Fluorescein Derivatives As Fluorescent Probes for Ph Monitoring Along Recent Biological Applications

Total Page:16

File Type:pdf, Size:1020Kb

Fluorescein Derivatives As Fluorescent Probes for Ph Monitoring Along Recent Biological Applications International Journal of Molecular Sciences Review Fluorescein Derivatives as Fluorescent Probes for pH Monitoring along Recent Biological Applications Florent Le Guern 1,* , Vanessa Mussard 1, Anne Gaucher 1 , Martin Rottman 2,3 and Damien Prim 1 1 Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78035 Versailles, France; [email protected] (V.M.); [email protected] (A.G.); [email protected] (D.P.) 2 Faculté de Médecine Simone Veil, Université de Versailles St Quentin, INSERM UMR U1173, 2 Avenue de la Source de la Bièvre, 78180 Montigny le Bretonneux, France; [email protected] 3 Hôpital Raymond Poincaré, AP-HP, GHU Paris Saclay, 104 Bd Poincaré, 92380 Garches, France * Correspondence: fl[email protected] Received: 3 November 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: Potential of hydrogen (pH) is one of the most relevant parameters characterizing aqueous solutions. In biology, pH is intrinsically linked to cellular life since all metabolic pathways are implicated into ionic flows. In that way, determination of local pH offers a unique and major opportunity to increase our understanding of biological systems. Whereas the most common technique to obtain these data in analytical chemistry is to directly measure potential between two electrodes, in biological systems, this information has to be recovered in-situ without any physical interaction. Based on their non-invasive optical properties, fluorescent pH-sensitive probe are pertinent tools to develop. One of the most notorious pH-sensitive probes is fluorescein. In addition to excellent photophysical properties, this fluorophore presents a pH-sensitivity around neutral and physiologic domains. This review intends to shed new light on the recent use of fluorescein as pH-sensitive probes for biological applications, including targeted probes for specific imaging, flexible monitoring of bacterial growth, and biomedical applications. Keywords: fluorescein; pH-sensitive; probe; dyad; imaging; organelle; cell; bacteria; application 1. Introduction In chemistry, potential of hydrogen, or pH, is a data describing the acidity or the basicity of a medium [1]. Logarithmically obtained from H+ ion concentration, pH is one of the main physical characteristics used to describe an aqueous solution. Since the development of pH-meters, its measurement became inevitable across scientific fields, such as drinking water [2], industrial waste [3,4], global health [5], and agronomy [6]. As acidic or basic compounds are continuously released as outputs of cellular life, pH monitoring offered a unique opportunity to easily acquired data from biologic systems [7]. The relevance of pH in biological systems can be observed at different scales: the pH of biological fluids is well described and its regulation essential to the proper function of organs, since abnormal values are both the sign and cause of disease developments. pH regulation within biological systems relies on a sensitive equilibrium, called pH homeostasis. At the organism level, pH regulation is performed by the lungs through the elimination of CO2 and the kidney through the filtration of the HCO3− ion. In cells, where organic acids, such as lactic, pyruvic, or beta-hydroxybutyrate acids are produced along metabolic pathways, some membrane proteins compensate the decrease of pH by transporting protons outside the cytosol [8]. Thus, cellular pH monitoring leads to the understanding of key milestones within cells, such as proliferation [9], ion transport [10], or carcinogenesis [11]. For example, unchecked Int. J. Mol. Sci. 2020, 21, 9217; doi:10.3390/ijms21239217 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 9217 2 of 23 Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 23 biological processes occurring in malignant cells release a consequent amount of acid derivatives, leadingtissues [12]. to a pHIn microbiology, decrease in tumoral proliferations tissues [12 of]. aero In microbiology,bic bacteria also proliferations lead to a massive of aerobic production bacteria also of leadacidic to metabolites, a massive production which quickly of acidic induce metabolites, pH variations which quickly in medium induce pH[13]. variations Whereas in global medium pH [13 in]. Whereascytosol has global to be pHregulated, in cytosol each has organelle to be regulated, is fully effective each organelle in specific is fullyionic eenvironments,ffective in specific which ionic are environments,often correlated which to local are functions often correlated [14]. For to example, local functions the average [14]. pH For in example, lysosomes, the Golgi average network, pH in lysosomes,and mitochondria Golgi network, are 4.7, 6.7, and and mitochondria 8 respectively. are 4.7,Thus, 6.7, pH and monitoring 8 respectively. of each Thus, organelle pH monitoring has helped of eachto determine organelle their has helpedfunction. to At determine an atomic their scale, function. all metabolism At an atomic pathways scale, allare metabolism directly correlated pathways to arepH directlysince enzymatic correlated activities to pH since and enzymatic kinetics activitiesdepend andon ionic kinetics environments. depend on ionicAnother environments. common Anotherexample commonis the classification example is of the essential classification amino of acids, essential according amino their acids, acidic according or basic their trends. acidic Thus, or basic pH trends.is an important Thus, pH physicochemical is an important datum, physicochemical which can attest datum, of biological which can activities attest of at biological different activitiesscales. In atorder diff erentto monitor scales. these In order fluctuations to monitor without these fluctuationsany physical without contact, anyfluorescent physical pH-sensitive contact, fluorescent probes pH-sensitivewere developed probes during were the developed last century. during Under the last specific century. light, Under these specific molecular light, theseprobes molecular re-emit probesphotons re-emit at another photons wavelength at another for wavelength which related for whichintensity related depends intensity on the depends surrounding on the pH surrounding [7]. Since pHoptical [7]. devices Since opticalare continuously devices are becoming continuously more becomingprecise, especially more precise, with the especially broad dissemination with the broad of disseminationoptic fibers, pH-sensitive of optic fibers, molecular pH-sensitive probes molecular are recurrent probes across are biological recurrent acrossstudies. biological studies. One of the most used pH probes is fluorescein fluorescein 1; its chemical structure is composed of a tricyclic xanthene flankedflanked by two hydroxyl groups and a bicyclic fused lactone fragment linked by a spiro carbon atom (Figure1 1).). Figure 1. Chemical structure of fluorescein fluorescein 1. This familyfamily ofof molecules molecules was was discovered discovered in in 1871 1871 by by Adolf Adolf von von Baeyer, Baeyer, and and has becomehas become one of one most of ubiquitousmost ubiquitous probes probes in biological in biological studies, studies, because be ofcause its intense of its fluorescence, intense fluorescence, reversible pHreversible sensitivity, pH chemicalsensitivity, stability, chemical and lackstability, of cytotoxicity and lack at of working cytotoxicity concentrations. at working For years,concentrations. fluorescein For1 has years, been usedfluorescein as a starting 1 has been material used to as create a starting novel material fluorescent to crea probeste novel revealing fluorescent specific probes biological revealing activities specific such asbiological enzymatic activities cleavage such [15 as]. enzymatic Fluorescein cleavage1 is still [15]. the focusFluorescein of interest 1 is fromstill the the focus scientific of interest community from forthe itsscientific intense community fluorescence for and its its intense sensitivity fluorescence to pH variations and its aroundsensitivity neutral to pH domain variations [16]. Asaround most biologicalneutral domain systems [16]. are As fully most effective biological at physiological systems are conditions fully effective (pH~7.3), at physiological fluorescein 1conditionsbecame a benchmark(pH~7.3), fluorescein for monitoring 1 became pH fluctuationsa benchmark in for cell monitoring cultures. Indeed, pH fluctuations every year, in acell substantial cultures. amountIndeed, ofevery new year, articles a substantial describes biologicalamount of studies new articles using describes fluorescein biological1 as pH-sensitive studies using probe fluorescein (Figure2)[ 117 as]. InpH-sensitive this review, probe we propose (Figure an 2) overview[17]. In this of fluoresceinreview, we1 proposeand its mainan overview derivatives of fluorescein complemented 1 and by its a surveymain derivatives of recent studies complemented using fluorescein by a surv1eyas of pH recent sensors studies for biological using fluorescein applications. 1 as pH sensors for biological applications. Figure 2. Number of articles with keywords “fluorescein, pH, probe, biology” during last fifty years [17]. Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 23 tissues [12]. In microbiology, proliferations of aerobic bacteria also lead to a massive production of acidic metabolites, which quickly induce pH variations in medium [13]. Whereas global pH in cytosol has to be regulated, each organelle is fully effective in specific ionic environments, which are often correlated to local
Recommended publications
  • The Green Fluorescent Protein
    P1: rpk/plb P2: rpk April 30, 1998 11:6 Annual Reviews AR057-17 Annu. Rev. Biochem. 1998. 67:509–44 Copyright c 1998 by Annual Reviews. All rights reserved THE GREEN FLUORESCENT PROTEIN Roger Y. Tsien Howard Hughes Medical Institute; University of California, San Diego; La Jolla, CA 92093-0647 KEY WORDS: Aequorea, mutants, chromophore, bioluminescence, GFP ABSTRACT In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrin- sically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the rela- tion between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories. CONTENTS NATURAL AND SCIENTIFIC HISTORY OF GFP .................................510 Discovery and Major Milestones .............................................510 Occurrence, Relation to Bioluminescence, and Comparison with Other Fluorescent Proteins .....................................511 PRIMARY, SECONDARY, TERTIARY, AND QUATERNARY STRUCTURE ...........512 Primary Sequence from
    [Show full text]
  • Goverdhan Mehta Chemistry - a 21St Century Science for Global Sustainability: Is It Future Ready?
    Goverdhan Mehta Chemistry - A 21st Century Science for Global Sustainability: Is it future ready? Goverdhan Mehta A ‘selfie’ with theSchool chemical of Chemistry world…… University of Hyderabad National Geophysical Research Institute, CSIR Foundation Day, Sept. 27, 2019 Introducing Chemistry through the Lens of Earth's Systems: What Role Can Systems Thinking Play in Developing Chemically and Environmentally Literate Citizens? J. Kornfeld, S. Stokoe. J. Chemical Education 2019, 96, 2910-2917 A bouquet of ‘matters’ that matter New symbols Passion Sustainability Legacies Ethics & values Responsible Connections Systems Directions Humility Ideas & icons Inspirations Un mélange de beaucoup de choses “Chemistry ought not to be for chemists alone” - Miguel de Unamuno ‘…Life, Universe and Everything’ Chemistry – a source of happiness…. Chem -Connectome ‘...I feel sorry for people who don’t know anything about chemistry. They are missing an important source of happiness....’ - Linus Pauling 1901-1994 S.A. Matlin, G. Mehta, H. Hopf. Chemistry Embraced by All. Science 2015, 347, 1179 Chemistry is in everything. and everything is in it, it is the basis of life, without it we wouldn't exist. Green tea has ~ 200 chemicals Coffee has ~ 1000 chemicals Wine has >1000 chemicals Light cigarette ~ 4000 chemicals Chemistry is ubiquitous/omnipresent Chemistry – Tracing the roots and to the present BCE Art & craft of mixing substances A giant knowledge leap Alchemy to modern science Evidence based science Discipline in a Table - systematization Mendeleev’s Periodic Law ‘Molecularization’ of chemical matter 20th Century A century of evolutionary march of chemistry 20h Century Value added products from almost anything “Utility science” and everything Molecular understanding of life processes and “Core Science” chemical matter Interdisciplinarity in forefront “Integrative Science” Resource stressed planet “Sustainability Science” 21st Century S.
    [Show full text]
  • The Synthesis of Fluorescent 3, 6-Dihydroxyxanthones
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2016 The yS nthesis of Fluorescent 3, 6-dihydroxyxanthones: A Route to Substituted Fluoresceins Surajudeen Omolabake University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Chemistry Commons Recommended Citation Omolabake, Surajudeen, "The yS nthesis of Fluorescent 3, 6-dihydroxyxanthones: A Route to Substituted Fluoresceins" (2016). Theses and Dissertations. 1299. https://dc.uwm.edu/etd/1299 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE SYNTHESIS OF FLUORESCENT 3, 6-DIHYDROXYXANTHONES: A ROUTE TO SUBSTITUTED FLUORESCEINS by Surajudeen Omolabake A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In Chemistry at University of Wisconsin-Milwaukee August 2016 ABSTRACT THE SYNTHESIS OF FLUORESCENT 3, 6-DIHYDROXYXANTHONES: A ROUTE TO SUBSTITUTED FLUORESCEIN by Surajudeen Omolabake University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor Alan W Schwabacher Xanthones belong to the family of compounds of the dibenzo-γ-pyrone framework. Naturally occurring xanthones have been reported to show a wide range of biological and medicinal activities including antifungal,19 antimalarial,20 antimicrobial,21 antiparasitic,22 anticancer,23 and inhibition of HIV activity in cells.24 Xanthones have also been used as a turn on fluorescent probe for metal ions,32 including use as pH indicators, metal ion sensors, in molecular biology, medicinal chemistry and in the construction of other dyes.
    [Show full text]
  • Microenvironment-Triggered Dual-Activation of a Photosensitizer
    www.nature.com/scientificreports OPEN Microenvironment‑triggered dual‑activation of a photosensitizer‑ fuorophore conjugate for tumor specifc imaging and photodynamic therapy Chang Wang1, Shengdan Wang1, Yuan Wang1, Honghai Wu1, Kun Bao2, Rong Sheng1* & Xin Li1* Photodynamic therapy is attracting increasing attention, but how to increase its tumor‑specifcity remains a daunting challenge. Herein we report a theranostic probe (azo‑pDT) that integrates pyropheophorbide α as a photosensitizer and a NIR fuorophore for tumor imaging. The two functionalities are linked with a hypoxic‑sensitive azo group. Under normal conditions, both the phototoxicity of the photosensitizer and the fuorescence of the fuorophore are inhibited. While under hypoxic condition, the reductive cleavage of the azo group will restore both functions, leading to tumor specifc fuorescence imaging and phototoxicity. The results showed that azo‑PDT selectively images BEL‑7402 cells under hypoxia, and simultaneously inhibits BEL‑7402 cell proliferation after near‑infrared irradiation under hypoxia, while little efect on BEL‑7402 cell viability was observed under normoxia. These results confrm the feasibility of our design strategy to improve the tumor‑ targeting ability of photodynamic therapy, and presents azo‑pDT probe as a promising dual functional agent. Cancer is one of the most common causes of death, and more and more therapeutic strategies against this fatal disease have emerged in the past few decades. Among these strategies, photodynamic therapy has attracted much attention1. Tis therapy is based on singlet oxygen produced by photosensitizers under the irradiation with light of a specifc wavelength to damage tumor tissues (Fig. 1a). Since the photo-damaging efect is induced by the interaction between a photosensitizer and light, tumor-specifc therapy may be realized by focusing the light to the tumor site.
    [Show full text]
  • Use of Immunofluorescence and Viability Stains in Quality Control1
    Use of Immunofluorescence and Viability Stains in Quality Control1 M. J. CHILVER, J. HARRISON, and T. J. B. WEBB, Process Research Department, Allied Breweries Production Limited, Burton-on- Trent, Staffordshire, England DEM IBZ ABSTRACT has been the failure to differentiate live and dead cells. We have been studying the combined use of immunofluorescent and Immunofluorescence has been evaluated as a rapid quality control viability stains so that live and dead, culture and wild yeasts, can be technique for the detection of low levels of wild yeasts in culture yeast or differentiated on the same slide field. This paper details the results other brewery samples. Antisera have been prepared against antigenic groups A to F, pooled and absorbed with culture yeast. Using the indirect obtained when yeast samples are examined alternately with FITC- staining method and fluorescein isothiocyanate or rhodamine as exciting blue light wavelengths and rhodamine-exciting green light fluorochrome, levels as low as 10 wild yeasts per million cells can be detected and when incident fluorescent light is combined with transmitted in three hours. Combined immunofluorescence and viability staining allows white light to illuminate the specimen. the differentiation of live and dead, culture and wild yeast cells, on the same The potential use of fluorescein diacetate as a viability stain has slide by alternating the light sources. The preferred method uses fluorescein been established. Initial work by Rotman and Papermaster (22) isothiocyanate, excited by incident blue light, for wild yeast detection, was developed by Paton and Jones (21) and its use in brewery combined with methylene blue, viewed by transmitted light, for viability quality control has been described by Molzahn and Portno (19).
    [Show full text]
  • DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) for Nucleic Acid Staining
    DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) for nucleic acid staining Catalog number: AR1176-10 Boster’s DAPI solution is a fluorescent dye with higher efficiency for immunofluorescence microscopy. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. BOSTER BIOLOGICAL TECHNOLOGY 3942 B Valley Ave, Pleasanton, CA 94566 Phone: 888-466-3604 Fax: 925-215-2184 Email:[email protected] Web: www.bosterbio.com DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) for nucleic acid staining Catalog Number: AR1176-10 Product Overview Material DAPI dihydrochloride (MW = 350.3) Form Liquid Size 10 mL(100 assys) Concentration 1μg/ml 8 mM sodium phosphate, 2 mM potassium phosphate, 140 mM sodium chloride, 10 Buffer mM potassium chloride; pH 7.4. Storage Upon receipt store at -20°C, protect from light. Stability When stored as directed, product should be stable for one year. Molecular formula C16H15N5 • 2 HCL Excitation: DAPI 340nm Emission: DAPI 488nm Excitation: DAPI-DNA complexes 360nm Emission: DAPI-DNA complexes 460nm Thermofisher (Product No. 62247); Thermofisher (Product No. 62248); Millipore Equivalent Sigma (Product No. D9542) BOSTER BIOLOGICAL TECHNOLOGY 3942 B Valley Ave, Pleasanton, CA 94566 Phone: 888-466-3604 Fax: 925-215-2184 Email:[email protected] Web: www.bosterbio.com Notes: Type of DAPI Molecular formula Molecular weight Catalog Number DAPI dihydrochloride C16H15N5 • 2 HCL 350.25 AR1176-10 DAPI dilactate C16H15N5 • 2 C3H6O3 457.48 N/A Introduction DAPI (4',6-diamidino-2-phenylindole) is a fluorescent dye which can bind DNA strands robustly, the fluorescence being detected by fluorescence microscope.
    [Show full text]
  • Fluorescent Protein-Based Tools for Neuroscience
    !1 !2 Fluorescent protein-based tools Outline for neuroscience An animatd primer on biosensor development Fluorescent proteins (FPs) Robert E. Campbell Department of Chemistry Other fluorophore technologies Single FP-based biosensors Imaging Structure & Function in the Nervous System Cold Spring Harbor, July 31, 2019. Lots of structural Lots of structural information information & Transmitted light Fluorescence microscopy of fluorescent color microscopy of live cells live cells No molecular provides molecular information information (more colors = more information) !5 !6 Fluorescence microscopy requires fluorophores Non-natural fluorophores for protein labelling Trends Bioch. Sci., 1984, 9, 88-91. O O O N O N 495 nm 519 nm 557 nm 576 nm - - CO2 CO2 S O O O N O N C N N C S ϕ = quantum yield - - ε = extinction coefficient CO2 CO2 ϕ Brightness ~ * ε S C i.e., for fluorescein N Proteins of interest ϕ = 0.92 N Fluorescein Tetramethylrhodamine ε = 73,000 M-1cm-1 C S (FITC) (TRITC) A non-natural fluorophore must be chemically linked to Non-natural fluorophores made by chemical synthesis a protein of interest… !7 !8 Getting non-natural fluorophores into a cell Some sea creatures make natural fluorophores Trends Bioch. Sci., 1984, 9, 88-91. O O O N O N Bioluminescent - Fluorescent CO2 CO -- S 2 S C N NHN C H S S Chemically labeled proteins of interest Microinjection with micropipet O O O N O N Fluorescent - CO2 CO - S 2 N NH H S …and then manually injected into a cell Some natural fluorophores are genetically encoded proteins http://www.luminescentlabs.org/and can be transplanted into cells as DNA! 228 OSAMU SHIMOMURA, FRANK H.
    [Show full text]
  • Named Organic Reactions (U – Z)
    Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Rxns(U-Z).pdf 1 NAMED ORGANIC REACTIONS (U – Z) © Dr. John Andraos, 2000 - 2014 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ Sakae Uemura Japanese, b. Japan Uemura oxidation Nishimura, T.; Onoue, T.; Ohe, K.; Uemura S. Tetrahedron Lett. 1998 , 39 , 6011 Nishimura, T.; Onoue, T.; Ohe, K.; Uemura S. J. Org. Chem. 1999 , 64 , 6750 Biographical references: Ivar Karl Ugi 5 September 1930 – 29 September 2005 German, b. Kuressaare, Estland, Germany Ugi condensation Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrueckner, C. Angew. Chem. 1959 , 71 , 386 Urban, R.; Ugi, I., Angew. Chem. Int. Engl. Ed . 1975 , 14 , 61 Biographical references: Chemical Research Faculties: An International Directory 1996 , American Chemical Society: Washington, D.C., 1996 Wer ist Wer? Das Deutsche Who’s Who 1999/2000 , Schmidt-Römhild: Lübeck, 1999 Lemmen, P.; Fontain, E.; Bauer, J. Angew. Chem. Int. Ed. 2006 , 45 , 193 Fritz Ullmann 2 July 1875 - 17 March 1939 German, b. Fürth, Germany Ullmann reaction Ullmann, F. Ann. Chem . 1904 , 332 , 38 Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Rxns(U-Z).pdf 2 Biographical references: Meyer, K.H., Helv. Chim. Acta 1940 , 23 , 93 Upjohn reaction Van Rheenen, V.; Kelly, R.C.; Cha, D.Y. Tetrahedron Lett. 1976 , 1973 A. Verley French, b. ? Meerwein-Pondorff-Verley reduction see Hans Leberecht Meerwein Biographical references: Victor Villiger 1 September 1868 - 1934 Swiss, b.
    [Show full text]
  • Otto Hahn Otto Hahn
    R.N. 70269/98 Postal Registration No.: DL-SW-1/4082/15-17 ISSN : 0972-169X Date of posting: 26-27 of advance month Date of publication: 24 of advance month May 2017 Vol. 19 No. 8 Rs. 5.00 Otto Hahn Discoverer of Nuclear Fission Editorial: Consolidating 35 science communication activities in our country Otto Hahn: Discoverer of 34 Nuclear Fission Keep Your Eyes Healthy 31 Phenol: A Serious 30 Environmental Threat Accidental Discoveries in 28 Medical Science Cures for haemorrhoids— 24 Simple treatments and Surgeries Recent developments 21 in science and technology 36 Editorial Consolidating science communication activities in our country Dr. R. Gopichandran It is well known that the National Council of Science Museums of India’s leadership in science technology and innovation (STI) across the Ministry of Culture, Government of India, the National Institute the bilateral and multilateral framework also. The news feature service of Science Communication and Information Resources (NISCAIR) and the portal activity have well defined action plans to reach out to of CSIR, the National Council for Science and Technology fellow institutions and citizens with suitably embellished platform Communication (NCSTC) of the Department of Science and and opportunities for all to deliver together. Technology (DST), Government of India and Vigyan Prasar, also While these are interesting and extremely important, especially of DST, have been carrying out excellent science communication because they respond to the call to upscale and value add science activities over the years. It cannot be denied that the reach has been and technology communication, it is equally important to document quite significant collectively.
    [Show full text]
  • Fluorescein) Injection 10% 2
    NEW ZEALAND DATA SHEET 1. PRODUCT NAME FLUORESCITETM (fluorescein) Injection 10% 2. QUALITATIVE AND QUANTITATIVE COMPOSITION FluoresciteTM injection 10% contains 100 mg/mL fluorescein (equivalent to 113.2 mg/mL fluorescein sodium). 3. PHARMACEUTICAL FORM Solution, sterile pyrogen-free injection. Unpreserved with a pH of 8.0 to 9.8. 4. CLINICAL PARTICULARS 4.1. Therapeutic indications Indicated in diagnostic fluorescein angiography or angioscopy of the fundus and of the iris vasculature. 4.2. Dose and method of administration The usual adult dose is the contents of one FluoresciteTM injection 10% vial (5 mL of 10% solution) via intravenous administration. For children, the dose is calculated on the basis of 8 mg/kg of body weight. Parenteral drug products should be inspected visually for particulate matter and discolouration prior to administration. Do not mix or dilute with other solutions or drugs. Flush intravenous cannulae before and after drugs are injected to avoid physical incompatibility reactions. Product is for single use in one patient only. Discard any residue. Contains no antimicrobial agent. Inject the contents of the vial rapidly into the antecubital vein after taking precautions to avoid extravasation. A syringe filled with FluoresciteTM injection 10% is attached to transparent tubing and a 23 gauge butterfly needle for injection. Insert the needle and draw the patient's blood to the hub of the syringe so that a small air bubble separates the patient's blood in the tubing from the FluoresciteTM injection 10%. With the room lights on, slowly inject the blood back into the vein while watching the skin over the needle tip.
    [Show full text]
  • Fluorophore Referenceguide
    Fluorophore Reference Guide Fluorophore Excitation and Emission Data Laser Lines Broad UV Excitation Excitation Maxima Emission Maxima Emission Filters 290-365 nm LP = Long pass filter DF = Band pass filter Excel. ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ DAPI: 359 nm ____ SP = Short pass filter Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ GFP (Green Fluorescent Protein): 395 nm ____ 400 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Coumarin: 402 nm ____ 425 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ AttoPhos: 440 nm ____ ____ 443 nm: Coumarin 450 nm Good ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Acridine Orange: 460/500 nm ____ ____ 461 nm: DAPI Good __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ R-phycoerythrin: 480/565 nm ____ Excel.
    [Show full text]
  • Wilhelm Ostwald – the Scientist
    ARTICLE-IN-A-BOX Wilhelm Ostwald – The Scientist Friedrich Wilhelm Ostwald was born on September 2, 1853 at Riga, Latvia, Russia to Gottfried Ostwald, a master cooper and Elisabeth Leuckel. He was the second son to his parents who both were descended from German immigrants. He had his early education at Riga. His subsequent education was at the University of Dorpat (now Tartu, Estonia) where he enrolled in 1872. At the university he studied chemistry under the tutelage of Carl ErnstHeinrich Schmidt (1822– 1894) who again was a pupil of Justus von Liebig. Besides Schmidt, Johannes Lemberg (1842– 1902) and Arthur von Oettingen (1836–1920) who were his teachers in physical chemistry were also principal influences. It was in 1877 that he defended his thesis ‘Volumchemische Studien über Affinität’. Subsequently he taught as Privatdozent for a couple of years. During this period, his personal life saw some changes as well. He wedded Helene von Reyher (1854–1946) in 1880. With Helene, he had three sons, and two daughters. Amongst his children, Wolfgang went on to become a famous colloid chemist. On the strength of recommendation from Dorpat, Ostwald was appointed as a Professor at Riga Polytechnicum in 1882. He worked on multiple applications of the law of mass action. He also conducted measurements in chemical reaction kinetics as well as conductivity of solutions. To this end, the pyknometer was developed which was used to determine the density of liquids. He also had a thermostat built and both of these were named after him. He was prolific in his teaching and research which helped establish a school of science at the university.
    [Show full text]