Fluid Flow and Al Transport During Quartz-Kyanite Vein Formation, Unst
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elimination of Ferric Ion Effect on Separation Between Kyanite and Quartz Using Citric Acid As Regulator
minerals Article Elimination of Ferric Ion Effect on Separation between Kyanite and Quartz Using Citric Acid as Regulator Yanping Niu 1, Ya Li 1, Haoran Sun 2,*, Chuanyao Sun 3, Wanzhong Yin 2 and Hongfeng Xu 4 1 Heilongjiang Province Geology Ore Test and Application Institute, Harbin 150000, China; [email protected] (Y.N.); [email protected] (Y.L.) 2 College of Resources and Civil Engineering, Northeastern University, Shenyang 110816, China; [email protected] 3 State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing 100160, China; [email protected] 4 Heilongjiang Mining Group Co., Ltd., Harbin 150000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-188-4250-4743 Abstract: Ferric ions produced during grinding influence the flotation separation between kyanite and quartz adversely. In this study, citric acid was used as a regulator to eliminate the effect of ferric ions on the separation of kyanite from quartz with sodium oleate (NaOL) as a collector. The microflotation test results indicated that the quartz was selectively activated by FeCl3 and maintained significant quartz recovery. However, the citric acid could selectively eliminate the effect of ferric ions on the quartz and minimally influenced the kyanite. Contact angle tests demonstrated that FeCl significantly increased the interaction between NaOL and quartz, resulting in the high 3 hydrophobicity of quartz, and the addition of citric acid made the quartz surface hydrophilic again but slightly influenced the kyanite. Fourier-transform infrared spectroscopy showed that FeCl Citation: Niu, Y.; Li, Y.; Sun, H.; Sun, 3 C.; Yin, W.; Xu, H. Elimination of facilitated NaOL adsorption onto the quartz surface, and the addition of citric acid eliminated the Ferric Ion Effect on Separation activation of FeCl3 on the quartz, resulting in the nonadsorption of NaOL onto the quartz surface. -
Some Uncommon Sapphire “Imitations”: Blue Co-Zirconia, Kyanite & Blue Dumortierite Dr Michael S
Some Uncommon Sapphire “Imitations”: Blue Co-zirconia, Kyanite & Blue Dumortierite Dr Michael S. Krzemnicki Swiss Gemmological Institute SSEF [email protected] 筆者滙報數個瑞士珠寶研究院(SSEF)近期收到 in the ring showed a negative RI reading 要求鑑證的藍色寶石,經檢測後確定其中包括 (above 1.79), an isotropic optical character 一些非常罕見的藍寶石模擬石:含錮氧化鋯、 (polariscope) and thus no pleochroism at all. 藍晶石及藍線石等。 Under the microscope, we saw no inclusions, however a slightly greenish reaction under Sapphires are among the most abundant gems the LWSW and there was a weaker similar we receive at the Swiss Gemmological Institute reaction under SWUV lamps. Based on these (SSEF) for testing. From time to time, however, properties and a chemical analysis by X-ray we are quite surprised by the imitations which fluorescence (EDXRF), the blue stone was we find among the goods sent in and this can readily identified as cubic zirconia (ZrO2). then be disappointing news for the clients. In Having seen this artificial product in a wide the following short note, the author presents a range of colours, the author had not previously few uncommon imitations identified recently at seen one of such a saturated and attractive the SSEF. Identification of these imitations is blue. Based on literature (Nassau 1981) the straightforward and should be no problem for analysed traces of cobalt in that stone have any experienced gemmologist. been identified as the colouring element in this specimen. The absorption spectrum of the stone The first case is that of an attractive blue (Fig. 2) – although superposed by several rare faceted stone of approximately 1.4 ct, set in a ring with diamonds (Fig. -
Metamorphic and Metasomatic Kyanite-Bearing Mineral
Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Trebus, Marie Bitte, Benjamin Rondeau, Constantinos Mavrogonatos, Ian Graham, Marius Etienne, et al. To cite this version: Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Tre- bus, et al.. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals, MDPI, 2019, 10.3390/min9040252. hal-02932247 HAL Id: hal-02932247 https://hal.archives-ouvertes.fr/hal-02932247 Submitted on 7 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. minerals Article Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola 1,* , Panagiotis Voudouris 2 , Aurélien Eglinger 1, Christophe Scheffer 1,3, Kimberly Trebus 1, Marie Bitte 1, Benjamin Rondeau 4 , Constantinos Mavrogonatos 2 , Ian Graham 5, Marius Etienne 1 and Chantal Peiffert -
Barite (Barium)
Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 -
Session 151 2008 – 09
PROCEEDINGS OF THE GEOLOGICAL SOCIETY OF GLASGOW Session 151 2008 – 09 1 SESSION 151 (2008 – 2009) Members of Council 2 Reports President 3 Membership 4 Library 4 Scottish Journal of Geology 5 Website 6 Publications 7 Strathclyde RIGS Group 7 Proceedings 10 Treasurer 10 Meetings Secretary’s report 13 Lectures 14 Members’ Night 18 Excursions Secretaries’ Reports 19 Spireslack and Garpel Burn, 25 April 20 Rouken Glen, 7 May 23 Bathgate Hills, 16 May 24 Highland Border Slate Quarries, 6 June 26 Ballantrae – Metamorphics, 11 July 28 Isle of Bute, east coast, 15 Aug 32 Isle of Gigha, 18 – 21 Sept 34 General Information 40 Intimations 40 2 SESSION 151 (2008– 2009) Members of Council President Dr Alan W. Owen Vice Presidents Dr Chris J. Burton Mr Mervyn H. Aiken vacancy Honorary Secretary Dr Iain Allison Treasurer Mr Michael J. Pell Membership Secretary Dr Robin A. Painter Minutes Secretary Mrs Margaret L. Greene Meetings Secretary Dr Jim Morrison Publications Miss Muriel Alexander Librarian Dr Chris J. Burton Asst Librarian & Hon Archivist Mrs Seonaid Leishman Proceedings Editor Miss Margaret Donnelly Publicity Dr Neil D.L.Clark (web) Dr R. A. Painter (meetings etc) Excursion Secretaries Mr Jim Martin (Saturdays) Mr David McCulloch (Residential) Strathclyde RIGS Chairperson Mr Stuart Fairley Rockwatch Representative Ms Katerina Braun Junior Member Mr. Robert Jamieson Journal Editors Dr Colin J.R. Braithwaite Dr Brian Bell Ordinary Members Mrs Barbara Balfour Dr Simon Cuthbert Dr Tim Dempster Mr Charles M. Leslie Mr Robert McNicol Mrs Margaret Rollo Independent Examiner Mrs Beth Diamond 3 PRESIDENT Membership of the Society has shown an encouraging rise to 390, reversing the trend of recent years. -
KYANITE Al2sio5 a Common Metamorphic Mineral Found Primarily in Regionally Metamorphosed Intermediate-Grade Rocks Derived from Shales
KYANITE Al2SiO5 A common metamorphic mineral found primarily in regionally metamorphosed intermediate-grade rocks derived from shales. It is less common in some veins and pegmatites. Kyanite is very rare in Michigan. It sometimes occurs as a detrital accessory mineral in glacial sands. Northern and Southern Peninsulas. Genesee County: SW ¼ NW ¼ section 6, T8N, R7E: As a detrital accessory in glacial lake sand in a water well (Stewart, 1937). Iron County: The Lake Ellen kimberlite, SW ¼ section 27, T44N, R31W, contains a variety of megacrysts, xenocrysts, and xenoliths (Cannon and Mudrey, 1981; McGee and Hearn, 1983; McGee, 1984; Hearn and McGee, 1985). About 85% of the upper mantle xenoliths collected are eclogites with granulitic textures. Most of these contain only garnet, clinopyroxene, and rutile, but some also have kyanite + sanidine + corundum + sulfides. The very pale blue-to-white kyanite is in 1 mm blades. In one specimen these have a subparallel orientation. An analysis is given in McGee and Hearn (1983). The presence of kyanite in the eclogite xenoliths indicates pressures were at least 18 to 20 kb (kimberlite). Marquette County: Champion mine on 36th level drift. Sky-blue kyanite has been reported in association with coarse, massive andalusite, and orthoclase, muscovite, quartz, biotite, and chlorite (Babcock, 1966a, b). At least one such specimen, however, has been shown by X-ray diffraction to be blue corundum (q.v.). Menominee County: Site 73 kimberlite, north of Hermansville: Small pale blue kyanite crystals have been recovered from heavy mineral concentrates produced from this kimberlite (S. M. Carlson, written communication, 1997). FROM: Robinson, G.W., 2004 Mineralogy of Michigan by E.W. -
The Dalradian Rocks of the North-East Grampian Highlands of Scotland
Revised Manuscript 8/7/12 Click here to view linked References 1 2 3 4 5 The Dalradian rocks of the north-east Grampian 6 7 Highlands of Scotland 8 9 D. Stephenson, J.R. Mendum, D.J. Fettes, C.G. Smith, D. Gould, 10 11 P.W.G. Tanner and R.A. Smith 12 13 * David Stephenson British Geological Survey, Murchison House, 14 West Mains Road, Edinburgh EH9 3LA. 15 [email protected] 16 0131 650 0323 17 John R. Mendum British Geological Survey, Murchison House, West 18 Mains Road, Edinburgh EH9 3LA. 19 Douglas J. Fettes British Geological Survey, Murchison House, West 20 Mains Road, Edinburgh EH9 3LA. 21 C. Graham Smith Border Geo-Science, 1 Caplaw Way, Penicuik, 22 Midlothian EH26 9JE; formerly British Geological Survey, Edinburgh. 23 David Gould formerly British Geological Survey, Edinburgh. 24 P.W. Geoff Tanner Department of Geographical and Earth Sciences, 25 University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow 26 27 G12 8QQ. 28 Richard A. Smith formerly British Geological Survey, Edinburgh. 29 30 * Corresponding author 31 32 Keywords: 33 Geological Conservation Review 34 North-east Grampian Highlands 35 Dalradian Supergroup 36 Lithostratigraphy 37 Structural geology 38 Metamorphism 39 40 41 ABSTRACT 42 43 The North-east Grampian Highlands, as described here, are bounded 44 to the north-west by the Grampian Group outcrop of the Northern 45 Grampian Highlands and to the south by the Southern Highland Group 46 outcrop in the Highland Border region. The Dalradian succession 47 therefore encompasses the whole of the Appin and Argyll groups, but 48 also includes an extensive outlier of Southern Highland Group 49 strata in the north of the region. -
Petrography of Metalimestones and Metadolostones from the Dalradian of Northern Ireland Natural Environment Research Council
Petrography of metalimestones and metadolostones from the Dalradian of Northern Ireland Natural Environment Research Council British Geological Survey Onshore Geology Series TECHNICAL REPORT WA/00/72 Petrography of metalimestones and metadolostones from the Argyll and Southern Highland groups, Dalradian, Northern Ireland Christopher W Thomas December 2000 Contributors: M R Cooper and T P Johnston (Geological Survey of Northern Ireland) Geographical Index Northern Ireland Subject Index Petrography, Dalradian geology, metacarbonate rocks Bibliographic reference Thomas, C W. 2000 Petrography of metalimestones and metadolostones from the Argyll and Southern Highland groups, Dalradian, Northern Ireland. British Geological Survey Technical Report WA/00/72 © NERC copyright 2000 British Geological Survey, Edinburgh 2000 BGS Technical Report WA/00/72 Status: 16 January 2001 The full range of Survey publications is available Parent Body through the Sales Desks at Keyworth and at Natural Environment Research Council Murchison House, Edinburgh, and in the BGS London Polaris House, North Star Avenue, Information Office in the Natural History Museum Swindon, Wiltshire, SN2 I EU. Earth Galleries. The adjacent bookshop stocks the Telephone 01793 411500 more popular books for sale over the counter. Most Fax 01793 411501 BGS books and reports are listed in HMSO's Sectional List 45, and can be bought from HMSO and through HMSO agents and retailers. Maps are listed in the Kingsley Dunham Centre BGS Map Catalogue, and can be bought from Keyworth, Nottingham, NG 12 5GG. Ordnance Survey agents as well as from BGS. Telephone 0115 936 3100 Fax 0115 936 3200 The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the Murchison House, West Mains Road, government of Northern Ireland), and of the Edinburgh, EH9 3LA. -
Singapore Tariff Schedule
Annex 2C Tariff Schedule of Singapore See General Notes to Annex 2C for an explanation of staging codes Staging Heading H.S. Code Description Base Rates Category Chapter 1 Live animals 01.01 Live horses, asses, mules and hinnies. 0101.10.00 - Pure-bred breeding animals Free E 0101.90 - Other: 0101.90.10 - - Race horses Free E 0101.90.20 - - Other horses Free E 0101.90.90 - - Other Free E 01.02 Live bovine animals. 0102.10.00 - Pure-bred breeding animals Free E 0102.90 - Other: 0102.90.10 - - Oxen Free E 0102.90.20 - - Buffaloes Free E 0102.90.90 - - Other Free E 01.03 Live swine. 0103.10.00 - Pure-bred breeding animals Free E - Other: 0103.91.00 - - Weighing less than 50 kg Free E 0103.92.00 - - Weighing 50 kg or more Free E 01.04 Live sheep and goats. 0104.10 - Sheep: 0104.10.10 - - Pure-bred breeding Free E 0104.10.90 - - Other Free E 0104.20 - Goats: 0104.20.10 - - Pure-bred breeding animals Free E 0104.20.90 - - Other Free E Live poultry, that is to say, fowls of the species Gallus domesticus, 01.05 ducks, geese, turkeys and guinea fowls. - Weighing not more than 185 g: 0105.11 - Fowls of the species Gallus domesticus: 0105.11.10 - - - Breeding fowls Free E 0105.11.90 - - - Other Free E 0105.12 - - Turkeys: 0105.12.10 - - - Breeding turkeys Free E 0105.12.90 - - - Other Free E 0105.19 - - Other: 0105.19.10 - - - Breeding ducklings Free E 0105.19.20 - - - Other ducklings Free E 0105.19.30 - - - Breeding goslings Free E 0105.19.40 - - - Other goslings Free E 0105.19.50 - - - Breeding guinea fowls Free E 0105.19.90 - - - Other Free E - Other: 2C-Schedule-1 Staging Heading H.S. -
Kyanite-, Staurolite-, and Garnet-Bearing Schists in the Setters Formation, Maryland Piedmont
GEORGE W. FISHER Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218 Kyanite-, Staurolite-, and Garnet-Bearing Schists in the Setters Formation, Maryland Piedmont ABSTRACT The (Setters Formation) is a fine-grained, somewhat saccharoidal, thin bedded rock of white or cream color Reconnaissance studies of the Setters Forma- in its typical development along Setters ridge ... the tion, the basal unit of the Glenarm Series, con- beds are usually separated by thin films of muscovite or firm early reports that kyanite, Staurolite, and sericite in small sparkling flakes. On the (bedding planes) are black tourmalines . locally the rock may become abundant garnets occur in the schists at the top very vitreous and massive ... at other times the rock of the formation, and refute recent statements becomes more argillaceous, with a development of to the contrary. Kyanite, Staurolite, and garnets (and) Staurolite. garnet are most abundant in the Setters schist north of Texas, Maryland. South of that point, Similarly, Mathews and Miller (1905, p. 355) the schist contains little or no kyanite or state that part of the Setters at the east end of Staurolite, and only rare garnet, possibly re- the Towson Dome is unlike that at the type flecting a change in sedimentary facies. locality, and it "shows the development of more mica with accessory garnets and oc- INTRODUCTION casional cyanite." The Setters Formation is the basal formation Miller (1905) mapped these aluminous of the Glenarm Series, a thick sequence of late schists as an informal pseudo-Wissahickon Precambrian or early Paleozoic metasediments schist member of the Setters, and showed that which underlies much of the Maryland they were confined to the upper part of the Piedmont (Fig. -
Western Scotland
Soil Survey of Scotland WESTERN SCOTLAND 1:250 000 SHEET 4 The Macaulay Institute for Soil Research Aberdeen 1982 SOIL SURVEY OF SCOTLAND Soil and Land Capability for Agriculture WESTERN SCOTLAND By J. S. Bibby, BSc, G. Hudson, BSc and D. J. Henderson, BSc with contributions from C. G. B. Campbell, BSc, W. Towers, BSc and G. G. Wright, BSc The Macaulay Institute for Soil Rescarch Aberdeen 1982 @ The Macaulay Institute for Soil Research, Aberdeen, 1982 The couer zllustralion is of Ardmucknish Bay, Benderloch and the hzlk of Lorn, Argyll ISBN 0 7084 0222 4 PRINTED IN GREAT BRITAIN AT THE UNIVERSITY PRESS ABERDEEN Contents Chapter Page PREFACE vii ACKNOWLEDGE~MENTS ix 1 DESCRIPTIONOF THEAREA 1 Geology, landforms and parent materials 2 Climate 12 Soils 18 Principal soil trends 20 Soil classification 23 Vegetation 28 2 THESOIL MAP UNITS 34 The associations and map units 34 The Alluvial Soils 34 The Organic Soils 34 The Aberlour Association 38 The Arkaig Association 40 The Balrownie Association 47 The Berriedale Association 48 The BraemorelKinsteary Associations 49 The Corby/Boyndie/Dinnet Associations 49 The Corriebreck Association 52 The Countesswells/Dalbeattie/PriestlawAssociations 54 The Darleith/Kirktonmoor Associations 58 The Deecastle Association 62 The Durnhill Association 63 The Foudland Association 66 The Fraserburgh Association 69 The Gourdie/Callander/Strathfinella Associations 70 The Gruline Association 71 The Hatton/Tomintoul/Kessock Associations 72 The Inchkenneth Association 73 The Inchnadamph Association 75 ... 111 CONTENTS -
Kyanite Petrogenesis in Migmatites: Resolving Melting and Metamorphic Signatures This Manuscript Has Been Submitted for Publicat
Kyanite petrogenesis in migmatites: Resolving melting and metamorphic signatures Stacy E. Phillips1,2*, Tom W. Argles1, Clare J. Warren1, Nigel B.W. Harris1, Barbara E. Kunz1 1School of Earth, Environment and Ecosystems Sciences, The Open University, Milton Keynes MK7 6AA, UK 2Current address: Department of Geography, Geology and Environment, University of Hull, Hull, HU6 7RX, UK Keywords: Kyanite, Migmatite, Trace elements, LA-ICP-MS, Cathodoluminescence *Feel free to contact lead author with any comments or feedback via email: [email protected], or on Twitter: @Shtacy_Phillips This manuscript has been submitted for publication in Contributions to Mineralogy and Petrology. This manuscript has not undergone peer review. Subsequent versions of this manuscript may have revised content. If accepted, the final version of this manuscript will be available via the ‘Peer-reviewed Publication DOI’ link on the right- hand side of this webpage. Please feel free to contact any of the authors; we welcome feedback. Non-peer reviewed EarthArXiv preprint (submitted to Contributions to Mineralogy and Petrology) Kyanite petrogenesis in migmatites: Resolving melting and metamorphic signatures Stacy E. Phillips1,2*, Tom W. Argles1, Clare J. Warren1, Nigel B.W. Harris1, Barbara E. Kunz1 1School of Earth, Environment and Ecosystems Sciences, The Open University, Milton Keynes MK7 6AA, UK 2Current address: Department of Geography, Geology and Environment, University of Hull, Hull, HU6 7RX, UK *Corresponding author: [email protected] Keywords: Kyanite, Migmatite, Trace elements, LA-ICP-MS, Cathodoluminescence Abstract Aluminosilicates (kyanite, sillimanite and andalusite) are useful pressure-temperature (P-T) indicators that can form in a range of rock types through different mineral reactions, including those that involve partial melting.