Communications Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Characterization of an Adapted Microbial Population to the Bioconversion of Carbon Monoxide Into Butanol Using Next-Generation Sequencing Technology
Characterization of an adapted microbial population to the bioconversion of carbon monoxide into butanol using next-generation sequencing technology Guillaume Bruant Research officer, Bioengineering group Energy, Mining, Environment - National Research Council Canada Pacific Rim Summit on Industrial Biotechnology and Bioenergy December 8 -11, 2013 Butanol from residue (dry): syngas route biomass → gasification → syngas → catalysis → synfuels (CO, H2, CO2, CH4) (alcohols…) Biocatalysis vs Chemical catalysis potential for higher product specificity may be less problematic when impurities present less energy intensive (low pressure and temperature) Anaerobic undefined mixed culture vs bacterial pure culture mesophilic anaerobic sludge treating agricultural wastes (Lassonde Inc, Rougemont, QC, Canada) PRS 2013 - 2 Experimental design CO Alcohols Serum bottles incubated at Next Generation RDP Pyrosequencing mesophilic temperature Sequencing (NGS) pipeline 35°C for 2 months Ion PGMTM sequencer http://pyro.cme.msu.edu/ sequences filtered CO continuously supplied Monitoring of bacterial and to the gas phase archaeal populations RDP classifier atmosphere of 100% CO, http://rdp.cme.msu.edu/ 1 atm 16S rRNA genes Ion 314TM chip classifier VFAs & alcohol production bootstrap confidence cutoff low level of butanol of 50 % Samples taken after 1 and 2 months total genomic DNA extracted, purified, concentrated PRS 2013 - 3 NGS: bacterial results Bacterial population - Phylum level 100% 80% Other Chloroflexi 60% Synergistetes % -
Phylogenomic Analysis of 589 Metagenome-Assembled Genomes Encompassing All Major Prokaryotic Lineages from the Gut of Higher Termites
Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites Vincent Hervé1, Pengfei Liu1, Carsten Dietrich1, David Sillam-Dussès2, Petr Stiblik3, Jan Šobotník3 and Andreas Brune1 1 Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany 2 Laboratory of Experimental and Comparative Ethology EA 4443, Université Paris 13, Villetaneuse, France 3 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic ABSTRACT “Higher” termites have been able to colonize all tropical and subtropical regions because of their ability to digest lignocellulose with the aid of their prokaryotic gut microbiota. Over the last decade, numerous studies based on 16S rRNA gene amplicon libraries have largely described both the taxonomy and structure of the prokaryotic communities associated with termite guts. Host diet and microenvironmental conditions have emerged as the main factors structuring the microbial assemblages in the different gut compartments. Additionally, these molecular inventories have revealed the existence of termite-specific clusters that indicate coevolutionary processes in numerous prokaryotic lineages. However, for lack of representative isolates, the functional role of most lineages remains unclear. We reconstructed 589 metagenome-assembled genomes (MAGs) from the different Submitted 29 August 2019 gut compartments of eight higher termite species that encompass 17 prokaryotic -
Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade. -
Metabolic Network Percolation Quantifies Biosynthetic Capabilities
RESEARCH ARTICLE Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome David B Bernstein1,2, Floyd E Dewhirst3,4, Daniel Segre` 1,2,5,6,7* 1Department of Biomedical Engineering, Boston University, Boston, United States; 2Biological Design Center, Boston University, Boston, United States; 3The Forsyth Institute, Cambridge, United States; 4Harvard School of Dental Medicine, Boston, United States; 5Bioinformatics Program, Boston University, Boston, United States; 6Department of Biology, Boston University, Boston, United States; 7Department of Physics, Boston University, Boston, United States Abstract The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems. *For correspondence: DOI: https://doi.org/10.7554/eLife.39733.001 [email protected] Competing interests: The authors declare that no Introduction competing interests exist. -
Microbial Communities Associated with the Camel Tick, Hyalomma Dromedarii
www.nature.com/scientificreports OPEN Microbial communities associated with the camel tick, Hyalomma dromedarii: 16S rRNA gene‑based analysis Nighat Perveen, Sabir Bin Muzafar, Ranjit Vijayan & Mohammad Ali Al‑Deeb* Hyalomma dromedarii is an important blood‑feeding ectoparasite that afects the health of camels. We assessed the profle of bacterial communities associated with H. dromedarii collected from camels in the eastern part of the UAE in 2010 and 2019. A total of 100 partially engorged female ticks were taken from tick samples collected from camels (n = 100; 50/year) and subjected to DNA extraction and sequencing. The 16S rRNA gene was amplifed from genomic DNA and sequenced using Illumina MiSeq platform to elucidate the bacterial communities. Principle Coordinates Analysis (PCoA) was conducted to determine patterns of diversity in bacterial communities. In 2010 and 2019, we obtained 899,574 and 781,452 read counts and these formed 371 and 191 operational taxonomic units (OTUs, clustered at 97% similarity), respectively. In both years, twenty‑fve bacterial families with high relative abundance were detected and the following were the most common: Moraxellaceae, Enterobacteriaceae, Staphylococcaceae, Bacillaceae, Corynebacteriaceae, Flavobacteriaceae, Francisellaceae, Muribaculaceae, Neisseriaceae, and Pseudomonadaceae. Francisellaceae and Enterobacteriaceae coexist in H. dromedarii and we suggest that they thrive under similar conditions and microbial interactions inside the host. Comparisons of diversity indicated that microbial communities difered in terms of richness and evenness between 2010 and 2019, with higher richness but lower evenness in communities in 2010. Principle coordinates analyses showed clear clusters separating microbial communities in 2010 and 2019. The diferences in communities suggested that the repertoire of microbial communities have shifted. -
Distinct and Complex Bacterial Profiles in Human Periodontitis and Health Revealed by 16S Pyrosequencing
The ISME Journal (2012) 6, 1176–1185 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing Ann L Griffen1,6, Clifford J Beall2,6, James H Campbell3,6, Noah D Firestone2, Purnima S Kumar4, Zamin K Yang3, Mircea Podar3,5 and Eugene J Leys2 1Division of Pediatric Dentistry and Community Oral Health, The Ohio State University College of Dentistry, Columbus, OH, USA; 2Division of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH, USA; 3Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; 4Division of Periodontology, The Ohio State University College of Dentistry, Columbus, OH, USA and 5Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA Periodontitis has a polymicrobial etiology within the framework of a complex microbial ecosystem. With advances in sequencing technologies, comprehensive studies to elucidate bacterial commu- nity differences have recently become possible. We used 454 sequencing of 16S rRNA genes to compare subgingival bacterial communities from 29 periodontally healthy controls and 29 subjects with chronic periodontitis. Amplicons from both the V1-2 and V4 regions of the 16S gene were sequenced, yielding 1 393 579 sequences. They were identified by BLAST against a curated oral 16S database, and mapped to 16 phyla, 106 genera, and 596 species. 81% of sequences could be mapped to cultivated species. Differences between health- and periodontitis-associated bacterial commu- nities were observed at all phylogenetic levels, and UniFrac and principal coordinates analysis showed distinct community profiles in health and disease. -
Impact of Anaerobic Digestion and Centrifugation/Decanting Processes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo 1 Impact of anaerobic digestion and 2 centrifugation/decanting processes in 3 bacterial communities fractions 4 Short title: “Impact of anaerobic digestion in bacterial communities” 5 Ana Isabel Díaz1, Paula Oulego1, Sergio Collado1, Adriana Laca1, J. Manuel González2 1* 6 and Mario Díaz 7 1Department of Chemical and Environmental Engineering, University of Oviedo, C/ 8 Julián Clavería, s/n, Oviedo, E-33006, Spain 9 2 R&D, COGERSA SAU, C/ La Zoreda, s/n, Gijón, E-33697, Spain 10 *E-mail: [email protected], Phone: +34 985 10 34 39, Fax: +34 985 10 34 34 1 11 ABSTRACT 12 Sewage sludge can be treated by anaerobic processes that frequently are followed by 13 physical separation processes. In this work, a high-throughput sequencing technology, 14 based on variation in the bacterial 16S rRNA gene, has been used to characterise the 15 bacterial populations present in samples taken from different points of an industrial 16 anaerobic digestion process fed with sewage sludge. Relative abundances of phyla and 17 classes throughout the biological process and the subsequent separation steps were 18 determined. Results revealed that the Bacteroidetes, Firmicutes and Proteobacteria phyla 19 were the most representative. However, significant changes in relative abundance were 20 detected along treatments, showing the influence of operational parameters on the 21 distribution of microorganisms throughout the process. After anaerobic digestion, phylum 22 Firmicutes doubled its relative abundance, which seems to indicate that the anaerobic 23 conditions and the nutrients favoured its growth, in contrast to other phyla that almost 24 disappeared. -
Characterization of the Bacterial Communities of Casts from Eisenia
Applied Soil Ecology 98 (2016) 103–111 Contents lists available at ScienceDirect Applied Soil Ecology journal homepage: www.elsevier.com/locate/apsoil Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates a, a b,c,d a Manuel Aira *, Jessica Olcina , Marcos Pérez-Losada , Jorge Domínguez a Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, E-36310. Spain b CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal c Computational Biology Institute, George Washington University, Ashburn, VA 20147, USA d Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA A R T I C L E I N F O A B S T R A C T Article history: Earthworms play a key role during the first stage of decomposition by enhancing the activity of Received 29 June 2015 microorganisms. As organic matter passes throughout the earthworm gut, nutrient pools and microbial Received in revised form 1 October 2015 communities are modified and released in casts. Here we used 16S rRNA pyrosequencing and Accepted 5 October 2015 metagenomic analysis to characterize the bacterial communities of casts from the earthworm Eisenia Available online 27 October 2015 andrei fed with different food sources (cow, horse and pig manure). We found that the bacterial communities of cast strongly depended on the food source ingested by earthworms; although, no Keywords: differences in a-diversity were detected. Bacterial communities of casts were mainly comprised of a Bacterial communities variable amount of OTUs (operational taxonomic unit) belonging to the phyla Proteobacteria, Firmicutes, Bacterial diversity Actinobacteria and Bacteroidetes, with minor contributions from the phyla Verrucomicrobia, Chloroflexi, Bar-coded pyrosequencing Earthworms Hydrogenedentes, Latescibacteria, Planctomycetes and Candidatus Saccharibacteria. -
Schistosoma Mansoni Infection Is Associated with Quantitative and Qualitative Modifications of the Mammalian Intestinal Microbio
www.nature.com/scientificreports OPEN Schistosoma mansoni infection is associated with quantitative and qualitative modifcations of the Received: 4 April 2018 Accepted: 20 July 2018 mammalian intestinal microbiota Published: xx xx xxxx Timothy P. Jenkins1, Laura E. Peachey1, Nadim J. Ajami 2, Andrew S. MacDonald 3, Michael H. Hsieh4,5,6, Paul J. Brindley7, Cinzia Cantacessi 1 & Gabriel Rinaldi7,8 In spite of the extensive contribution of intestinal pathology to the pathophysiology of schistosomiasis, little is known of the impact of schistosome infection on the composition of the gut microbiota of its mammalian host. Here, we characterised the fuctuations in the composition of the gut microbial fora of the small and large intestine, as well as the changes in abundance of individual microbial species, of mice experimentally infected with Schistosoma mansoni with the goal of identifying microbial taxa with potential roles in the pathophysiology of infection and disease. Bioinformatic analyses of bacterial 16S rRNA gene data revealed an overall reduction in gut microbial alpha diversity, alongside a signifcant increase in microbial beta diversity characterised by expanded populations of Akkermansia muciniphila (phylum Verrucomicrobia) and lactobacilli, in the gut microbiota of S. mansoni-infected mice when compared to uninfected control animals. These data support a role of the mammalian gut microbiota in the pathogenesis of hepato-intestinal schistosomiasis and serves as a foundation for the design of mechanistic studies to unravel the complex relationships amongst parasitic helminths, gut microbiota, pathophysiology of infection and host immunity. Schistosomiasis, a major neglected tropical disease, is considered the most problematic of the human helmin- thiases in terms of morbidity and mortality1. -
Mean and SD Archaea Bacteria Genome Size (Mb)
Distributions for kingdom level Primer score mean and SD Genomic GC (%) mean and SD 60 3 2 50 1 Primer score 40 0 Genomic GC (%) Bacteria Bacteria Archaea Archaea kingdom kingdom 16S GC (%) mean and SD Genome size (Mb) mean and SD 65 5 60 4 55 3 16S GC (%) 2 Genome size (Mb) Genome size 50 Bacteria Bacteria Archaea Archaea kingdom kingdom 16S GC (%) Primer score 45 50 55 60 65 0 1 2 3 4 Acidobacteria Acidobacteria Actinobacteria Actinobacteria Aquificae Aquificae Bacteroidetes Bacteroidetes Caldiserica Caldiserica Chlamydiae Chlamydiae Chlorobi Primer scoremeanandSD Chlorobi 16S GC(%)meanandSD Chloroflexi Chloroflexi Chrysiogenetes Chrysiogenetes Crenarchaeota Crenarchaeota Cyanobacteria Cyanobacteria Deferribacteres Deferribacteres Deinococcus−Thermus Deinococcus−Thermus Dictyoglomi Dictyoglomi Elusimicrobia Elusimicrobia phylum phylum Euryarchaeota Euryarchaeota Fibrobacteres Fibrobacteres Firmicutes Firmicutes Fusobacteria Fusobacteria Gemmatimonadetes Gemmatimonadetes Ignavibacteria Ignavibacteria Ignavibacteriae Ignavibacteriae Korarchaeota Korarchaeota Lentisphaerae Lentisphaerae Nanoarchaeota Nanoarchaeota Nitrospirae Nitrospirae Planctomycetes Planctomycetes level phylum for Distributions Proteobacteria Proteobacteria Spirochaetes Spirochaetes Synergistetes Synergistetes Tenericutes Tenericutes Thaumarchaeota Thaumarchaeota Thermodesulfobacteria Thermodesulfobacteria Thermotogae Thermotogae unclassified unclassified Verrucomicrobia Verrucomicrobia Genome size (Mb) Genomic GC (%) 10.0 30 40 50 60 70 2.5 5.0 7.5 Acidobacteria Acidobacteria -
The Response of Soil Nutrients and Microbial Community Structures in Long-Term Tea Plantations and Diverse Agroforestry Intercropping Systems
sustainability Article The Response of Soil Nutrients and Microbial Community Structures in Long-Term Tea Plantations and Diverse Agroforestry Intercropping Systems Guolin Zhang 1,†, Xingbiao Chu 2,†, Hanyang Zhu 3, Dongsheng Zou 4, Longcheng Li 5,* and Linsen Du 4,* 1 College of Architecture and Landscape, Peking University, Beijing 100080, China; [email protected] 2 College of Arts, Guangxi University, Nanning 530004, China; [email protected] 3 Hunan International Intellectual Exchange and Cooperation Center, Changsha 410013, China; [email protected] 4 College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; [email protected] 5 Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China * Correspondence: [email protected] (L.L.); [email protected] (L.D.) † Co-first author. Abstract: During tea cultivation, diverse agroforestry is an important and established intercropping measure, with most studies concentrating on ecological service provision and economic returns. However, the response of soil nutrients and microbial community structures in long-term tea plan- tations with diverse agroforestry intercropping systems is poorly understood. In the present field study (2015), three intercropping agroforestry-tea patterns (Osmanthus-Tea (OT), Michelia-Tea (MT), Citation: Zhang, G.; Chu, X.; Zhu, Osmanthus-Michelia-Tea (OMT)) along with a study control (C) were examined in terms of these two H.; Zou, D.; Li, L.; Du, L. The knowledge gaps. Results showed that, in terms of tea cultivation, the OMT system is more suitable Response of Soil Nutrients and than the OT and MT systems. The OMT system significantly increased the total nitrogen (TN, 16.4%), Microbial Community Structures in Long-Term Tea Plantations and total potassium (TK, 10.5%), available nitrogen (AN, 14.2%), available phosphorus (AP, 26.7%) and Diverse Agroforestry Intercropping soil organic matter (SOM, 28.9%).