Air Conditioning Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wind- Chimney
WIND-CHIMNEY Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Architecture by Fereshteh Tavakolinia December 2011 WIND-CHIMNEY Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation © 2011 Fereshteh Tavakolinia ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: WIND-CHIMNEY Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation AUTHOR: Fereshteh Tavakolinia DATE SUBMITTED: December 2011 COMMITTEE CHAIR: James A. Doerfler, Associate Department Head COMMITTEE MEMBER: Jacob Feldman, Professor iii WIND-CHIMNEY Integrating the principles of a wind-catcher and a solar chimney to provide natural ventilation Fereshteh Tavakolinia Abstract This paper suggests using a wind-catcher integrated with a solar-chimney in a single story building so that the resident might benefit from natural ventilation, a passive cooling system, and heating strategies; it would also help to decrease energy use, CO2 emissions, and pollution. This system is able to remove undesirable interior heat pollution from a building and provide thermal comfort for the occupant. The present study introduces the use of a solar-chimney with an underground air channel combined with a wind-catcher, all as part of one device. Both the wind-catcher and solar chimney concepts used for improving a room’s natural ventilation are individually and analytically studied. This paper shows that the solar-chimney can be completely used to control and improve the underground cooling system during the day without any electricity. -
Heat Transfer Model of a Rotary Compressor S
Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 1992 Heat Transfer Model of a Rotary Compressor S. K. Padhy General Electric Company Follow this and additional works at: https://docs.lib.purdue.edu/icec Padhy, S. K., "Heat Transfer Model of a Rotary Compressor" (1992). International Compressor Engineering Conference. Paper 935. https://docs.lib.purdue.edu/icec/935 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html HEAT TRANSFER MODEL OF A ROTARY COMPRESSOR Sisir K. Padhy General Electric C_ompany Appliance Park 5-2North, Louisville, KY 40225 ABSTRACT Energy improvements for a rotary compressor can be achieved in several ways such as: reduction of various electrical and mechanical losses, reduction of gas leakage, better lubrication, better surface cooling, reduction of suction gas heating and by improving other parameters. To have a ' better understanding analytical/numerical analysis is needed. Although various mechanical models are presented to understand the mechanical losses, dynamics, thermodynamics etc.; little work has been done to understand the compressor from a heat uansfer stand point In this paper a lumped heat transfer model for the rotary compressor is described. Various heat sources and heat sinks are analyzed and the temperature profile of the compressor is generated. A good agreement is found between theoretical and experimental results. NOMENCLATURE D, inner diameter D. -
Energy Analysis and Carbon Saving Potential of a Complex Heating
European Journal of Sustainable Development Research 2019, 3(1), em0067 ISSN: 2542-4742 Energy Analysis and Carbon Saving Potential of a Complex Heating System with Solar Assisted Heat Pump and Phase Change Material (PCM) Thermal Storage in Different Climatic Conditions Uroš Stritih 1*, Eva Zavrl 1, Halime Omur Paksoy 2 1 University of Ljubljana, SLOVENIA 2 Çukurova Üniversitesi, TURKEY *Corresponding Author: [email protected] Citation: Stritih, U., Zavrl, E. and Paksoy, H. O. (2019). Energy Analysis and Carbon Saving Potential of a Complex Heating System with Solar Assisted Heat Pump and Phase Change Material (PCM) Thermal Storage in Different Climatic Conditions. European Journal of Sustainable Development Research, 3(1), em0067. https://doi.org/10.20897/ejosdr/3930 Published: February 6, 2019 ABSTRACT Building sector still consumes 40% of total energy consumption. Therefore, an improved heating system with Solar Assisted Heat Pump (SAHP) was introduced in order to minimse the energy consumption of the fossil fuels and to lower the carbon dioxide emissions occurring from combustion. An energy analysis of the complex heating system for heating of buildings, consisting of solar collectors (SC), latent heat storage tank (LHS) and heat pump (HP) was performed. The analysis was made for the heating season within the time from October to March for different climatic conditions. These climatic conditions were defined using test reference years (TRY) for cities: Adana, Ljubljana, Rome and Stockholm. The energy analysis was performed using a mathematical model which allowed hourly dynamics calculation of losses and gains for a given system. In Adana, Rome and Ljubljana, it was found that the system could cover 80% of energy from the sun and the heat pump coefficient of performance (COP) reached 5.7. -
Why Does the Wisconsin Boiler and Pressure Vessel Code, 636 41
Why does the Wisconsin Boiler and Pressure Vessel Code, SPS 341, regulate air compressors? By Industry Services Division Boiler and Pressure Vessels Program Almost everyone forms a definite picture in their mind when they hear the term “air compressor.” They probably think of a steel tank of some shape and dimension, with an electric motor, and an air pump mounted on top of the tank. To better understand the requirements of the Wisconsin Boiler Code, SPS 341, pertaining to air compressors, we need to have some common terminology. If a person wanted to purchase an “air compressor” at a hardware or home supply store, they would certainly be offered the equipment described above, consisting of three separate mechanical devices; the motor, the pump, and the storage tank. First, there is an electric motor, used to provide power to the device that pumps air to high pressure. This pumping device is the only part of the unit that is properly called an "air compressor." The compressor delivers high-pressure air to the third and final part of the mechanical assembly, the air storage tank; commonly called a pressure vessel. Because the pressure vessel receives pressurized air, this is the only part of the device described above that is regulated SPS 341. SPS 341 regulates pressure vessels when the pressure vessel's volume capacity is 90 gallons (12 cubic feet) or larger, and the air pressure is 15 pounds per square inch or higher. A typical pressure vessel of this size would be 24 inches in diameter and 48 inches long. In industrial settings, it is common practice to mount very large air compressors in a separate location from the pressure vessels. -
Performance Comparison Between an Absorption-Compression Hybrid Refrigeration System and a Double-Effect Absorption Refrigeration Sys-Tem
Available online at www.sciencedirect.com ScienceDirect Available online at www.sciencedirect.com Procedia Engineering 00 (2017) 000–000 ScienceDirect www.elsevier.com/locate/procedia Procedia Engineering 205 (2017) 241–247 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017, 19- 22 October 2017, Jinan, China Performance Comparison between an Absorption-compression Hybrid Refrigeration System and a Double-effect Absorption Refrigeration Sys-tem Jian Wang, Xianting Li, Baolong Wang, Wei Wu, Pengyuan Song, Wenxing Shi* Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Haidian District, Beijing 100084, China Abstract Conventional absorption refrigeration systems (ARSs), which are mainly driven by heat, have a competitive primary energy efficiency (PEE) compared with chillers driven by electricity. In the typical ARS, a large quantity of high-temperature heat is supplied into the generator, while a substantial amount of low-temperature heat is rejected to the environment from the condenser, it’s a huge waste. In order to decrease the input heat for generator and enhance the performance of conventional ARS, a kind of absorption-compression hybrid refrigeration system recovering condensation heat for generation (RCHG-ARS) was ever proposed. In the present study, the models of both RCHG-ARS and double-effect absorption refrigeration system (DEARS) are established, and the effects of different parameters on them are simulated and compared with each other. As a conclusion, the PEE of RCHG-ARS can be 29.0% higher than that of DEARS, and RCHG-ARS has a wider working conditions than DEARS due to the existence of the compressor. -
Bendix® Ba-922® Sae Universal Flange Air Compressor
compressors BENDIX® BA-922® SAE UNIVERSAL FLANGE AIR COMPRESSOR High output compressed air generation for ultra demanding commercial & industrial applications. Experience Counts Ideal for niche industrial, agricultural, and For generations, Bendix Commercial Vehicle Systems (Bendix CVS) has petroleum applications, the universal flange been leading the way in air charging system experience and expertise. model . More fleets specify our hard-working products and systems than any other. Features an adapter mount to meet SAE J744 Bendix CVS continues its legacy of quality, reliability and durability with hydraulic pump, engine & motor mounting, a next generation high-performing, energy-saving compressor option – and drive dimensions standards; the Bendix® BA-922® SAE Universal Flange compressor. Can be mounted at several different angles An Ideal Solution For A Wide Range Of depending on physical constraints and application necessities; and Unique Applications Utilizing a standard SAE B Flange, and a 15-tooth BB spline for strength, Is driven by an engine PTO, hydraulic motor, the Bendix® BA-922® SAE compressor is designed to address a wide or electric motor. Option for belt drive as well. variety of commercial and industrial applications. Its clock-able front adapter allows the compressor to be easily mounted in several different positions depending on your requirement. Building On The Power Of The Bendix® BA-922® Compressor: High Air Delivery A dependable workhorse, the Bendix® BA-922® compressor provides maximum air delivery even at low speeds. Its high-output, two-cylinder design supplies 32 cfm (cubic feet per minute) displacement at 1,250 rpm (revolutions per minute). Power like this delivers the ability to recharge the system quickly and efficiently – even at low speeds – making it ideal for more demanding brake system applications. -
Humidity Facts August 07
Relative Humidity & A Few Ways to Reduce It Tech to Tech August 07 “Make daily deposits to your box of knowledge, soon it will have many reference cards.”--Randal S. Ripley Does a hot air system remove the Now say the sponge just suddenly moisture from the air circulating through doubled in size. The size of the sponge, its it? ability to hold water and the relative If this question means that it reduces humidity have changed but the amount of the actual moisture content in the air as it water in the sponge is the same. passes over the heat exchanger, the answer When you doubled the size of the is “no”. sponge, you are also doubling the amount of When an air sample is heated, the water it can hold. Since you didn’t add amount of moisture in the air sample anymore water, the relative humidity is now remains the same. This is referred to as the only 50%. absolute humidity and is measured in When air is heat it expands and grains per pound of air or as grains per some increases its ability to hold moisture. This unit volume. It takes 7,000 grains of causes the relative humidity to drop. moisture to make 1 pound of water. The reason our skin, nose and eyes, When water vapor is heated, what furniture, etc, dry out under low humidity do we get? You guessed it, water vapor. conditions is because the human body or There is no change of water quantity; anything else that contains moisture will therefore the amount of water vapor in the release this moisture at a higher rate as the air sample entering the heat exchanger will relative humidity goes lower. -
Solar Heating and Cooling & Solar Air-Conditioning Position Paper
Task 53 New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems) Solar Heating and Cooling & Solar Air-Conditioning Position Paper November 2018 Contents Executive Summary ............................................................. 3 Introduction and Relevance ................................................ 4 Status of the Technology/Industry ...................................... 5 Technical maturity and basic successful rules for design .............. 7 Energy performance for PV and Solar thermally driven systems ... 8 Economic viability and environmental benefits .............................. 9 Market status .................................................................................... 9 Potential ............................................................................. 10 Technical potential ......................................................................... 10 Costs and economics ..................................................................... 11 Market opportunities ...................................................................... 12 Current Barriers ................................................................. 12 Actions Needed .................................................................. 13 This document was prepared by Daniel Neyer1,2 and Daniel Mugnier3 with support by Alexander Thür2, Roberto Fedrizzi4 and Pedro G. Vicente Quiles5. 1 daniel neyer brainworks, Oberradin 50, 6700 Bludenz, Austria 2 University of Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria -
Chapter 8 and 9 – Energy Balances
CBE2124, Levicky Chapter 8 and 9 – Energy Balances Reference States . Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore necessary to define a reference state for each chemical species in the energy balance (the reference state may be predefined if a tabulated set of data is used such as the steam tables). Example . Suppose water vapor at 300 oC and 5 bar is chosen as a reference state at which Hˆ is defined to be zero. Relative to this state, what is the specific enthalpy of liquid water at 75 oC and 1 bar? What is the specific internal energy of liquid water at 75 oC and 1 bar? (Use Table B. 7). Calculating changes in enthalpy and internal energy. Hˆ and Uˆ are state functions , meaning that their values only depend on the state of the system, and not on the path taken to arrive at that state. IMPORTANT : Given a state A (as characterized by a set of variables such as pressure, temperature, composition) and a state B, the change in enthalpy of the system as it passes from A to B can be calculated along any path that leads from A to B, whether or not the path is the one actually followed. Example . 18 g of liquid water freezes to 18 g of ice while the temperature is held constant at 0 oC and the pressure is held constant at 1 atm. The enthalpy change for the process is measured to be ∆ Hˆ = - 6.01 kJ. -
Ammonia As a Refrigerant
1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on Ammonia as a Refrigerant Approved by ASHRAE Board of Directors February 1, 2017 Expires February 1, 2020 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on “Ammonia as a Refrigerant” was developed by the Society’s Refrigeration Committee. Position Document Committee formed on January 8, 2016 with Dave Rule as its chair. Dave Rule, Chair Georgi Kazachki IIAR Dayton Phoenix Group Alexandria, VA, USA Dayton, OH, USA Ray Cole Richard Royal Axiom Engineers, Inc. Walmart Monterey, CA, USA Bentonville, Arkansas, USA Dan Dettmers Greg Scrivener IRC, University of Wisconsin Cold Dynamics Madison, WI, USA Meadow Lake, SK, Canada Derek Hamilton Azane Inc. San Francisco, CA, USA Other contributors: M. Kent Anderson Caleb Nelson Consultant Azane, Inc. Bethesda, MD, USA Missoula, MT, USA Cognizant Committees The chairperson of Refrigerant Committee also served as ex-officio members: Karim Amrane REF Committee AHRI Bethesda, MD, USA i © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL -
Table of Contents
Table of Contents Thermal Expansion Valves 1-57 Solenoid Valves 58-84 Coils 85-87 Industrial Solenoid Valves 88-103 Shut Off Valves 104-105 System Protectors 106-144 Storage Devices 145-147 Oil Controls 148-155 Regulators 156-182 Temperature Pressure Controls 183-199 Page Thermal Expansion Valves 1 A-Series 2 AFA Series 5 HFK Series 7 HF Series 10 TRAE+ Valve 16 TRAE Valve 17 T-Series 19 TLE Valve 23 TI Valve 25 ZZ Valve 26 LCL Valve 28 ESVB Valve 30 EX2 Valve 32 ACP(E) Valve 34 Solenoid Valves 58 50RB 59 100RB 60 200RB 62 240RA 65 500RB 67 540RA 69 710/713RA 71 702RA 73 207CB* 74 3031RB/RC 76 RV Series* 78 703RC 80 Coils 85 Industrial Solenoid Valves 88 202C* 89 203C* 91 204C* 93 210C/211C* 95 214C* 97 222C* 99 314U* 101 Shut Off Valves ABV 104 RD 105 ACK* 134 System Protectors 106 EK 109 EKP 110 ADK 112 BFK 114 BOK-HH 116 ALF* 118 CU - Spun Copper Service Drier* 119 CU - Spun Copper Liquid Line Drier* 120 STAS 121 ADKS 122 *Also Included in the Extended Products Catalog EMERSON CLIMATE TECHNOLOGIES INDEX Page Blocks and Cores 125 BTAS* 126 ASD 128 SFD 129 CSFD 130 ASK-HH 131 ASF 132 APD 133 ACK* 134 HMI 135 AMI 136 A-IHL 138 A-IHN 138 Storage Devices A-AS* 145 AVR* 147 AOR* 148 Oil Controls W-OLC* 149 OMB* 150 A-W/A-F* 151 High Efficiency Oil Separator 152 AOFD* 153 ASF* 153 AOF* 154 AAU 155 Regulators 156 ESR 157 MTB 1 158 IPR 159 EPRB(S) 160 OPR 162 ACP(E) 163 EGR(E) 165 DGR(E) 167 CPH(E) 168 HP/HPC 170 Temperature Pressure Controls 183 TS1 184 PS1 188 PS2 190 FD113 192 PS3 193 FS 196 FF4 198 FF444 199 Troubleshooting Guide 200 Competitive -
A Comprehensive Review of Thermal Energy Storage
sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.