Drugs Containing Carbohydrates and Derived Products 161

Total Page:16

File Type:pdf, Size:1020Kb

Drugs Containing Carbohydrates and Derived Products 161 Drugs Containing CHAPTER Carbohydrates and Derived Products 14 14.1. INTRODUCTION importance is the fact that sugars unites with a wide variety of other compounds to form glycosides and secondary Carbohydrates, as the name suggest, were defined as a metabolites. Mucilage, as found in marshmallow root and group of compounds composed of carbon, hydrogen and psyllium seeds, act as water-retaining vehicles, where as oxygen in which the latter two elements are in the same gums and mucilage, which are similar in composition and proportion as in water and were expressed by a formula properties, are formed in the plant by injury or stress and (CH O) , that is, hydrates of carbon. 2 n usually appear as solidified exudates; both are typically The term ‘carbohydrates’ arose from the mistaken belief that substances of this kind were hydrates of carbon, composed of uronic acid and sugar units. The cell walls because the molecular formula of many substances could of the brown seaweeds and the middle lamellae of higher be expressed in the form C (H O) , for example, glucose plant tissues contain polysaccharides consisting almost X 2 Y entirely of uronic acid components. (C6 H12 O6), sucrose (C12 H22 O11), etc. In these examples, the hydrogen and oxygen are present in the same ratio Low molecular weight carbohydrates are crystalline, as in water. But this definition has certain drawbacks as soluble in water and sweet in taste, for example, glucose, given below: fructose, sucrose, etc. The high molecular weight carbo- It should be kept in mind that all organic compounds hydrates (polymers) are amorphous, tasteless and relatively containing hydrogen and oxygen in the proportion less soluble in water, for example, starch, cellulose, inulin, found in water are not carbohydrates. For example, etc. formaldehyde HCHO for the present purpose written 14.2. CLASSIFICATION as C(H2O); acetic acid CH3COOH written as C3(H2O)2; and lactic acid CH3CHOHCOOH written as C3(H2O)3 are not carbohydrates. Carbohydrates Also, a large number of carbohydrates such as rhamnose (C6H12O5), cymarose (C7H14O4), digitoxose (C6H12O4), etc., are known which do not contain the usual propor- tions of hydrogen to oxygen. Simple sugar (Saccharides) Polysaccharides Finally, certain carbohydrates are also known which contain nitrogen or sulphur in addition to carbon, hydro- gen and oxygen. From the above discussion, it can be concluded that Monosaccharides Disaccharides Trisaccharides Tetrasaccharides the definitions described above are not correct; however, carbohydrates are now defined chemically as polyhydroxy aldehyde or polyhydroxy ketones or compound that on Monosaccharides hydrolyses produce either of the above. The term ‘monosaccharides’ is employed for such sugars Carbohydrates are among the first products to arise as a that on hydrolysis yield no further, lower sugars. The result of photosynthesis. They constitute a large proportion general formula of monosaccharides is Cn H2n On. The of the plant biomass and are responsible, as cellulose, for monosaccharides are subdivided as bioses, trioses, tetroses, the rigid cellular framework and, as starch, for providing pentoses, hexoses, heptoses, depending upon the number an important food reserve. Of special pharmacognostical of carbon atoms they possess. Chapter-14.indd 159 10/12/2009 5:08:30 PM 160 TEXTBOOK OF PHARMACOGNOSY AND PHYTOCHEMISTRY Bioses and are rarely found accumulated in plants, for example, They contain two carbon atoms. They do not occur free glucoheptose and manoheptose. in nature. Disaccharides Trioses They contain three carbon atoms, but in the form of phos- Carbohydrates, which upon hydrolysis yield two molecules phoric esters, for example, glyceraldehydes. of monosaccharides, are called as disaccharides. Tetroses Sucrose Hydrolysis Glucose + fructose (sugarcane) They contain four carbon atoms, for example, erythrose, threose, etc. Maltose Hydrolysis Glucose + Glucose (malt sugar) H O H O Lactose Hydrolysis Glucose + Galactose (cow’s milk) H O C C C H C OH HO C H H C OH H C OH H C OH Trisaccharides CH OH 2 CH OH CH OH D -(+)-glyceraldehyde 2 2 As the name indicates, these liberate three molecules of D -(-)-erythrose D -(-)-threose monosaccharides on hydrolysis. Pentoses Raffinose Hydrolysis Glucose + fructose + galactose (in beet) (sugarcane) They are very common in plants and are the products of Gentianose Hydrolysis Glucose + Glucose + fructose hydrolysis of polysaccharides like hamicelluloses, mucilages (gentian roots) and gums, for example, ribose, arabinose and xylose. Tetrasaccharides H O H O H O C C C Stachyose, a tetrasaccharide, yields on hydrolysis, four H C OH HO C H H C OH molecules of monosaccharide, found in manna. H C OH H C OH HO C H H C OH H C OH H C OH Polysaccharides CH OH CH2 OH CH2 OH 2 On hydrolysis they give an indefinite number of mono- D -(-)-ribose D -(-)-arabinose D -(+)-xylose saccharides. By condensation, with the elimination of water, polysaccharides are produced from monosaccharides. Hexoses Depending upon the type of product of hydrolysis these They are monosaccharides containing six carbon atoms and are further classified as Pentosans and Hexosans. Xylan are abundantly available carbohydrates of plant kingdom. is pentosan, whereas starch, insulin and cellulose are the They are further divided into two types: aldoses and ketoses. examples of hexosans. β They may be obtained by hydrolysis of polysaccharides like Cellulose is composed of glucose units joined by -1, 4 starch, insulin, etc. linkages, whereas starch contains glucose units connected with α- 1, 4 and α- 1, 6 units. Polyuronides, gums and Aldoses : Glucose, mannose, galactose mucilages are the other pharmaceutically important poly- Ketoses : Fructose and sorbose saccharide derivatives. H O H O H O OH OH C C C CH OH 2 CH 2 OH CH2 OH O O HO O O HO O H C OH HO C H H C OH C O HO O O HO O O HO H CH OH HO CH OH HO C H HO C H 2 H 2 HO C OH HO C H OH OH CH OH CH OH H C OH H C OH HO C H H C OH O 2 O HO O 2 O HO O HO O O HO O O H C OH H C OH H C OH H C OH HO HO H CH2 OH H CH2 OH CH OH CH OH CH OH CH2 OH 2 2 2 D -(+)-glucose D -(+)-mannose D -(+)-galactose D -(-)-fructose Cellulose β-1, 4 linkages Heptoses 14.3. TESTS FOR CARBOHYDRATES They contain seven carbon atoms, vitally important in the The following are some of the more useful tests for sugars photosynthesis of plant and glucose metabolism of animals and other carbohydrates. Chapter-14.indd 160 10/12/2009 5:08:30 PM DRUGS CONTAINING CARBOHYDRATES AND DERIVED PRODUCTS 161 Reduction of Fehling’s Solution test tube. The bottom of the test tube is heated for 30–60s. A pink or red stain appears on the reagent paper. To the solution of carbohydrate, equal quantity of Fehling’s solutions A and B is added. After heating, brick red pre- 14.4. BIOSYNTHESIS OF cipitate is obtained. CARBOHYDRATES Molisch Test Production of Monosaccharides by The test is positive with soluble as well as insoluble car- bohydrates. It consists of treating the compounds with Photosynthesis α-naphthol and concentrated sulphuric acid which gives Carbohydrates are products of photosynthesis, a biologic purple colour. With a soluble carbohydrate this appears process that converts electromagnetic energy into chemical as a ring if the sulphuric acid is gently poured in to form energy. In the green plant, photosynthesis consists of two a layer below the aqueous solution. With an insoluble, classes of reactions. One class comprises the so-called light carbohydrate such as cotton wool (cellulose), the colour reactions that actually convert electromagnetic energy into will not appear until the acid layer is shaken to bring it in chemical potential. The other class consists of the enzymatic contact with the material. reactions that utilize the en ergy from the light reactions to fix carbon dioxide into sugar. These are referred to as the dark Osazone Formation reactions. The results of both of these types of reactions are most simply summarized in the following equation: Osazones are sugar derivatives formed by heating a sugar chlorophyll solution with phenylhydrazine hydrochloride, sodium 2H O + CO + light (CH O) + H O + O acetate and acetic acid. If the yellow crystals which form 2 2 2 2 2 are examined under the microscope they are sufficiently Although this equation summarizes the overall rela- characteristic for certain sugars to be identified. It should tionships of the reactants and products, it gives no clue be noted that glucose and fructose form the same osazone as to the nature of the chemical intermediates involved (glucosazone, m.p. 205°C). Before melting points are taken, in the process. The elucidation of the reactions by which osazones should be purified by recrystalization from alcohol. carbon dioxide is accepted into an organic compound and Sucrose does not form an osazone, but under the condi- ultimately into sugars with regeneration of the carbon tions of the above test sufficient hydrolysis takes place for dioxide acceptor was a major achievement in biosynthetic the production of glucosazone. research. The pathway of carbon in photosynthesis, as worked out primarily by Calvin and coworkers, is pre- Resorcinol Test for Ketones (Selivanoff’s Test) sented in Figure 14.1. CO A crystal of resorcinol is added to the solution and warmed 2 on a water bath with an equal volume of concentrated Metabolic pool hydrochloric acid. A rose colour is produced if a ketone is Photosynthesis present (e.g. fructose, honey or hydrolysed inulin). Pyruvate ATP Test for Pentoses Glucose Glucose-6-phosphate Heat a solution of the substance in a test tube with an equal volume of hydrochloric acid containing a little phloroglu- Monosaccharides Hexose-6-phosphate cinol.
Recommended publications
  • Traditional Medicine
    MINISTRY OF HEALTH DEPARTMENT OF MEDICAL RESEARCH (LOWER MYANMAR) -4 rf,"d .1, l,.ifr M '\t $.,iJ+j AI{I{OTATED BIBLIOGRAPHY OF TRADITIOI{AL MEDTCII\E RESEARCH CARRTED OUT AT DMR (LM) nURIf{G 196s-2011 f# #a# €€# 6rdffi t u 6 l6'6 ktibilicetidiT \ &, ft Ministry of Health Department of Medical Research (Lower Myanmar) Central Biomedical Library ANNOTATED BIBLIOGRAPHY OF TRADITIONAL MEDICINE RESEARCH CARRIED OUT AT DMR (LM) DURING 1965-2011 Compiled by Cho Mar Oo BA (Economics); DipLibSc Librarian, Central Biomedical Library Staff of Central Biomedical Library May Aye Than MBBS, MMedSc (Pharmacology) Deputy Director & Head Pharmacology Research Division Staff of Pharmacology Research Division Aung Myo Min BSc (Physics); DipLibSc; RL Librarian & Head (Retd.) Central Biomedical Library Ye Htut MBBS, MSc (Medical Parasitology) (London) DLSHTM, FRCP (Edin) Deputy Director-General Myo Khin MBBS, MD (New South Wales), DCH, FRCP (Edin) Acting Director General PREFACE Throughout recorded history, people of various cultures have relied on traditional medicine. Worldwide, only an estimated ten to thirty percent of human health care is delivered by conventional, biomedically oriented practitioners. The remaining seventy to ninety percent ranges from self-care according to folk principles, to care given in an organized health care system based on traditional medicine. Likewise, in Myanmar health care system, the existence of traditional medicine along with allopathic medicines is well recognized. Myanmar traditional medicine dates back 2,000 years and is well accepted and widely used by the people throughout history. Burma Medical Research Institute since it was established in 1963 had started a program of research on traditional medicinal plants including laboratory screening tests on animal models of herbs with reputed pharmacological properties-such as anti-dysentery, bronchodilator, hypoglycemic effects.
    [Show full text]
  • Use of Substituted Cinnamic Acid Polymers to Treat AIDS
    Europaisches Patentamt European Patent Office © Publication number: 0 544 321 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 92120293.3 mt . ci .5 :A61K 31/78 @ Date of filing: 27.11.92 ® Priority: 27.11.91 JP 337796/91 © Inventor: Konno, Kunio 1-33-3, Kakinokizaka, Meguro-ku © Date of publication of application: Tokyo(JP) 02.06.93 Bulletin 93/22 Inventor: Sakagami, Hiroshi Chigusadai Danchi 246, 33, Chigusadai, @ Designated Contracting States: Midori-ku CH DE FR GB IT LI NL SE Yokohama-shi, Kanagawa-ken(JP) Inventor: Kawazoe, Yutaka © Applicant: Konno, Kunio 5-14-14, Shimomeguro, Meguro-ku 1-33-3, Kakinokizaka, Meguro-ku Tokyo(JP) Tokyo(JP) Inventor: Yamamoto, Naoki Applicant: Sakagami, Hiroshi Haramachi Jutaka 501, 3-11, Ebisu Minami, Chigusadai Danchi 246, 33, Chigusadai, Midori-ku Shibuya-ku Yokohama-shi, Kanagawa-ken(JP) Tokyo(JP) Applicant: Kawazoe, Yutaka 5-14-14, Shimomeguro, Meguro-ku Tokyo(JP) 0 Representative: Hansen, Bernd, Dr.rer.nat. et Applicant: Yamamoto, Naoki al Haramachi Jutaka 501, 3-11, Ebisu Minami, Hoffmann, Eitle & Partner Patentanwalte Shibuya-ku Arabellastrasse 4 Postfach 81 04 20 Tokyo(JP) W-8000 Munchen 81 (DE) © Use of substituted cinnamic acid polymers to treat AIDS. © AIDS therapeutic agents are provided which are less toxic, have a strong anti-AIDS virus activity and comprise as an effective ingredient a dehydrogenation polymer of a cinnamic acid derivative having a phenyl group substituted with at least one hydroxyl group or a pharmaceutically acceptable salt thereof. CM 00 Rank Xerox (UK) Business Services (3. 10/3.6/3.3. 1) EP 0 544 321 A1 BACKGROUND OF THE INVENTION Field of the Invention 5 The present invention relates to AIDS therapeutic agents containing a dehydrogenation polymer of a substituted cinnamic acid as an effective ingredient.
    [Show full text]
  • In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
    GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone.
    [Show full text]
  • Decolorization of Glycosides
    Europaisches Patentamt 0 338 151 European Patent Office v\) Publication number: A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 88303525.5 © int. Ci.4: C07H 15/04 @ Date of filing: 19.04.88 © Date of publication of application: © Applicant: HENKEL CORPORATION 25.10.89 Bulletin 89/43 300 Brookside Avenue Ambler Pennsylvania 19002(US) © Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE @ Inventor: McDaniel, Robert S., Jr. 968 Montgomery Court Oecatur Illinois 62526(US) Inventor: McCurry, Patrick M. 3146 Lake Bluff Drive Decatur Illinois 62521 (US) Inventor: Short, Rolland W.P. 2657 Gregory Court Decatur Illinois 62526(US) Inventor: Glor, Paul R. 448 Ewing Avenue Decatur Illinois 62522(US) ©" Representative: Harle, Horst, Dr. et al c/o Henkel KGaA TFP/Patentabteilung Postfach 1100 Henkelstrasse 67 D-4000 Dusseldorf(DE) © Decolorization of glycosides. © Hydrogenation of a glycoside composition is ef- fected to reduce the color of the composition. < in CO Xerox Copy Centre EP0 338 151 A1 Decolonization of glycosides This patent deals with the decolorization of the average polysaccharide chain length exceeds glycosides which are useful as surfactants and for about 20. United States Patent 4,393,203 to Leslie other purposes. issued July 12, 1983 describes the treatment of Glycosides are known to have several uses glycosides with a wipe film evaporator to assist in including their incorporation into detergent products 5 color reduction. Rau in United States Patent as nonionic surfactants. Lower glycosides, that is 4,465,828 issued August 14, 1984 suggests using those materials having a short hydrophobic moiety hydroxy carboxylic acids to minimize color forma- attached to the saccharide backbone as later de- tion when preparing glycosides.
    [Show full text]
  • Glycosylation of Caffeic Acid and Structural Analogues Catalyzed by Novel Glucansucrases from Leuconostoc and Weissella Species
    Biocatalysis and Agricultural Biotechnology 19 (2019) 101114 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab Glycosylation of caffeic acid and structural analogues catalyzed by novel T glucansucrases from Leuconostoc and Weissella species ∗ Johannes Nolte, Alexander Kempa, Arne Schlockermann, Matthias Hochgürtel, Ulrich Schörken Faculty of Applied Natural Sciences, TH Köln-Campus Leverkusen, Chempark Leverkusen E39, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany ARTICLE INFO ABSTRACT Keywords: Twelve Leuconostoc and seven Weissella strains with extracellular glucansucrase activity were obtained from an Caffeic acid analysis of 41 lactic acid bacteria. Culture supernatants of all glucansucrase positive strains catalyzed the gly- Glucansucrase cosylation of caffeic acid with sucrose as donor substrate. Eighteen enzymes produced one major peak, which Leuconostoc was identified as caffeic acid-4′-O-α-D-monoglucoside by LC-MS and NMR spectroscopy. Only W. beninensis DSM Weissella 22752 formed significant amounts of the corresponding 3´-O-α-D-monoglucoside. The Weissella strain and five Acceptor reaction Leuconostoc strains with high glycosylation activity were selected for further studies. All glucansucrases cata- Transglycosylation lyzed the glycosylation of the catechol protocatechuic acid, a side-chain truncated analogue of caffeic acid. The Leuconostoc enzymes displayed a preference for the 4′-O-α-D isomer, while the DSM 22752 glucansucrase also produced the protocatechuic acid-3′-O-α-D-monoglucoside. Lower activities with non-catecholic caffeic acid derivatives and no activity with mono-methylated caffeic acid were observed with all glucansucrases. Time- course analyses confirmed that glucansucrase from L. citreum DSM 5577 was the most efficient biocatalyst for catechol glucosylation with yields of up to 74% caffeic acid glucosides after 24 h.
    [Show full text]
  • Cosmetic Composition Containing Polyorganosiloxane-Containing Epsilon-Polylysine Polymer, and Polyhydric Alcohol, and Production Thereof
    Europäisches Patentamt *EP001604647A1* (19) European Patent Office Office européen des brevets (11) EP 1 604 647 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: A61K 7/48, A61K 7/06, 14.12.2005 Bulletin 2005/50 A61K 7/02, C08G 81/00, C08G 77/452, C08G 77/455, (21) Application number: 05010234.2 C08L 83/10 (22) Date of filing: 11.05.2005 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Kawasaki, Yuji HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR Ibi-gun Gifu 501-0521 (JP) Designated Extension States: • Hori, Michimasa AL BA HR LV MK YU Gifu-shi Gifu 500-8286 (JP) • Yamamoto, Yuichi (30) Priority: 12.05.2004 JP 2004141778 5-1 Goikaigan Ichiharashi Chiba 290-8551 (JP) • Hiraki, Jun (71) Applicants: Tokyo 104-8555 (JP) • Ichimaru Pharcos Co., Ltd. Motosu-shi, Gifu 501-0475 (JP) (74) Representative: HOFFMANN EITLE • Chisso Corporation Patent- und Rechtsanwälte Osaka-shi, Osaka-fu 530-0005 (JP) Arabellastrasse 4 81925 München (DE) (54) Cosmetic composition containing polyorganosiloxane-containing epsilon-polylysine polymer, and polyhydric alcohol, and production thereof (57) It has been desired to develop a highly preserv- by reducing the amount of antibacterial preservative ative and antibacterial cosmetic composition that can agent to be used. easily be applied to both emulsion and non-emulsion There is provided a cosmetic composition compris- type cosmetics. It has also been desired to develop a ing one or a combination of two or more of polyorganosi- method of improving a preservative and/or antibacterial loxane-containing epsilon-polylysine compounds ob- effect(s) of a cosmetic composition comprising polyor- tained by reacting epsilon-polylysine with polyorganosi- ganosiloxane-containing epsilon-polylysine and there- loxane or a physiologically acceptable salt thereof, and polyhydric alcohol.
    [Show full text]
  • United States Patent [19] [11] Patent Number: 5,641,480 Vermeer [45] Date of Patent: Jun
    US005641480A United States Patent [19] [11] Patent Number: 5,641,480 Vermeer [45] Date of Patent: Jun. 24, 1997 [54] HAIR CARE COMPOSITIONS COMPRISING A New Family of Liquid Crystals: N-Substituted Aldona HETEROATOM CONTAINING ALKYL mides, Mol. Cryst. Liq. Cryst. 1986, vol. 135, pp. 93-110. ALDONAMIDE COMPOUNDS Molecular Packing and Hydrogen Bonding in the Crystal Structures of the N-(n-AlkyD-D-gluconarnide and the [75] Inventor: Robert Vermeer, Nutley, NJ. 1-Deoxy-(N-methyl-alkanamido)-D-glucitol Mesogens, Mol. Cryst. Liq. Cryst. 1990, vol. 185, PP - 209-213. [73] Assignee: Lever Brothers Company, Division of Conopco, Inc., New York, N.Y. Molecular Crystals and Liquid Crystals, vol. 198 (1991). Amphiphilic Properties of Synthetic Glycolipids Based on Amide Linkages, Zabel et al., Chemistry and Physics of [21] Appl. No.: 352,309 Lipids, 39 (1986) 313-327. [22] Filed: Dec. 8, 1994 Liquid-crystalline Behaviour in the N-alkyl Gluconamides and Other Related Carbohydrates, Pfanhemuller, Liquid [51] Int. (:1.6 ............................ .. A61K 7/07; A61K 7/075 Crystals, 1986, vol. 1, vol. 1, No. 4, 357-370. [52] US. Cl. ...................................... .. 424/7024; 424/701 Amphiphilic Properties of Synthetic Glycolipids Based in [58] Field of Search .............................. .. 424/701, 70.13, Amide Linkages, Makromol, Chem. 189, 2433-2442 424/7017, 70.24 (1988). [56] References Cited Molecular and Crystal Structures of N-(n-Heptyl)-and N-(n-DeCyD-D-GlycOnamide. Fahrnow et al., Carbohy U.S. PATENT DOCUMENTS drate Research 176 (1988) 165-174). 2,662,073 12/1953 Mehltretter et a1. ................. .. 536/172 Supramolecular Assemblies of Diacetylenic Aldonarnids, 2,721,211 10/1955 Frankel et al., J.
    [Show full text]
  • ~ Gerald Alan Lancaster 1968 Table of Contents
    Conversion of Coumarin to MaliloUc Acid b;r ~es Isolated fram EBeudomonas Mac 291 by Gerald Alan Lancaster, B. A. (Hm.) A thesis submitted to the Facult,y of Graduate Studieô and Research in partial ful:filment 01' the requirements for the degree of Master 01' Science. Department of Micrabiology, Macdonald College of McGill University, P.Q.. June, 1967 ~ Gerald Alan Lancaster 1968 Table of Contents Page Introduction 1 Literature Review- Biological transformations of coumarin Bigher Plants 2 Animals 6 Fungi 8 Bacteria 9 MELterials and Methode Organism 13 Source of chemicals 13 Growth of cella 13 Chromatograph;y 14 Enzyme aas~ 15 Determina. tion of protein 15 Purification of the reductase 15 Resulta Detection of enzyme activit,y 16 Ass~ for the reductase 19 Ass~ for the hydrolase 19 Purification of the reductase 19 Properties of ooumarin oxidoreductase 29 Disoussion 40 Summary 42 Bibliograph;y 43 ....-.., . @.... ,.. Aolalowledgements The author expresses his sincere thanks to Dr. A. C. Blackwood for his help and his encouragement throughout the study. Thanks are also due to the various other graduate students in the Department of Microbiology- notably Mr. Y. D. Ha.ng and Mr-. P.C. Chang for encouragement and rewarding discussions on research. Financial assistance from the MCConnell Memorial Fellowship Fun~ 18 gratefully acknowledged. lIlarobSolosr ConnnioD of ~ 1io 118111otl0 .&oid li' BD.­ IaolaW tJoII JlaeudcllODU Rao 291 eDriohed l184ia. nclucea ooumann to d~l"OOO1JIIIlrlD ,. a Yeq epecUlo JaD&OÙ40ftdi1Otaae "Moh hae 1Hteft parified .8YeftteeDottcl~ ueing JlFAF-oellulo.. ohzoœatograpJv end caloium phosphate sel at tte pH DtabiliV optlmlll of pB 6.0.
    [Show full text]
  • An Isolated Phytomolecule
    Medical Botany 5: Active compounds in plants- cont. Alkaloids • • Nitrogenous bases which are found in plants and which are commonly found in plants and which can form salts with acids. • They are present as primary, secondary, tertiary, quaternary ammonium hydrates. • Alkaloid name is given because of similarity of alkalinity. • It is usually found in plants at 0.1-10%. O In the context of an alkaloid-bearing plant, the term usually means> 0.01% alkaloid. • Alkaloid morphine first isolated from the environment (Derosne and Seguin 1803-1804, Serturner 1805) O First synthesized cone (Ladenburg 1886) O The first used striknin (Magendie 1821) • Plants often have multiple alkaloids in different amounts in similar structures. • An alkaloide can be found in more than one plant family, as well as a single plant species. • Alkaloids are usually found in plants in their own water, in the form of their salts (salts with acids such as malic acid, tartaric acid, oxalic acid, tannic acid, citric acid). • They are found in almost all parts of plants (root, crust, leaf, seed etc.) but in different amounts. This does not mean that an alkaloid will be found in all parts of a plant. Some fruits only fruit (morphine, etc., while there are poppy seeds, not in the seed), Some of them are found in leaves and flowers (not found in the seeds of nicotine tobacco plant). • Nicotine, cones, other than those without oxygen in the constructions are usually white, crystallized dust; The above two substances are liquid. • Alkaloids are almost insoluble in water as free base (atropine, morphine); Some effects of alkaloids • Alkaloids have a wide variety of effects; Some alkaloids for some effects are as follows.
    [Show full text]
  • Ep 3763419 A1
    (19) *EP003763419A1* (11) EP 3 763 419 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.01.2021 Bulletin 2021/02 A61P 3/10 (2006.01) A61K 31/155 (2006.01) A61P 9/00 (2006.01) (21) Application number: 20191580.8 (22) Date of filing: 06.01.2012 (84) Designated Contracting States: • JONES, Christopher R. G. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB San Diego, ca California 92129 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • BEELEY, Nigel R. A. PL PT RO RS SE SI SK SM TR Solana Beach, ca California 92075 (US) • FINEMAN, Mark S. (30) Priority: 07.01.2011 US 201161430914 P San Diego, CA California 92130 (US) (62) Document number(s) of the earlier application(s) in (74) Representative: Oetke, Cornelia accordance with Art. 76 EPC: Wallinger Ricker Schlotter Tostmann 12732408.5 / 2 661 266 Patent- und Rechtsanwälte Partnerschaft mbB Zweibrückenstraße 5-7 (71) Applicant: Anji Pharma (US) LLC 80331 München (DE) Boxford, MA 01921 (US) Remarks: (72) Inventors: This application was filed on 18-08-2020 as a • BARON, Alain D. divisional application to the application mentioned San Diego, ca California 92130 (US) under INID code 62. • BROWN, Martin R. Coronado, ca California 92118 (US) (54) CHEMOSENSORY RECEPTOR LIGAND-BASED THERAPIES (57) Provided herein are methods for treating condi- tions associated with a chemosensory receptor, includ- ing diabetes, obesity, and other metabolic diseases, dis- orders or conditions by administrating a composition comprising a chemosensory receptor ligand, such as a bitter receptor ligand.
    [Show full text]
  • Handbook of Herbs and Spices
    Handbook of herbs and spices Volume 2 Edited by K. V. Peter CRC Press Boca Raton Boston New York Washington, DC Cambridge England Published by Woodhead Publishing Limited, Abington Hall, Abington Cambridge CB1 6AH, England www.woodhead-publishing.com Published in North America by CRC Press LLC, 2000 Corporate Blvd, NW Boca Raton FL 33431, USA First published 2004, Woodhead Publishing Ltd and CRC Press LLC © 2004, Woodhead Publishing Ltd The authors have asserted their moral rights. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with the publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from the publishers. The consent of Woodhead Publishing and CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing or CRC Press for such copying. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
    [Show full text]
  • Ep 1 602 354 B1
    (19) & (11) EP 1 602 354 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 8/88 (2006.01) A61Q 5/00 (2006.01) 05.11.2008 Bulletin 2008/45 (86) International application number: (21) Application number: 04716754.9 PCT/JP2004/002606 (22) Date of filing: 03.03.2004 (87) International publication number: WO 2004/080433 (23.09.2004 Gazette 2004/39) (54) Use of polyglutamic acid or its salts Verwendung von Polyglutamatsäure oder deren Salze Utilisation de l’acide polyglutamique ou ses sels. (84) Designated Contracting States: • YAMADA, Kikumi, AT BE BG CH CY CZ DE DK EE ES FI FR GB GR c/o Ichimaru Pharcos Co., Ltd. HU IE IT LI LU MC NL PL PT RO SE SI SK TR Motosu-shi, Gifu 501-0475 (JP) (30) Priority: 10.03.2003 JP 2003062688 (74) Representative: Gille Hrabal Struck Neidlein Prop Roos (43) Date of publication of application: Patentanwälte 07.12.2005 Bulletin 2005/49 Brucknerstrasse 20 40593 Düsseldorf (DE) (73) Proprietor: Meiji Seika Kaisha Ltd. Chuo-ku, (56) References cited: Tokyo 104-8002 (JP) EP-A- 0 774 247 WO-A1-20/04039339 JP-A- 1 146 986 JP-A- 8 291 036 (72) Inventors: JP-A- 10 298 037 JP-A- 10 298 042 • HASEBE, Kohei, JP-A- 11 240 827 JP-A- 59 209 635 c/o Ichimaru Pharcos Co., Ltd. JP-A- 2001 354 542 JP-A- 2002 145 723 Motosu-shi, Gifu 501-0475 (JP) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]