzbiet Afrykańsko‐Antarktyczny; Atlantic-Indian Ridge; 53°S, 23°E (53°S, 15°E) [również Ocean Indyjski] Grzbiet Barbadosu; Barbados Ridge; 12°00′N, 59°45′W Grzbiet Beaty; Beata Ridge; 16°00′N, 72°30′W Grzbiet Blake’a; Blake Ridge; 31°N, 75°W Grzbiet Jan Mayen; Jan Mayen Ridge; 70°N, 8°W Grzbiet Kajmański; Cayman Ridge; 19°00′N, 82°30′W Grzbiet Mohna; Mohns Ridge; 73°N, 5°E [również Ocean Arktyczny] Grzbiet Południowoatlantycki; South Atlantic Ridge; 25°S, 14°W Grzbiet Północnoatlantycki; North Atlantic Ridge; 25°N, 45°W Grzbiet Reykjanes; Reykjanes Ridge; 59°N, 30°W Grzbiet Scotia; Scotia Ridge; 53°30′S, 42°00′W (56°S, 28°W) [również Ocean Południowy; hist.: Grzbiet Południowoantylski] Grzbiet Śródatlantycki; Mid-Atlantic Ridge; 0°N, 20°W [składa się z Grzbietu Północnoatlantyckiego, Grzbietu Południowoatlantyckiego i Grzbietu Reykjanes] Grzbiet Wielorybi; Walvis Ridge; 25°S, 6°E Północny Grzbiet Scotia; North Scotia Ridge; 53°00′S, 46°00′W Wschodni
Recommended publications
  • In Partial Fulfillment of the Requirements for the Degree Of
    CHARACTERISTICS AND DISTRIBUTION OF WATER MASSES OFF TIlE OREGON COAST by DONALD HUDSON ROSENBERG A THESIS submitted to OREGON STATE UNIVERSITY in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1962 Redacted for Privacy Associate Professor of Oceanography In Charge of Major Redacted for Privacy irmapof Department of Oceanography Redacted for Privacy Chairman of Sc Graduate Committee Redacted for Privacy Dean of Graduate School Date thesis is presented A/ 3. /2. Typed by Diane Frisehknecht CHARACfERISTICS ANDDISTRIBUTION OF WATER MASSESOFF THE OREGON COAST by Donald Hudson Rosenberg TABLE OF CONTENTS Introduction.;................................................. General Description of Water Masses, Currents, and UpwellingintheNorthPacificOcean........................... 5 Water Masses............................................... 5 Subarctic Water....................................... 5 Eastern North Pacific central Water................... 7 Pacific Equatorial Water.............................. 7 North Pacific Intermediate Water...................... 7 currents................................................... 8 Gulf of Alaska Current System......................... 8 California CurrentSystem............................. 8 Davidson Current...................................... 10 Deep Currents......................................... 11 Upwelling....................... 11 TheWaterMasses off the OregonCoast................ 12 Method of Analysis......................................... 12 Hydrograpic
    [Show full text]
  • A Synthesisof Exchanges
    T H E C H A N GIN G A R CTI C OC EAN | SPE C I A L ISS U E ON T H E INT ERN AT I ONA L POLAR YEAR 20072009 A Synthesis of Exchanges $rough the Main Oceanic Gateways to the Arctic Ocean BY AGNIESZK A BESZCZYNSK A M Ö L L E R , R E B ECC A A . W O O D G AT E , C R A I G L E E , H U M FREY MELLING, A N D M I C HAE L KARCH ER Deployment of a deep mooring with an Aanderaa current meter in Fram Strait during R/V Polarstern cruise ARKXIII in 2008. Photo courtesy of A. Beszczynska-Möller 82 Oceanography | Vol.24, No.3 ABSTRACT. In recent decades, the Arctic Ocean has changed dramatically. mass, liquid freshwater, and heat through Exchanges through the main oceanic gateways indicate two main processes of global the main Arctic gateways and the esti- A Synthesis of Exchanges climatic importance—poleward oceanic heat "ux into the Arctic Ocean and export mates derived from these observations. of freshwater toward the North Atlantic. Since the 1990s, in particular during the Year-round moorings, almost uninter- $rough the Main Oceanic Gateways International Polar Year (2007–2009), extensive observational e%orts were undertaken rupted since 1990, measure Paci!c to monitor volume, heat, and freshwater "uxes between the Arctic Ocean and the in"ow through Bering Strait. Since subpolar seas on scales from daily to multiyear. &is paper reviews present-day 2004, the program has been part of the estimates of oceanic "uxes and reports on technological advances and existing US National Oceanic and Atmospheric to the Arctic Ocean challenges in measuring exchanges through the main oceanic gateways to the Arctic.
    [Show full text]
  • Module 4 Physical Oceanography
    UNIVERSITY OF THE ARCTIC Module 4 Physical Oceanography Developed by Alec E. Aitken, Associate Professor, Department of Geography, University of Saskatchewan Key Terms and Concepts • water mass • thermocline • halocline • thermohaline circulation • first-year sea ice • multi-year sea ice • sensible heat polynyas • latent heat polynyas Learning Objectives/Outcomes This module should help you to 1. develop an understanding of the physiography of the Arctic Ocean basin and its marginal seas. 2. develop an understanding of the physical processes that influence the temperature and salinity of water masses formed in the Arctic Ocean basin and its marginal seas. 3. develop an understanding of the influence of atmospheric circulation on oceanic circulation and the interaction of water masses within polar seas. 4. develop an understanding of the physical processes that contribute to the growth and decay of sea ice and the formation of polynyas. 5. provide concise definitions for the key words. Bachelor of Circumpolar Studies 311 1 UNIVERSITY OF THE ARCTIC Reading Assignments Barry (1993), chapter 2: “Canada’s Cold Seas,” in Canada’s Cold Environments, 29–61. Coachman and Aagaard (1974), “Physical Oceanography of Arctic and Subarctic Seas,” in Marine Geology and Oceanography of the Arctic Seas, 1–72. Overview The Arctic Ocean is a large ocean basin connected primarily to the Atlantic Ocean. An unusual feature of this ocean basin is the presence of sea ice. Sea ice covers less than 10% of the world’s oceans and 40% of this sea ice occurs within the Arctic Ocean basin. There are several effects of this sea ice cover on the physical oceanography of the Arctic Ocean and its marginal seas (e.g., Baffin Bay, Hudson Bay, Barents Sea): • The temperature of surface water remains near the freezing point for its salinity.
    [Show full text]
  • Arctic and N-Atlantic High-Resolution Ocean and Sea-Ice Model
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Geosci. Model Dev. Discuss., 8, 1–52, 2015 www.geosci-model-dev-discuss.net/8/1/2015/ doi:10.5194/gmdd-8-1-2015 GMDD © Author(s) 2015. CC Attribution 3.0 License. 8, 1–52, 2015 This discussion paper is/has been under review for the journal Geoscientific Model Arctic and N-Atlantic Development (GMD). Please refer to the corresponding final paper in GMD if available. high-resolution ocean and sea-ice A high-resolution ocean and sea-ice model modelling system for the Arctic and North F. Dupont et al. Atlantic Oceans Title Page 1 3 4 3 2 2 F. Dupont , S. Higginson , R. Bourdallé-Badie , Y. Lu , F. Roy , G. C. Smith , Abstract Introduction J.-F. Lemieux2, G. Garric4, and F. Davidson5 Conclusions References 1MSC, Environment Canada, Dorval, QC, Canada 2MRD, Environment Canada, Dorval, QC, Canada Tables Figures 3Bedford Institute of Oceanography, Fisheries & Oceans Canada, Dartmouth, NS, Canada 4 Mercator-Océan, Toulouse, France J I 5Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, NF, Canada J I Received: 18 November 2014 – Accepted: 5 December 2014 – Published: 5 January 2015 Back Close Correspondence to: F. Dupont ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 1 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract GMDD As part of the CONCEPTS (Canadian Operational Network of Coupled Environmental PredicTion Systems) initiative, The Government of Canada is developing a high res- 8, 1–52, 2015 olution (1=12◦) ice–ocean regional model covering the North Atlantic and the Arctic 5 oceans.
    [Show full text]
  • Arctic Ocean and Hudson Bay Freshwater Exports: New Estimates from Seven Decades of Hydrographic Surveys on the Labrador Shelf
    15 OCTOBER 2020 F L O R I N D O - L Ó PEZ ET AL. 8849 Arctic Ocean and Hudson Bay Freshwater Exports: New Estimates from Seven Decades of Hydrographic Surveys on the Labrador Shelf CRISTIAN FLORINDO-LÓPEZ,SHELDON BACON, AND YEVGENY AKSENOV National Oceanography Centre, Southampton, United Kingdom LÉON CHAFIK Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden EUGENE COLBOURNE Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John’s, Newfoundland and Labrador, Canada N. PENNY HOLLIDAY National Oceanography Centre, Southampton, United Kingdom (Manuscript received 29 January 2019, in final form 12 May 2020) ABSTRACT While reasonable knowledge of multidecadal Arctic freshwater storage variability exists, we have little knowledge of Arctic freshwater exports on similar time scales. A hydrographic time series from the Labrador Shelf, spanning seven decades at annual resolution, is here used to quantify Arctic Ocean freshwater export variability west of Greenland. Output from a high-resolution coupled ice–ocean model is used to establish the representativeness of those hydrographic sections. Clear annual to decadal variability emerges, with high freshwater transports during the 1950s and 1970s–80s, and low transports in the 1960s and from the mid-1990s to 2016, with typical amplitudes of 2 30 mSv (1 Sv 5 106 m3 s 1). The variability in both the transports and cumulative volumes correlates well both with Arctic and North Atlantic freshwater storage changes on thesametimescale.Werefertothe‘‘inshorebranch’’of the Labrador Current as the Labrador Coastal Current, because it is a dynamically and geographically distinct feature. It originates as the Hudson Bay outflow, and preserves variability from river runoff into the Hudson Bay catchment.
    [Show full text]
  • Macrobenthos Communities of Cambridge, Mcbeth and Itirbilung Fiords, Baffin Island, Northwest Territories, Canada' ALEC E
    ARCTIC VOL. 46, NO. 1 (MARCH 1993) P. 60.71 Macrobenthos Communities of Cambridge, McBeth and Itirbilung Fiords, Baffin Island, Northwest Territories, Canada' ALEC E. AITKEN* and JUDITH FOURNER3 (Received 2 January 1992; accepted in revised form 4 November 1992) ABSTRACT. Thirtyeight marine invertebrates, including molluscs, echinoderms, polychaetesand several minor taxa, havebeen added to the previously described benthic macrofauna inhabiting Cambridge, McBeth and Itirbilung fiords in northeastern Baffin Island, Northwest Territories, Canada. The fiords lie fully within the marine arctic zone and organisms exhibiting panarctic distributions constitute the majority of speciescollected from them. Macrobenthic associations recordedin the fiords are comparable, both with respectto species composition and habitat, to benthic invertebrate associationsoccurring on the Baffin Island continental shelf andin east Greenland fiords, reflecting the broad environmental tolerances of the organisms constituting the benthic associations.Deposit-feediig organisms dominatethe fiord macrobenthos, notably nuculanid bivalves, ophiuroid echinoderms and elasipod holothurians. The foraging and locomotory activities of these organisms may influence benthic communitystructure by reducing the abundance of sessile and/or tubiculous benthos. Key words: marine benthos, eastern Baffin Island, fiords, continental shelf, zoogeography, ecology RfiSUMfi. Trente-huit invedbrts marins, y compris des mollusques, des khinodermes, des polychhtes et divers taxons mineurs ont
    [Show full text]
  • Ocean Current
    Ocean current Ocean current is the general horizontal movement of a body of ocean water, generated by various factors, such as earth's rotation, wind, temperature, salinity, tides etc. These movements are occurring on permanent, semi- permanent or seasonal basis. Knowledge of ocean currents is essential in reducing costs of shipping, as efficient use of ocean current reduces fuel costs. Ocean currents are also important for marine lives, as well as these are required for maritime study. Ocean currents are measured in Sverdrup with the symbol Sv, where 1 Sv is equivalent to a volume flow rate of 106 cubic meters per second (0.001 km³/s, or about 264 million U.S. gallons per second). On the other hand, current direction is called set and speed is called drift. Causes of ocean current are a complex method and not yet fully understood. Many factors are involved and in most cases more than one factor is contributing to form any particular current. Among the many factors, main generating factors of ocean current are wind force and gradient force. Current caused by wind force: Wind has a tendency to drag the uppermost layer of ocean water in the direction, towards it is blowing. As well as wind piles up the ocean water in the wind blowing direction, which also causes to move the ocean. Lower layers of water also move due to friction with upper layer, though with increasing depth, the speed of the wind-induced current becomes progressively less. As soon as any motion is started, then the Coriolis force (effect of earth’s rotation) also starts working and this Coriolis force causes the water to move to the right in the northern hemisphere and to the left in the southern hemisphere.
    [Show full text]
  • Evaluation of Environmental Information for the Unimak Pass Area, Alaska
    EVALUATION OF ENVIRONMENTAL INFORMATION FOR THE UNIMAK PASS AREA, ALASKA Edited by Joe C. Truett and Peter C. Craig LGL Ecological Research Associates, Inc. 1410 Cavitt Street Bryan, Texas 77801 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 677 December 1986 1 ACKNOWLEDGMENTS This study was funded by the Minerals Management Service, Department of the Interior, through an Interagency Agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environmental Assessment Program. The financial support of the Minerals Management Service (MMS) of the Department of the Interior is gratefully acknowledged. Individuals of the National Oceanic and Atmospheric Administration (NOAA) of the Depart- ment of Commerce in Anchorage, Alaska, were extremely supportive through- out the preparation of this report. Paul Becker, NOAA’s contracting officer’s technical representative, was particularly helpful and understanding; his support is very much appreciated. During this project, contact was made with a large number of scientists wh O provided information and interpretations that have benefited this report. We would specifically like to acknowledge the contributions of: Paul Anderson, National Marine Fisheries Service (NMFS) Richard Bakkala, Northwest and Alaska Fisheries Center (NWAFC) Jim Blackburn, Alaska Department of Fish and Game (ADFG) Richard Dugdale, University of Southern California Kathy Frost, ADFG Steve Hoag, International Pacific Halibut Commission Pat Holmes, ADFG John Kelly, University of Alaska Larry Malloy, ADFG Bob Otto, NMFS Sherry Pearson, NMFS Lael Ronholt, NWAFC James Schumacher, NOAA Pacific Marine and Environmental Lab Arnie Shaul, ADFG Art Sowls, U.S. Fish and Wildlife Service (USFWS) Marilyn Dahlheim, NMFS Anthony DeGange, USFWS Doug Forsell, USFWS 3 TABLE Ol? CONTENTS Page ACKNOWLEDGMENT S .
    [Show full text]
  • The Long and Dangerous Road to the Sargasso Sea
    Downloaded from orbit.dtu.dk on: Dec 18, 2017 Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea Righton, David; Westerberg, H.; Feunteun, E.; Okland, F.; Gargan, P.; Amilhat, E.; Metcalfe, J.; Lobon- Cervia, J.; Sjöberg, N.; Simon, J.; Acou, A.; Vedor, M.; Walker, A.; Trancart, T.; Brämick, U.; Aarestrup, Kim Published in: Science Advances Link to article, DOI: 10.1126/sciadv.1501694 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Righton, D., Westerberg, H., Feunteun, E., Okland, F., Gargan, P., Amilhat, E., ... Aarestrup, K. (2016). Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Science Advances, 2(10), [e1501694]. DOI: 10.1126/sciadv.1501694 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Baffin Island and West Greenland Current Systems in Northern Baffin
    Progress in Oceanography xxx (2014) xxx–xxx Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Baffin Island and West Greenland Current Systems in northern Baffin Bay a, b c Andreas Münchow ⇑, Kelly K. Falkner , Humfrey Melling a College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716, USA b National Science Foundation, Arlington, VA, USA c Institute of Ocean Sciences, Sidney, British Columbia, Canada article info abstract Article history: Temperature, salinity, and direct velocity observations from northern Baffin Bay are presented from a Available online xxxx summer 2003 survey. The data reveal interactions between fresh and cold Arctic waters advected southward along Baffin Island and salty and warm Atlantic waters advected northward along western Keywords: Greenland. Geostrophic currents estimated from hydrography are compared to measured ocean currents Circulation above 600 m depth. The Baffin Island Current is well constrained by the geostrophic thermal wind rela- Arctic tion, but the West Greenland Current is not. Furthermore, both currents are better described as current Geostrophy systems that contain multiple velocity cores and eddies. We describe a surface-intensified Baffin Island Baffin Bay Current seaward of the continental slope off Canada and a bottom-intensified West Greenland Current Greenland over the continental slope off Greenland. Acoustic Doppler current profiler observations suggest that 6 3 1 the West Greenland Current System advected about 3.8 ± 0.27 Sv (Sv = 10 m sÀ ) towards the north- west at this time. The most prominent features were a surface intensified coastal current advecting 0.5 Sv and a bottom intensified slope current advecting about 2.5 Sv in the same direction.
    [Show full text]
  • A Review of the Impact of Seismic Survey Noise on Narwhal and Other
    A Review of the Impact of Seismic Survey Noise on Narwhal & other Arctic Cetaceans Report prepared for Greenpeace Nordic by Marine Conservation Research Ltd. Prepared by Cucknell, A-C., Boisseau, O., Moscrop, A. May 2015 1 Contents Executive Summary ................................................................................................................................ 7 Glossary of terms relating to seismic testing ........................................................................................ 10 1. Introduction .................................................................................................................................. 12 2. Seismic testing that will be conducted in Canadian waters of Baffin Bay in 2015 ....................... 16 Summary ....................................................................................................................................... 16 2.1 General background and information .................................................................................. 16 2.2 Brief description of the seismic program .............................................................................. 17 2.3 Seismic data acquisition: ....................................................................................................... 18 2.4 Seismic and support vessel operations: ................................................................................ 19 2.5 NEB’s Environmental Assessment Report ............................................................................
    [Show full text]
  • Warming of the Polar Water Layer in Disko Bay and Potential Impact on Jakobshavn Isbrae
    DECEMBER 2013 M Y E R S A N D R I B E R GAARD 2629 Warming of the Polar Water Layer in Disko Bay and Potential Impact on Jakobshavn Isbrae PAUL G. MYERS Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada MADS H. RIBERGAARD Centre for Ocean and Ice, Danish Meteorological Institute, Copenhagen, Denmark (Manuscript received 15 March 2012, in final form 16 August 2013) ABSTRACT A number of recent studies have shown enhanced retreat of tidewater glaciers over much of southern and western Greenland. One of the fastest retreats has occurred at Jakobshavn Isbrae, with the rapid retreat linked to the arrival of relatively warm and saline Irminger water along the west coast of Greenland. Similar links to changes in ocean water masses on the coastal shelf of Greenland were also seen on the east coast. This study presents hydrographic data from Disko Bay, additionally revealing that there was also a significant warming of the cold polar water entering Disko Bay from the mid-to-late 1990s onward. This layer, which lies at a depth of ;30–200 m, warmed by 18–28C. The heat content of the polar water layer increased by a factor of 3.6 for the post-1997 period compared to the period prior to 1990. The heat content in the west Greenland Irminger water layer between the same periods increased only by a factor of 2, but contained more total heat. The authors suggest that the changes in the polar water layer are related to circulation changes in Baffin Bay.
    [Show full text]