Solid-Phase Synthesis of Fluorescent Probes for Plasma Membrane Labelling

Total Page:16

File Type:pdf, Size:1020Kb

Solid-Phase Synthesis of Fluorescent Probes for Plasma Membrane Labelling molecules Article Solid-Phase Synthesis of Fluorescent Probes for Plasma Membrane Labelling Shuo Zhang, Annamaria Lilienkampf and Mark Bradley * EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh EH8 9YL, UK; [email protected] (S.Z.); [email protected] (A.L.) * Correspondence: [email protected] Abstract: The cellular plasma membrane plays a fundamental role in biological processes, including cell growth, signaling and transport. The labelling of the plasma membrane with targeted fluorescent probes offers a convenient and non-invasive way to image the morphological changes and dynamics of a membrane in real-time and, despite many examples of fluorescent plasma membrane probes, a “universal targeting/anchoring moiety” is still required. In this study, a small number of stearic acid-based probes labelled with 6-carboxyfluorescein was designed and fabricated via solid-phase synthesis in which variations in both charge and hydrophobicity were explored. To ease the synthesis process, a gram-scale synthesis of the Fmoc-Lys(6-carboxyfluoresein diacetate)-OH building block was developed, allowing the discovery of optimal probes that carried a positively charged amino group and a stearic acid tail that exhibited intense plasma membrane brightness and robust retention. Keywords: solid-phase synthesis; cell membrane staining; fluorescent probe 1. Introduction Citation: Zhang, S.; Lilienkampf, A.; Fluorescent imaging of various cellular systems and components enables the detailed Bradley, M. Solid-Phase Synthesis of analysis of cellular behaviour and modulation. Amongst these is the plasma membrane, Fluorescent Probes for Plasma which provides both a natural barrier and a door for communicating with the extracellular en- Membrane Labelling. Molecules 2021, vironment. Imaging the cell membrane while monitoring its dynamics by fluorescent probes 26, 354. https://doi.org/10.3390/ offers a non-invasive, highly sensitive and semi-quantitative mean of exploring and unravel- molecules26020354 ling various cellular processes and cell signaling pathways. A variety of fluorescent probes Academic Editors: Péter Kele and targeting the plasma membrane exist, with an efficient membrane anchoring moiety typically Takuya Terai needed to achieve robust and stable membrane labelling. The cellular membrane can be Received: 24 November 2020 targeted by probes that interact with a variety of moieties, and this includes membrane glyco- Accepted: 8 January 2021 proteins (e.g., wheat germ agglutinin-based lectin probes) [1] or antibody-linked fluorophores Published: 12 January 2021 that recognise specific cell-surface markers [2]. Probes that interact with the cell surface via hydrophobic and/or electrostatic interactions are commonly used, including the long-chain (C- 0 0 0 Publisher’s Note: MDPI stays neu- 18) dialkylcarbocyanine dye (DiR, 1,1 -dioctadecyl-3,3,3 ,3 -tetramethylindotricarbocyanine tral with regard to jurisdictional clai- iodide) [3], though poor water solubility can limit its application. Cholesterol [4] and ms in published maps and institutio- phospholipid [5] conjugates are good candidates for the plasma membrane, targeting nal affiliations. natural lipids and interacting and entering the membrane phospholipid bilayer via hy- drophobic interactions. Additionally, many plasma membrane probes rely on electrostatic interactions that promote prolonged membrane staining, with the choice of charged moiety varying between probes. The outer leaflet of a cell surface is rich in negatively charged Copyright: © 2021 by the authors. Li- censee MDPI, Basel, Switzerland. groups due to sialic acid-rich glycoproteins and phospholipids [6], and the incorporation This article is an open access article of positive-charged moieties can help to drive anchoring efficiency. Thus, the commer- distributed under the terms and con- cial lipophilic membrane dye DiR and fluorescent styryl pyridinium dyes, e.g., FM1-43 ditions of the Creative Commons At- (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide [7,8]) tribution (CC BY) license (https:// are all positively charged at physiological pH. Similarly, the conjugation of a quaternary creativecommons.org/licenses/by/ ammonium group onto the hydrophobic dye Nile Red produces an efficient cell membrane 4.0/). stain, which remains attached on/in the cell membrane for over 90 min [9]. Molecules 2021, 26, 354. https://doi.org/10.3390/molecules26020354 https://www.mdpi.com/journal/molecules Molecules 2021, 26, 354 2 of 12 On the other hand, formally negatively charged moieties can result in a poor inter- nalisation of the probes and, consequently, enhanced membrane labelling perhaps not unexpected, in view of a cell surface rich in negatively charged groups. Indeed, the fluo- rophore bis-sulphonate aryleneethynylene gives an efficient labelling of cell membranes, with the lipophilic fluorene ring embedding into the membrane, while the negatively charged sulfonates are solvent-exposed [10]. Indeed, the phenols of fluorescein are typ- ically capped as cleavable esters to allow cellular entry, e.g., the dye Calcein used in live/dead cell assays is made cell-permeable by esterification. Zwitterionic groups have shown good performance in anchoring and fixing fluo- rophores onto the cell membrane, with the suggestion of minimising the probes’ “flip-flop” between the leaflets, and their attachment onto/into the outer interface of the lipid bi- layer [7,11,12]. Overall, as has been discussed, many plasma membrane dyes/probes exist, and all have individual advantages/disadvantages and specific applications and spectral ranges. As such, considering the broad chemical space these probes occupy, there is a lack of well-defined structural criteria for the design of membrane labelling probes, beyond the need for a hydrophobic anchor. Solid-phase synthesis is an efficient and convenient way to generate compounds, allowing a parallel, step-wise assembly of building blocks (e.g., amino acids) [13]. Herein, we report a solid-phase strategy for the parallel synthesis of fluorescently-labelled probes 1–5 (Figure1), bearing stearic acid chain(s) in combination with charged amino acids, with the compounds evaluated for their plasma membrane labelling efficiency and duration. Stearic acid was pragmatically chosen, being widely found in lipids, inert to peroxidation and readily available and highly affordable. It provided a site of commonality while other changes were made across the compound series. 6-Carboxyfluorescein (λex/em 492/517 nm) was used as the fluorophore due to its biocompatibility, high extinction coefficient (70,000 M−1 cm−1) and high fluorescence quantum yield (φ = 0.85) [14,15] with the building block, Fmoc-Lys(6-Carboxyfluorescein-diacetate)-OH, developed to allow an efficient/clean probe synthesis. Carboxyfluorescein was also chosen, rather Molecules 2021, 26, x FOR PEER REVIEW 3 of 13 than rhodamine-based dyes, as it is negatively charged and as such known not to be cell-permeable. O O O O O O HN HN CO2 OH CO2 OH O O NH2 H N N NH H N 2 1 O H O O 2 O NH3 O O HN O CO2 OH O O O H N NH N 2 HN H 3 O O O O CO2 OH O O O O H N NH N N 2 H H O O O 4 NH3 O O O HN NH CO2 OH O O N NH2 N N H H O O 5 FigureFigure 1. 1.Chemical Chemical structuresstructures of of the the fluorescent fluorescent probes probes 1–51.– 5. 2. Results 2.1. Synthesis of Fmoc-Lys(6-Carboxyfluoresein diacetate)-OH To allow for the efficient synthesis of fluorescently labelled probes on solid-phase, without the need for orthogonal protecting group strategies, Fmoc-Lys(6-carboxyfluores- cein-diacetate)-OH 6 was synthesised on a gram scale (Scheme 1). 5(6)-carboxyfluorescein diacetate 7 was activated as an N-hydroxysuccinimide (NHS) ester, with the two regioi- somers 8a/b readily separated by column chromatography [16] (8a 28% yield and 8b 48% yield). A single regioisomer (6-Carboxyfluorescein diacetate NHS ester 8b (2.0 g)) was coupled onto Fmoc-Lys-OH·HCl, in the presence of DIPEA (to quench the HCl salt and NHS generated during the reaction), giving, after column chromatography, Fmoc-L- Lys(6-Carboxyfluorescein-diacetate)-OH 6 in 50% yield. The reaction time (20 min) re- quired a careful control, with extended reaction times resulting in deacetylation of the phenolic hydroxy groups and Fmoc deprotection. Molecules 2021, 26, 354 3 of 12 2. Results 2.1. Synthesis of Fmoc-Lys(6-carboxyfluoresein diacetate)-OH To allow for the efficient synthesis of fluorescently labelled probes on solid-phase, with- out the need for orthogonal protecting group strategies, Fmoc-Lys(6-carboxyfluorescein- diacetate)-OH 6 was synthesised on a gram scale (Scheme1). 5(6)-carboxyfluorescein diacetate 7 was activated as an N-hydroxysuccinimide (NHS) ester, with the two regioiso- mers 8a/b readily separated by column chromatography [16](8a 28% yield and 8b 48% yield). A single regioisomer (6-Carboxyfluorescein diacetate NHS ester 8b (2.0 g)) was coupled onto Fmoc-Lys-OH·HCl, in the presence of DIPEA (to quench the HCl salt and NHS generated during the reaction), giving, after column chromatography, Fmoc-L-Lys(6- Carboxyfluorescein-diacetate)-OH 6 in 50% yield. The reaction time (20 min) required a Molecules 2021, 26, x FOR PEER REVIEWcareful control, with extended reaction times resulting in deacetylation of the phenolic4 of 13 hydroxy groups and Fmoc deprotection. HO O OH AcO O OAc AcO O OAc AcO O OAc O a b O O O O + O O O N O O O O O O OH OH O 7 O O 8a 8b N O c AcO O O OAc HN O O OH FmocHN 6 O ◦ Scheme 1. Synthesis of Fmoc-Lys(6-carboxyfluorescein-diacetate)-OHScheme 1. Synthesis of Fmoc-Lys(6-carboxyfluorescein-diacetate)-OH6. Reaction condition (a) Ac2 O,6. Reaction Pyridine, condition 1 h, 110 C,(a) yield 95%; (b) DIC/NHS, DCM,Ac2O, Pyridine, 30 min, and1 h, column110 °C, yield chromatography 95%; (b) DIC/NH to separateS, DCM, the 30 min, isomers and (column8a 28% chromatography and 8b 42%); (c) Fmoc-Lys-OH·HCl, DIPEA,to separate anhydrous the DMF;isomers yield (8a 50%.28% and 8b 42%); (c) Fmoc-Lys-OH· HCl, DIPEA, anhydrous DMF; yield 50%.
Recommended publications
  • The Synthesis of Fluorescent 3, 6-Dihydroxyxanthones
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2016 The yS nthesis of Fluorescent 3, 6-dihydroxyxanthones: A Route to Substituted Fluoresceins Surajudeen Omolabake University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Chemistry Commons Recommended Citation Omolabake, Surajudeen, "The yS nthesis of Fluorescent 3, 6-dihydroxyxanthones: A Route to Substituted Fluoresceins" (2016). Theses and Dissertations. 1299. https://dc.uwm.edu/etd/1299 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE SYNTHESIS OF FLUORESCENT 3, 6-DIHYDROXYXANTHONES: A ROUTE TO SUBSTITUTED FLUORESCEINS by Surajudeen Omolabake A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Chemistry at University of Wisconsin-Milwaukee August 2016 ABSTRACT THE SYNTHESIS OF FLUORESCENT 3, 6-DIHYDROXYXANTHONES: A ROUTE TO SUBSTITUTED FLUORESCEIN by Surajudeen Omolabake University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor Alan W Schwabacher Xanthones belong to the family of compounds of the dibenzo-γ-pyrone framework. Naturally occurring xanthones have been reported to show a wide range of biological and medicinal activities including antifungal,19 antimalarial,20 antimicrobial,21 antiparasitic,22 anticancer,23 and inhibition of HIV activity in cells.24 Xanthones have also been used as a turn on fluorescent probe for metal ions,32 including use as pH indicators, metal ion sensors, in molecular biology, medicinal chemistry and in the construction of other dyes.
    [Show full text]
  • Use of Immunofluorescence and Viability Stains in Quality Control1
    Use of Immunofluorescence and Viability Stains in Quality Control1 M. J. CHILVER, J. HARRISON, and T. J. B. WEBB, Process Research Department, Allied Breweries Production Limited, Burton-on- Trent, Staffordshire, England DEM IBZ ABSTRACT has been the failure to differentiate live and dead cells. We have been studying the combined use of immunofluorescent and Immunofluorescence has been evaluated as a rapid quality control viability stains so that live and dead, culture and wild yeasts, can be technique for the detection of low levels of wild yeasts in culture yeast or differentiated on the same slide field. This paper details the results other brewery samples. Antisera have been prepared against antigenic groups A to F, pooled and absorbed with culture yeast. Using the indirect obtained when yeast samples are examined alternately with FITC- staining method and fluorescein isothiocyanate or rhodamine as exciting blue light wavelengths and rhodamine-exciting green light fluorochrome, levels as low as 10 wild yeasts per million cells can be detected and when incident fluorescent light is combined with transmitted in three hours. Combined immunofluorescence and viability staining allows white light to illuminate the specimen. the differentiation of live and dead, culture and wild yeast cells, on the same The potential use of fluorescein diacetate as a viability stain has slide by alternating the light sources. The preferred method uses fluorescein been established. Initial work by Rotman and Papermaster (22) isothiocyanate, excited by incident blue light, for wild yeast detection, was developed by Paton and Jones (21) and its use in brewery combined with methylene blue, viewed by transmitted light, for viability quality control has been described by Molzahn and Portno (19).
    [Show full text]
  • DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) for Nucleic Acid Staining
    DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) for nucleic acid staining Catalog number: AR1176-10 Boster’s DAPI solution is a fluorescent dye with higher efficiency for immunofluorescence microscopy. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. BOSTER BIOLOGICAL TECHNOLOGY 3942 B Valley Ave, Pleasanton, CA 94566 Phone: 888-466-3604 Fax: 925-215-2184 Email:[email protected] Web: www.bosterbio.com DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) for nucleic acid staining Catalog Number: AR1176-10 Product Overview Material DAPI dihydrochloride (MW = 350.3) Form Liquid Size 10 mL(100 assys) Concentration 1μg/ml 8 mM sodium phosphate, 2 mM potassium phosphate, 140 mM sodium chloride, 10 Buffer mM potassium chloride; pH 7.4. Storage Upon receipt store at -20°C, protect from light. Stability When stored as directed, product should be stable for one year. Molecular formula C16H15N5 • 2 HCL Excitation: DAPI 340nm Emission: DAPI 488nm Excitation: DAPI-DNA complexes 360nm Emission: DAPI-DNA complexes 460nm Thermofisher (Product No. 62247); Thermofisher (Product No. 62248); Millipore Equivalent Sigma (Product No. D9542) BOSTER BIOLOGICAL TECHNOLOGY 3942 B Valley Ave, Pleasanton, CA 94566 Phone: 888-466-3604 Fax: 925-215-2184 Email:[email protected] Web: www.bosterbio.com Notes: Type of DAPI Molecular formula Molecular weight Catalog Number DAPI dihydrochloride C16H15N5 • 2 HCL 350.25 AR1176-10 DAPI dilactate C16H15N5 • 2 C3H6O3 457.48 N/A Introduction DAPI (4',6-diamidino-2-phenylindole) is a fluorescent dye which can bind DNA strands robustly, the fluorescence being detected by fluorescence microscope.
    [Show full text]
  • Fluorescein) Injection 10% 2
    NEW ZEALAND DATA SHEET 1. PRODUCT NAME FLUORESCITETM (fluorescein) Injection 10% 2. QUALITATIVE AND QUANTITATIVE COMPOSITION FluoresciteTM injection 10% contains 100 mg/mL fluorescein (equivalent to 113.2 mg/mL fluorescein sodium). 3. PHARMACEUTICAL FORM Solution, sterile pyrogen-free injection. Unpreserved with a pH of 8.0 to 9.8. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications Indicated in diagnostic fluorescein angiography or angioscopy of the fundus and of the iris vasculature. 4.2. Dose and method of administration The usual adult dose is the contents of one FluoresciteTM injection 10% vial (5 mL of 10% solution) via intravenous administration. For children, the dose is calculated on the basis of 8 mg/kg of body weight. Parenteral drug products should be inspected visually for particulate matter and discolouration prior to administration. Do not mix or dilute with other solutions or drugs. Flush intravenous cannulae before and after drugs are injected to avoid physical incompatibility reactions. Product is for single use in one patient only. Discard any residue. Contains no antimicrobial agent. Inject the contents of the vial rapidly into the antecubital vein after taking precautions to avoid extravasation. A syringe filled with FluoresciteTM injection 10% is attached to transparent tubing and a 23 gauge butterfly needle for injection. Insert the needle and draw the patient's blood to the hub of the syringe so that a small air bubble separates the patient's blood in the tubing from the FluoresciteTM injection 10%. With the room lights on, slowly inject the blood back into the vein while watching the skin over the needle tip.
    [Show full text]
  • Cell Viability Measurement
    Cell Viability Measurement • Viability is a measure of the metabolic state of a cell population which is indicative of the potential for growth • Most common method: membrane integrity – Trypan blue exclusion: leaky membrane allows blue dye to get into cells – Good: capable for manual microscopy – Issues: operator dependent • Cellometer solution: use software algorism – Reduce operator dependency – Reduce calculation error – Speed up counting – Better management of data Nexcelom.com Online Resources [email protected] | 978.327.5340 Cellometer® Simply Counted Trypan Blue Viability for Cell Lines: Exclusion Assay H9 LCL M19 Raw K562 T cell Cellometer has been used for more than 300 cell lines Nexcelom.com Online Resources [email protected] | 978.327.5340 Cellometer® Simply Counted Fluorescence Based Cell Viability Methods • Membrane integrity – DNA binding dye with permeability dependency – AO (acridine Orange): permeable for live and dead cells – PI (propidium iodide), EB (Ethidium bromide), 7-AAD: not permeable for live cells – Others: SYTO ® 13, SYTO 24 ®, SYTO® 14 • Enzymatic activity – Non fluorescent esterases diffuse into cells – Live cells with strong enzymatic activity produce fluorescent products – Live cells retain fluorescent products – Examples: • Calcein-AM to calcein • Fluorescein diacetate (FDA)to fluorescein • Simultaneous detection of both live and dead cell populations for cell lines – Combination of the above with duo-fluorescence detection for each cell sample Nexcelom.com Online Resources [email protected] | 978.327.5340 Cellometer® Simply Counted References [1] S. A. Altman, L. Randers, and G. Rao, "Comparison of Trypan Blue-Dye Exclusion and Fluorometric Assays for Mammalian-Cell Viability Determinations," Biotechnology Progress, vol. 9, pp. 671-674, Nov-Dec 1993.
    [Show full text]
  • Analysis of Dye Mixtures Thin-Layer Chromatography SCIENTIFIC
    Analysis of Dye Mixtures Thin-Layer Chromatography SCIENTIFIC Introduction Thin-layer chromatography (TLC) is a valuable analytical technique for separating and analyzing organic compounds. In dye analysis, for example, TLC is used to identify dyes in fabrics or fibers (forensics) and to determine the composition of natural dyes in plants and animals. In this demonstration, thin layer chromatography will be used to separate mixtures of dyes. Concepts • Chromatography • Physical properties Materials Authentic dye samples (eosin Y, fluorescein, methylene blue, and safranin), 0.25 g each Chromatography solvent (acetone), 80 mL Thin layer chromatography sheet (silica gel on plastic backing), 20 cm × 20 cm Beakers, 100-mL, 4 Graduated cylinder, 50-mL Beakers, 400-mL, 4 Metric ruler Beral type pipets, 4 Pencil Microtip pipets, 16 Reaction plate, 24-well Ethyl alcohol, 50 mL Scissors Filter paper Watch glasses, large, or Petri dish covers Safety Precautions Acetone and ethyl alcohol are flammable organic solvents and a dangerous fire risk—keep away from flames, sparks, and other sources of ignition. Work with acetone in a well-ventilated lab only. Wear chemical splash goggles, chemical-resistant gloves, and chemical- resistant apron. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Preparation 1. Prepare 0.5% solutions of each dye—dissolve 0.25 g of the dye in 50 mL of water 5 cm (fluorescein, methylene blue, and safranin) or ethyl alcohol (eosin Y). 2. Add about 1 mL of each dye solution to separate wells in a 24-well reaction plate. In other wells, combine 0.5 mL of two or more dyes to prepare dye mixtures.
    [Show full text]
  • Application of Fluorescein Combined with Methylene Blue in Sentinel
    www.nature.com/scientificreports OPEN Application of fuorescein combined with methylene blue in sentinel lymph node biopsy of breast cancer Liang Li1, Ning Gao1*, Ai Qing Yang2, Wen Hao Xu1, Yu Ding1, Jun Chu1, Xiao Na Lin1 & Jia Qi Liu1 Sentinel lymph node biopsy (SLNB) for axillary lymph node staging in early breast cancer has been widely recognized. The combination of radio-colloids and dye method is the best method recognized. The reagents and equipment required in the process of the combined method are complex and expensive, so there are certain restrictions in the use of primary medical institutions. As a new tracer, fuorescent tracer technology has attracted much attention. We aimed to evaluate the feasibility and safety of fuorescein for SLNB in breast cancer. In this study, a total of 123 patients with breast cancer were divided into group A (n = 67) and group B (n = 56). The efcacy of Indocyanine green (ICG) combined with methylene blue (group A) and fuorescein combined with methylene blue (group B) in SLNB of breast cancer was compared, complications were observed at the same time. No local or systemic reactions were observed in the two groups. In group A, Sentinel lymph nodes of breast cancer were detected in 63 patients, with a detection rate of 94.0% (63/67), a false-negative rate of 7.5% (4/53). In group B, Sentinel lymph nodes of breast cancer were detected in 52 patients, with a detection rate of 92.9% (52/56), a false-negative rate of 7.5% (3/40). There was no signifcant diference in biopsy results between the two groups.
    [Show full text]
  • Developing Fluorogenic Reagents for Detecting and Enhancing Bloody Fingerprints
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Developing Fluorogenic Reagents for Detecting and Enhancing Bloody Fingerprints Author: Robert M. Strongin, Dr.Martha Sibrian-Vazquez Document No.: 227841 Date Received: August 2009 Award Number: 2007-DN-BX-K171 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Developing Fluorogenic Reagents for Detecting and Enhancing Bloody Fingerprints Award 2007-DN-BX-K171 Authors Prof. Robert M. Strongin Dr.Martha Sibrian-Vazquez 1 This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Abstract Fingerprints are the most common and useful physical evidence for the apprehension and conviction of crime perpetrators. Fluorogenic reagents for detecting and enhancing fingerprints in blood, however, have several associated challenges. For instance, they are generally unsuitable for dark and multi-colored substrates. Luminol and fluorescin and other chemilumigens and fluorigens can be used with dark and often multi-colored substrates, but are not compatible with fixatives and their oxidation products are not insoluble.
    [Show full text]
  • The Characterization of Xanthene Dyes on a Glass Substrate from Different Coating Techniques
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2019 THE CHARACTERIZATION OF XANTHENE DYES ON A GLASS SUBSTRATE FROM DIFFERENT COATING TECHNIQUES Elsa Ortega University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Ortega, Elsa, "THE CHARACTERIZATION OF XANTHENE DYES ON A GLASS SUBSTRATE FROM DIFFERENT COATING TECHNIQUES" (2019). Open Access Dissertations. Paper 872. https://digitalcommons.uri.edu/oa_diss/872 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. THE CHARACTERIZATION OF XANTHENE DYES ON A GLASS SUBSTRATE FROM DIFFERENT COATING TECHNIQUES BY ELSA ORTEGA A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY UNIVERSITY OF RHODE ISLAND 2019 DOCTOR OF PHILOSOPHY DISSERTATION OF ELSA ORTEGA APPROVED: Dissertation Committee: Major Professor William B. Euler Sze C. Yang Geoffrey D. Bothun Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2019 ABSTRACT Chapter 1 of this dissertation is an investigation of rhodamine 560 (Rh560), a cationic dye similar to the well-studied rhodamine 6G (Rh6G). The spectral properties of Rh560 and Rh6G have similar changes as a function of thickness. At low surface coverage the spectra indicate monomers, at 1-2 monolayers dimers dominate, and thicker films show larger aggregates. The difference between Rh6G and Rh560 is that the transition from monomer to dimer occurs at different thickness, ~1.2 nm for Rh6G and ~0.5 nm for Rh560.
    [Show full text]
  • Ethylene Glycol (EG) Toxicity Extended Version
    Zuku Review FlashNotesTM Ethylene glycol (EG) toxicity Extended Version Classic case: Dog, acute onset lethargy, disorientation, vomiting, seizures. Hx of anti-freeze exposure Presentation: VERY COMMON All animals susceptible . Cats highly sensitive, 1 teaspoon can be fatal . Dogs most frequently exposed Sources . Car radiator fluid (ANTIFREEZE #1) . Puddle under car when leaks or after change . Found in toilets of cabins in Northern hemisphere to prevent freezing over winter . Antifreeze also found in . Aircraft deicing products . Portable basketball posts . Windshield wiper fluids . Paints Beloved pets drink from puddles. Photography developer solutions Image courtesy Robert Couse-Baker Risk factors . Outdoor, free range, garage access . Northern colder climates . Water sources for pets are frozen . Ethylene glycol does not freeze and is sweet tasting . Summer radiation flushing . Engine leak (MOST COMMON) Clinical signs - Triphasic . Stage one: 30 min – 12 hrs . CNS signs o Lethargy, disorientation, ataxia, knuckling o Vomiting, PU/PD, hypothermia, hypotension o Seizures, coma, ± muscle fasciculations (grave prognosis) . Stage two: 12 – 24 hrs . Appears to have improved . Quiet, depressed, PU/PD . Stage three: 24 – 72 hrs . Weakness, depression, anorexia, tachypnea/dyspnea 1 Zuku Review FlashNotesTM Ethylene glycol (EG) toxicity Extended Version DDX: Encephalitis, cranial trauma, intracranial neoplasia, pancreatitis, gastroenteritis, ketoacidotic diabetes mellitus, renal failure, other toxicities (barbiturates, aspirin, methanol, isopropanol, propylene glycol, raisins, grapes, NSAIDs, lilies) Test(s) of choice: REACTTM Ethylene Glycol Test Kit . False positives from propylene glycol, glycerol, sorbitol, mannitol, or thimerosol . Do not use isopropyl alcohol to disinfect area before blood draw . Fomepizole may block a positive result . Propylene glycol is found in some injectables, activated charcoal suspensions Serum osmolality: requires colloid osmometer .
    [Show full text]
  • Efficient Synthesis of the N-Hydroxysuccinimide Esters of 5
    Edinburgh Research Explorer Separating the isomers-Efficient synthesis of the N- hydroxysuccinimide esters of 5 and 6-carboxyfluorescein diacetate and 5 and 6-carboxyrhodamine B Citation for published version: Brunet, A, Aslam, T & Bradley, M 2014, 'Separating the isomers-Efficient synthesis of the N- hydroxysuccinimide esters of 5 and 6-carboxyfluorescein diacetate and 5 and 6-carboxyrhodamine B', Bioorganic & Medicinal Chemistry Letters, vol. 24, no. 14, pp. 3186-3188. https://doi.org/10.1016/j.bmcl.2014.04.090 Digital Object Identifier (DOI): 10.1016/j.bmcl.2014.04.090 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Bioorganic & Medicinal Chemistry Letters Publisher Rights Statement: Open Access funded by Medical Research Council Under a Creative Commons license General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021
    [Show full text]
  • Fluorescein Derivatives As Fluorescent Probes for Ph Monitoring Along Recent Biological Applications
    International Journal of Molecular Sciences Review Fluorescein Derivatives as Fluorescent Probes for pH Monitoring along Recent Biological Applications Florent Le Guern 1,* , Vanessa Mussard 1, Anne Gaucher 1 , Martin Rottman 2,3 and Damien Prim 1 1 Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; [email protected] (V.M.); [email protected] (A.G.); [email protected] (D.P.) 2 Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France; [email protected] 3 Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France * Correspondence: fl[email protected] Received: 3 November 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: Potential of hydrogen (pH) is one of the most relevant parameters characterizing aqueous solutions. In biology, pH is intrinsically linked to cellular life since all metabolic pathways are implicated into ionic flows. In that way, determination of local pH offers a unique and major opportunity to increase our understanding of biological systems. Whereas the most common technique to obtain these data in analytical chemistry is to directly measure potential between two electrodes, in biological systems, this information has to be recovered in-situ without any physical interaction. Based on their non-invasive optical properties, fluorescent pH-sensitive probe are pertinent tools to develop. One of the most notorious pH-sensitive probes is fluorescein. In addition to excellent photophysical properties, this fluorophore presents a pH-sensitivity around neutral and physiologic domains.
    [Show full text]