Innate Immune Recognition Trigger CCL22 by Breast Tumor Cells”

Total Page:16

File Type:pdf, Size:1020Kb

Innate Immune Recognition Trigger CCL22 by Breast Tumor Cells” Author Manuscript Published OnlineFirst on August 18, 2011; DOI: 10.1158/0008-5472.CAN-11-0573 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Faget et al “innate immune recognition trigger CCL22 by breast tumor cells” Early detection of tumor cells by innate immune cells leads to Treg recruitment through CCL22 production by tumor cells Running title : innate immune recognition trigger CCL22 by breast tumor cells Julien Faget1,2,3, Cathy Biota1,2,3, Thomas Bachelot1,2,3, Michael Gobert1,2,3, Isabelle Treilleux1,2,3, Nadège Goutagny1,2,3, Isabelle Durand1,3, Sophie Léon-Goddard1,2,3, Jean Yves Blay1,2,3, Christophe Caux1,2,3 and Christine Ménétrier-Caux1,2,3 Affiliations : 1- Centre Léon Bérard, Lyon, France, 2- Université Lyon 1, F-69000 Lyon, France, 3- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France Corresponding author: Dr Christine MENETRIER-CAUX, Centre Léon Bérard, CRCL INSERM U1052/CNRS 5286, 28 rue Laennec, 69373 Lyon cedex 08, France; Tel : (33) 4 78 78 27 50; Fax : (33) 4 78 78 27 20; e-mail : [email protected] Key-words : CCL22, Treg, tumor cells, breast carcinoma, recruitment Scientific category: Immunology Conflict of interest disclosure: The authors declare no competing financial interest. Aknowledgments : JF and MG are grant holders of the Ligue Nationale contre le Cancer. This work was financially supported in part by grants from “le comité départemental du Rhône de Ligue Contre le Cancer “,the ARC association (ARC-5074), the Breast Cancer Research Fundation and Institut National du Cancer grant INCA ACI-63-04, ACI 2007-2009. Paper length Title: 120 characters, 19 words Abstract: 294 words Body Text (introduction/mat&meth/results/discussion/Figure legends): 4986 words Figures: 7 Supplementary Figures: 7 Supplementary Figure legends: 331 words References: 49 1/19 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 18, 2011; DOI: 10.1158/0008-5472.CAN-11-0573 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Faget et al “innate immune recognition trigger CCL22 by breast tumor cells” Abstract: In breast carcinomas, patient survival appears to be negatively impacted by the recruitment of regulatory T cells (Treg) within lymphoid aggregates by CCL22. However, the mechanisms underpining this process, which may be of broader significance in solid tumors have yet to be described. In this study, we determined how CCL22 production is controlled in tumor cells. In human breast carcinoma cell lines, CCL22 was secreted at low basal levels that were strongly increased in response to inflammatory signals (TNFα, IFNγ, IL-1β), contrasting with CCL17. Primary breast tumors and CD45+ infiltrating immune cells appeared to cooperate in driving CCL22 secretion, as demonstrated clearly in co-cultures of breast tumor cell lines and peripheral blood mononuclear cells (PBMC) or their supernatants. We determined that monocyte-derived IL-1β and TNFα are key players as monocyte depletion or neutralization of these cytokines attenuated secretion of CCL22. However, when purified monocytes were used, exogenous human IFNγ was also required to generate this response suggesting a role for IFNγ-producing cells within PBMC. In this setting, we found that human IFNγ could be replaced by the addition of (i) IL-2 or K562-activated NK cells or (ii) resting NK cells in the presence of anti-MHC class I antibody. Taken together, our results demonstrate a dialogue between NK and tumor cells leading to IFNγ secretion, which in turn associates with monocyte-derived IL-1β and TNFα to drive production of CCL22 by tumor cells and subsequent recruitment of Treg. As one validation of this conclusion in primary breast tumors, we demonstrated that NK and macrophages tend to colocalize within tumors. In summary, our findings suggest that at early times during tumorigenesis the detection of tumor cells by innate effectors (monocytes, NK) imposes a selection for CCL22 secretion that recruit Treg to evade this early anti-tumor immune response. 2/19 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 18, 2011; DOI: 10.1158/0008-5472.CAN-11-0573 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Faget et al “innate immune recognition trigger CCL22 by breast tumor cells” Introduction Cancer immunosubversion is a process by which tumor cells escape destruction by the immune system through a variety of mechanisms including the production of immunosuppressive cytokines and the alteration of dendritic cells (DC) functions (1, 2). Several studies have shown that immune cells are present and functional in solid tumors and may promote both humoral and cellular anti-tumor immune responses. As an example, high levels of CD8+ T cells within the tumors have been associated with a better clinical prognosis in colorectal cancer (3). However, in most of the cases these T cells are unable to counteract tumor progression. In cancer patients, increased levels of CD4+CD25highFOXP3+ regulatory T cells (Treg), a lymphocyte subset with immuno-suppressive properties, are described in the peripheral blood, the primary tumor microenvironment and in the draining lymph nodes, supporting a role for Treg in cancer-induced immuno-suppression. However their effect on tumor progression varies according to the tumor type in humans. Treg have a negative impact on survival in lung, pancreatic, gastric, liver or ovarian carcinoma patients (4-7) whereas they may exert a beneficial role in B cell lymphoma, head and neck or colon carcinoma (8, 9) or have no impact in colon, prostate, renal or anal squamous cell carcinoma (10, 11) (for review (12)). We recently obtained evidences, in breast carcinoma, that selectively activated Treg accumulation within lymphoid aggregates, but not in the tumor bed, has a negative impact on patients’ survival (13). Elucidating the mechanisms involved in Treg trafficking and accumulation in the breast tumor environment is thereby critical for innovative therapeutic development to fight tumor induced immuno-suppression. Experiments in mice using Treg from CCR4-/- or conditional CCR4 knockout in FOXP3+ Treg compartment have recently identified the critical role of CCR4 in Treg trafficking in secondary lymphoid organs or tissues (14, 15). Curiel’s group strongly suggested a role for CCR4/CCL22 axis in Treg recruitment in ovarian ascitis (4). We recently demonstrated the selective loss of membrane CCR4 on tumor-associated Treg (TA-Treg) consecutive to an active recruitment through CCL22 and that breast tumors lacking CCL22 are not colonized by Treg independently of their CCL17 expression status (13) strongly suggesting the importance of CCL22 in TA-Treg recruitment within breast tumors. CCL22, a CC chemokine produced by myeloid DC (mDC), B cells, macrophages, keratinocytes or epithelial cells (6, 16, 17) and CCL17 closely related to CCL22, produced by monocyte derived DC (MoDC) (18) and keratinocytes (19), are two ligands for CCR4 (6, 20) preferentially expressed on Th2 lymphocytes(21) and Treg (for review (12)). In PBMC, 3/19 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 18, 2011; DOI: 10.1158/0008-5472.CAN-11-0573 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Faget et al “innate immune recognition trigger CCL22 by breast tumor cells” CCL22 is upregulated by IL-4 whereas it is downregulated by IFNγ treatment (22). In contrast, IFNγ favored CCL22 secretion by keratinocytes (16, 23) and intestinal epithelial cells (24). In the present study we demonstrated that breast tumor cells recognition by NK cells leads to their activation and IFNγ secretion that in turn triggers CCL22 production by tumor cells through cooperation with monocyte-derived IL-1β and TNFα. Material and methods Breast tumor cell lines culture: All tumor cell lines used in this study originated from ATCC except CLB-SAV generated in the laboratory. Cell lines were cultured in RPMI 1640 (invitrogen) completed with 10% foetal bovine serum (FBS) (Lonza, Vervier, Belgium), 100U/ml penicillin and 100µg/ml streptomycin (invitrogen)(complete medium) at 37°C in a 5% CO2 incubator. Primary breast tumors: Breast tumor tissues collected at the Centre Léon Bérard after patient informed consent were mechanically dilacerated to obtain “mechanic tumor disaggregation supernatants” and then subjected to enzymatic digestion as previously described(13). Flow cytometry analyses (ADP Cyan, Beckman Coulter) were performed to assess the percentage of NK cells (CD3-NKp46+) and macrophages (CD4+CD68+CD163+) (all from Becton Dickinson except for CD163 from eBiosciences and CD68 from Dako Cytomation) within primary tumor cell suspension after gating on CD45+ cells and data were analyzed with FlowJo analysis software (Tree Star). Immune cells (CD45+) or NK cells (CD3-CD56+) and macrophages (CD4lowCD163+) were purified on single cell suspension from breast primary tumor or ascitis respectively by cell sorting (FACS Aria, Becton Dickinson). Breast tumor supernatants (TumSN): Single-cell suspensions from primary or metastatic (ascitis, pleural effusion) breast
Recommended publications
  • T Cell Binding to Activated Dendritic Cells Cutting Edge
    Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang and Sam T. Hwang This information is current as J Immunol 2001; 167:4791-4795; ; of September 27, 2021. doi: 10.4049/jimmunol.167.9.4791 http://www.jimmunol.org/content/167/9/4791 Supplementary http://www.jimmunol.org/content/suppl/2001/10/11/167.9.4791.DC1 Downloaded from Material References This article cites 32 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/167/9/4791.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. ● Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang, and Sam T. Hwang1 DC. In the periphery, activated, Ag-bearing DC may bind to cog- The binding of a T cell to an Ag-laden dendritic cell (DC) is a nate effector memory T cells (mTC).
    [Show full text]
  • Mechanism of Macrophage-Derived Chemokine/CCL22 Production by Hacat Keratinocytes
    C Yano, et al Ann Dermatol Vol. 27, No. 2, 2015 http://dx.doi.org/10.5021/ad.2015.27.2.152 ORIGINAL ARTICLE Mechanism of Macrophage-Derived Chemokine/CCL22 Production by HaCaT Keratinocytes Chizuko Yano, Hidehisa Saeki1, Mayumi Komine2, Shinji Kagami3, Yuichiro Tsunemi4, Mamitaro Ohtsuki2, Hidemi Nakagawa Department of Dermatology, The Jikei University School of Medicine, 1Department of Dermatology, Nippon Medical School, Tokyo, 2Department of Dermatology, Jichi Medical University, Shimotsuke, 3Department of Dermatology, Kanto Central Hospital, 4Department of Dermatology, Tokyo Women’s Medical University, Tokyo, Japan Background: CC chemokine ligand 17 (CCL17) and CCL22 27(2) 152∼156, 2015) are the functional ligands for CCR4. We previously reported that inhibitors of nuclear factor-kappa B and p38 mi- -Keywords- togen-activated protein kinase (p38 MAPK), but not of ex- Chemokine CCL22, Chemokine CCL17, Epidermal growth tracellular signal-related kinase (ERK), inhibited tumor ne- factor receptor, HaCaT keratinocytes crosis factor (TNF)-α- and interferon (IFN)-γ-induced pro- duction of CCL17 by the human keratinocyte cell line, HaCaT. Further, an inhibitor of epidermal growth factor re- INTRODUCTION ceptor (EGFR) enhanced the CCL17 production by these keratinocytes. Objective: To identify the mechanism under- The macrophage-derived chemokine (MDC)/CC chemo- lying CCL22 production by HaCaT cells. Methods: We inves- kine ligand 22 (CCL22) is one of the functional ligands for tigated the signal transduction pathways by which TNF-α CC chemokine receptor 4 (CCR4) and is a chemoattractant and IFN-γ stimulate HaCaT cells to produce CCL22 by add- for the CCR4-expressing cells such as Th2 cells. We and ing various inhibitors.
    [Show full text]
  • Differential Expression of Interferon-Γ and Chemokine Genes
    Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response Owens et al. Owens et al. Journal of Neuroinflammation 2013, 10:56 http://www.jneuroinflammation.com/content/10/1/56 Owens et al. Journal of Neuroinflammation 2013, 10:56 JOURNAL OF http://www.jneuroinflammation.com/content/10/1/56 NEUROINFLAMMATION RESEARCH Open Access Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response Geoffrey C Owens1,7*, My N Huynh1, Julia W Chang1, David L McArthur1, Michelle J Hickey2, Harry V Vinters2,3, Gary W Mathern1,4,5,6† and Carol A Kruse1,6† Abstract Background: Rasmussen encephalitis (RE) is a rare complex inflammatory disease, primarily seen in young children, that is characterized by severe partial seizures and brain atrophy. Surgery is currently the only effective treatment option. To identify genes specifically associated with the immunopathology in RE, RNA transcripts of genes involved in inflammation and autoimmunity were measured in brain tissue from RE surgeries and compared with those in surgical specimens of cortical dysplasia (CD), a major cause of intractable pediatric epilepsy. Methods: Quantitative polymerase chain reactions measured the relative expression of 84 genes related to inflammation and autoimmunity in 12 RE specimens and in the reference group of 12 CD surgical specimens. Data were analyzed by consensus clustering using the entire dataset, and by pairwise comparison of gene expression levels between the RE and CD cohorts using the Harrell-Davis distribution-free quantile estimator method.
    [Show full text]
  • Plasma Macrophage-Derived Chemokine (CCL22) and Its
    Egypt J Pediatr Allergy Immunol 2005; 3(1): 20-31. Original article Plasma macrophage-derived chemokine (CCL22) and its receptor CCR4 on peripheral blood T lymphocytes of asthmatic children Background: The macrophage-derived chemokine (MDC/CCL22) acts on Mohamed H. Ezzat, CC chemokine receptor-4 (CCR4) to direct trafficking and recruitment of T Karim Y. Shaheen*. helper-2 (TH2) cells into sites of allergic inflammation. It was previously found overexpressed in lesional samples from adult asthmatics. Objective: This study is aimed to investigate the participation of CCR4/MDC axis in the development of TH2-dominated allergen-induced From the Departments childhood asthma in relation to disease activity, attack severity, and of Pediatrics and response to therapy, and to outline its value in differentiating atopic asthma Clinical Pathology*, from infection-associated airway reactivity. Faculty of Medicine, Methods: Proportion of CCR4-expressing peripheral blood T lymphocytes Ain Shams University, + (CCR4 PBTL%) were purified and quantitated by negative selection from Cairo, Egypt. peripheral blood mononuclear cells by flow cytometry, and the concentration of MDC in plasma was measured by ELISA in 32 children with atopic asthma (during exacerbation and remission), as well as in 12 children with acute lower respiratory tract infections (ALRTI), and 20 healthy children serving as controls. Results: The mean plasma MDC level (925±471.5 pg/ml) and CCR4+PBTL% (55.3±23.6%) were significantly higher in asthmatic children during acute attacks in comparison to children with ALRTI (109±27.3 pg/ml and 27.6±7.5%) and healthy controls (99.6±25.6 pg/ml and 24.2±4.1%).
    [Show full text]
  • The Efficacy of Etanercept As Anti-Breast Cancer Treatment Is
    Shirmohammadi et al. BMC Cancer (2020) 20:836 https://doi.org/10.1186/s12885-020-07228-y RESEARCH ARTICLE Open Access The efficacy of etanercept as anti-breast cancer treatment is attenuated by residing macrophages Elnaz Shirmohammadi1, Seyed-Esmaeil Sadat Ebrahimi1, Amir Farshchi2 and Mona Salimi3* Abstract Background: Interaction between microenvironment and breast cancer cells often is not considered at the early stages of drug development leading to failure of many drugs at later clinical stages. Etanercept is a TNF-alpha inhibitor that has been investigated for potential antitumor effect in breast cancer with conflicting results. Methods: Secretome data on MDA-MB-231 cancer cell-line were from public repositories and subjected to gene enrichment analyses. Since MDA-MB-231 cells secrete high levels of Granulocyte-Monocyte Colony Stimulating Factor, which activates macrophages to promote tumor growth, the effect of macrophage co-culturing on anticancer efficacy of Etanercept in breast cancer was evaluated using the Boolean network modeling and in vitro experiments including invasion, cell cycle, Annexin PI, and tetrazolium based viability assays and NFKB activity. Results: The secretome profile of MDA-MB-231 cells was similar to the expression of genes following treatment of breast cancer cells with TNF-α. Accordingly, inhibition of TNF-α by Etanercept decreased MDA-MB-231 cell survival, induced apoptosis and cell cycle arrest in vitro and inhibited NFKB activation. The inhibitory effect of Etanercept on cell viability, cell cycle progression, invasion and induction of apoptosis decreased following co-culturing of the cancer cells with macrophages. The Boolean network modeling of the changes in the dynamics of intracellular signaling pathways revealed NFKB activation by secretome of macrophages, leading to a decreased efficacy of Etanercept, suggesting NFKB inhibition as an alternative approach to inhibit cancer cell growth in the presence of macrophage crosstalk.
    [Show full text]
  • Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration
    Published OnlineFirst October 2, 2015; DOI: 10.1158/0008-5472.CAN-14-3499 Cancer Microenvironment and Immunology Research Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration of Regulatory T Cells and Blocks Cancer Progression David Anz1,2, Moritz Rapp1, Stephan Eiber1,2, Viktor H. Koelzer1, Raffael Thaler1, Sascha Haubner1, Max Knott1, Sarah Nagel1, Michaela Golic1, Gabriela M. Wiedemann1, Franz Bauernfeind3, Cornelia Wurzenberger1, Veit Hornung3,4, Christoph Scholz5, Doris Mayr6, Simon Rothenfusser1, Stefan Endres1, and Carole Bourquin1,7 Abstract The chemokine CCL22 is abundantly expressed in many tion. Mechanistic investigations indicated that Treg blockade types of cancer and is instrumental for intratumoral recruit- was a consequence of reduced intratumoral CCL22 levels ment of regulatory T cells (Treg), an important subset of caused by type I IFN. Notably, stable expression of CCL22 immunosuppressive and tumor-promoting lymphocytes. In abrogated the antitumor effects of treatment with RLR or this study, we offer evidence for a generalized strategy to TLR ligands. Taken together, our findings argue that type I blunt Treg activity that can limit immune escape and promote IFN blocks the Treg-attracting chemokine CCL22 and thus tumor rejection. Activation of innate immunity with Toll-like helps limit the recruitment of Treg to tumors, a finding with receptor (TLR) or RIG-I–like receptor (RLR) ligands prevented implications for cancer immunotherapy. Cancer Res; 75(21); 1– accumulation of Treg in tumors by blocking their immigra- 11. Ó2015 AACR. Introduction effector T-cell function ex vivo (1). Indeed, suppression of anti- cancer immunity is mediated predominantly by intratumoral Treg The chemokine CCL22 is abundantly expressed in the tissue of that suppress CD8 T-cell responses locally at the tumor site (6).
    [Show full text]
  • HIV-1-Suppressive Factors Are Secreted by CD4 T Cells During
    HIV-1-suppressive factors are secreted by CD4؉ T cells during primary immune responses Sayed F. Abdelwahab*†, Fiorenza Cocchi*†, Kenneth C. Bagley*‡, Roberta Kamin-Lewis*†, Robert C. Gallo*†, Anthony DeVico*†, and George K. Lewis*†§ *Institute of Human Virology, University of Maryland Biotechnology Institute, and Departments of †Microbiology and Immunology and ‡Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201 Contributed by Robert C. Gallo, August 8, 2003 CD4؉ T cells are required for immunity against many viral infec- system faithfully mimics the early stages of the antigen-specific tions, including HIV-1 where a positive correlation has been ob- response of naı¨ve human CD4ϩ T cells, including clonal activa- served between strong recall responses and low HIV-1 viral loads. tion, expansion, contraction, and maintenance (unpublished Some HIV-1-specific CD4؉ T cells are preferentially infected with work and ref. 18). We used this system to study the kinetics of HIV-1, whereas others escape infection by unknown mechanisms. production of HIV-1-suppressive factors against both CXCR4 One possibility is that some CD4؉ T cells are protected from (X4) and CCR5 (R5) viruses. CD4ϩ T cells, starting as naı¨ve cells infection by the secretion of soluble HIV-suppressive factors, al- and differentiating in response to different antigens, secreted though it is not known whether these factors are produced during factors that inhibited both HIV-1IIIB (X4) and HIV-1BaL (R5). primary antigen-specific responses. Here, we show that soluble The anti-X4 factor is predominantly the CC chemokine CCL22 suppressive factors are produced against CXCR4 and CCR5 isolates (macrophage-derived chemokine), whereas the anti-R5 factors -of HIV-1 during the primary immune response of human CD4؉ T are CCL3 (macrophage inflammatory protein-1␣), CCL4 (mac cells.
    [Show full text]
  • Potential Inhibitory Effects of the Traditional Herbal Prescription
    MOLECULAR MEDICINE REPORTS 17: 2515-2522, 2018 Potential inhibitory effects of the traditional herbal prescription Hyangso‑san against skin inflammation via inhibition of chemokine production and inactivation of STAT1 in HaCaT keratinocytes HYE‑SUN LIM1, SAE‑ROM YOO2, MEE‑YOUNG LEE2, CHANG‑SEOB SEO2, HYEUN‑KYOO SHIN2 and SOO‑JIN JEONG1,3 1Herbal Medicine Research Division; 2K‑herb Research Center, Korea Institute of Oriental Medicine, Yuseong, Daejeon 34054; 3Korean Medicine Life Science, University of Science and Technology, Yuseong, Daejeon 34113, Republic of Korea Received June 15, 2016; Accepted April 20, 2017 DOI: 10.3892/mmr.2017.8172 Abstract. Inflammatory skin disease are caused by multiple treatment inhibited TNF‑α‑ and IFN‑γ‑induced STAT1 factors, including susceptibility genes, and immunologic and activation. Results from the present study indicated that HSS environmental factors, and are characterized by an increase exhibited inhibitory effects on TNF‑α‑ and IFN‑γ‑mediated in epidermal thickness and the infiltration of macrophages, chemokine production and expression by targeting STAT1 in keratinocytes, mast cells, eosinophils and other inflammatory keratinocytes. Overall, the results indicated that HSS may be cells. Keratinocytes may serve an important role in the patho- a potential candidate therapeutic drug for inflammatory skin genesis of inflammatory skin diseases. The traditional herbal diseases such as atopic dermatitis. decoction Hyangso‑san (HSS) has been used to treat symp- toms of the common cold, including headache, pantalgia, fever Introduction and chills. However, to the best of our knowledge, there is no evidence regarding whether HSS has an effect on inflamma- Skin inflammation is the most common complaint in derma- tory skin diseases.
    [Show full text]
  • Cord Blood Th2-Related Chemokine CCL22 Levels Associate with Elevated Total-Ige During Preschool Age
    Cord blood Th2-related chemokine CCL22 levels associate with elevated total-IgE during preschool age N V Folsgaard, B L K Chawes, K Bonnelykke, Maria Jenmalm and H Bisgaard Linköping University Post Print N.B.: When citing this work, cite the original article. This is the authors’ version of the following article: N V Folsgaard, B L K Chawes, K Bonnelykke, Maria Jenmalm and H Bisgaard, Cord blood Th2-related chemokine CCL22 levels associate with elevated total-IgE during preschool age, 2012, Clinical and Experimental Allergy, (42), 11, 1596-1603. which has been published in final form at: http://dx.doi.org/10.1111/j.1365-2222.2012.04048.x Copyright: Blackwell Publishing http://www.blackwellpublishing.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85850 1 Cord Blood Th2-related Chemokine CCL22 Levels Associate with Elevated Total-IgE during Preschool Age Følsgaard NV, MD1, Chawes BL, MD, PhD 1, Bønnelykke K, MD, PhD 1, Jenmalm MC, PhD2, Bisgaard H, MD, DMsc1. 1. Copenhagen Prospective Studies on Asthma in Childhood; Copenhagen University Hospital, Gentofte, Denmark. 2. Department of Clinical and Experimental Medicine, Linköping University, Sweden Correspondence and request for reprints: Professor Hans Bisgaard Copenhagen Prospective Studies on Asthma in Childhood Copenhagen University Hospital; Gentofte Ledreborg Allé 34 DK-2820 Gentofte Copenhagen Denmark Tel: +45 39 77 7360 Fax: +45 39 77 7129 E-mail: [email protected] Website: www.copsac.com 2 Source of funding and conflict of interest: COPSAC is funded by private and public research funds all listed on www.copsac.com.
    [Show full text]
  • Expression and Regulation of Chemokines in Murine and Human Type 1 Diabetes Suparna A
    ORIGINAL ARTICLE Expression and Regulation of Chemokines in Murine and Human Type 1 Diabetes Suparna A. Sarkar,1 Catherine E. Lee,1 Francisco Victorino,1,2 Tom T. Nguyen,1 Jay A. Walters,1 Adam Burrack,1,2 Jens Eberlein,1 Steven K. Hildemann,3 and Dirk Homann1,2,4 fl – More than one-half of the ~50 human chemokines have been in ammation (1 3), and multiple chemokines and chemokine associated with or implicated in the pathogenesis of type 1 receptors have emerged as pertinent contributors to the diabetes, yet their actual expression patterns in the islet environ- natural history of various autoimmune disorders, including ment of type 1 diabetic patients remain, at present, poorly defined. type 1 diabetes; potential biomarkers; and possible drug Here, we have integrated a human islet culture system, murine targets (4–8). In fact, work conducted over the past 20 models of virus-induced and spontaneous type 1 diabetes, and the years has implicated more than one-half of all human and/ histopathological examination of pancreata from diabetic organ or rodent chemokines in the pathogenesis of type 1 diabetes donors with the goal of providing a foundation for the informed and/or its complications, although much of the work pub- selection of potential therapeutic targets within the chemokine/ receptor family. Chemokine (C-C motif) ligand (CCL) 5 (CCL5), lished to date on human type 1 diabetes and chemokines CCL8, CCL22, chemokine (C-X-C motif) ligand (CXCL) 9 (CXCL9), remains limited to genetic association studies and che- CXCL10, and chemokine (C-X3-C motif) ligand (CX3CL) 1 (CX3CL1) mokine/receptor analyses in peripheral blood (9–23).
    [Show full text]
  • Immunomodulatory Effect of Imiquimod Through CCL22
    ANTICANCER RESEARCH 37 : 3461-3471 (2017) doi:10.21873/anticanres.11714 Immunomodulatory Effect of Imiquimod Through CCL22 Produced by Tumor-associated Macrophages in B16F10 Melanomas SADANORI FURUDATE*, TAKU FUJIMURA*, YUMI KAMBAYASHI, AYA KAKIZAKI, TAKANORI HIDAKA and SETSUYA AIBA Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan Abstract. Background/Aim: Tumor-associated macrophages the tumor site. Conclusion: Our results suggest a possible (TAMs), together with splenic CD11b + cells, help maintain the mechanism for the antitumor immune response induced by tumor microenvironment. The immunomodulatory compound IQM through tumor-associated macrophages. imiquimod (IQM) stimulates innate immune cells, including macrophages, to induce antitumor effects. In order to elucidate Imiquimod (IQM) is an immunomodulatory, small-molecule the effects of IQM on the tumor microenvironment, we compound in the imidazoquinoline family that induces antitumor investigated the immunomodulatory effect of IQM during effects through Toll-like receptor 7 (TLR7). As a TLR7 agonist, melanoma growth by using the B16F10 melanoma model. IQM stimulates innate immunity, including tumor-associated Materials and Methods: To elucidate the immunomodulatory macrophages (TAMs) (1-3). In an experimental murine model, effects of IQM on the tumor microenvironment, we isolated the addition of IQM to cryosurgery increased the cellular CD11b + TAMs and splenic CD11b + cells and evaluated the immune response against tumor antigens, leading to
    [Show full text]
  • E000764.Full.Pdf
    Open access Original research J Immunother Cancer: first published as 10.1136/jitc-2020-000764 on 26 November 2020. Downloaded from Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4 Lisa A Marshall,1 Sachie Marubayashi,2 Aparna Jorapur,1 Scott Jacobson,1 Mikhail Zibinsky,1 Omar Robles,1 Dennis Xiaozhou Hu,3 Jeffrey J Jackson,1 Deepa Pookot,1 Jerick Sanchez,1 Martin Brovarney,1 Angela Wadsworth,1 David Chian,4 David Wustrow,1 Paul D Kassner,1 Gene Cutler,1 Brian Wong,1 1 1 Dirk G Brockstedt, Oezcan Talay To cite: Marshall LA, ABSTRACT Statement of significance CPI upregulates CCL17 and Marubayashi S, Jorapur A, et al. Background Checkpoint inhibitors (CPIs) such as anti- CCL22 expression in tumors and increases Treg migration Tumors establish resistance to PD(L)-1 and anti- CTLA-4 antibodies have resulted in into the TME. Pharmacological antagonism of the CCR4 immunotherapy by regulating unprecedented rates of antitumor responses and extension receptor effectively inhibits T recruitment and results T recruitment via CCR4. reg reg of survival of patients with a variety of cancers. But in enhanced antitumor efficacy either as single agent in Journal for ImmunoTherapy some patients fail to respond or initially respond but later CCR4 ligandhigh tumors or in combination with CPIs in of Cancer 2020;8:e000764. low doi:10.1136/jitc-2020-000764 relapse as they develop resistance to immune therapy. CCR4 ligand tumors. One of the tumor- extrinsic mechanisms for resistance to immune therapy is the accumulation of regulatory T cells ► Additional material is published online only.
    [Show full text]