T Cell Binding to Activated Dendritic Cells Cutting Edge

Total Page:16

File Type:pdf, Size:1020Kb

T Cell Binding to Activated Dendritic Cells Cutting Edge Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang and Sam T. Hwang This information is current as J Immunol 2001; 167:4791-4795; ; of September 27, 2021. doi: 10.4049/jimmunol.167.9.4791 http://www.jimmunol.org/content/167/9/4791 Supplementary http://www.jimmunol.org/content/suppl/2001/10/11/167.9.4791.DC1 Downloaded from Material References This article cites 32 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/167/9/4791.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. ● Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang, and Sam T. Hwang1 DC. In the periphery, activated, Ag-bearing DC may bind to cog- The binding of a T cell to an Ag-laden dendritic cell (DC) is a nate effector memory T cells (mTC). In organ culture, mTC-DC critical step of the acquired immune response. Herein, we ad- conjugates have been observed to emigrate from skin of healthy dress whether a DC-produced chemokine can induce the arrest donors (12) and can be found in afferent lymph as well (13). of T cells on DC under dynamic flow conditions. Ag-primed T Chemokines represent a growing family of chemoattractant pro- Downloaded from cells and a T cell line were observed to rapidly (ϳ0.5 s) bind to teins that bind to G protein-coupled (pertussis toxin-sensitive) immobilized DC at low shear stress (0.1–0.2 dynes/cm2)ina transmembrane receptors (14). It has been shown that activated DC pertussis toxin-sensitive fashion. Quantitatively, Ag-primed T may secrete a variety of chemokines (15), including the CCR4 cells displayed 2- to 3-fold enhanced binding to DC compared ligands: CCL22/macrophage-derived chemokine (MDC) (16, 17), with unprimed T cells (p < 0.01). In contrast to naive T cells, and CCL17/thymus and activation-regulated chemokine (TARC) primed T cell arrest was largely inhibited by pertussis toxin, (18, 19). Furthermore, both CCL22 and CCL17 have been shown neutralization of the CC chemokine, macrophage-derived che- to attract Ag-activated (but not naive) T cells in chemotaxis assays http://www.jimmunol.org/ mokine (CCL22), or by desensitization of the CCL22 receptor, in vitro (18, 20). Although integrins appear to be important for T CCR4. Our results demonstrate that DC-derived CCL22 in- cell-DC binding, integrins normally are found in an inactive bind- duces rapid binding of activated T cells under dynamic con- ing state, but can be triggered by chemokines to increase both ditions and that Ag-primed and naive T cells fundamentally affinity and avidity for ligands such as ICAM-1 (21). Therefore, we differ with respect to chemokine-dependent binding to hypothesized that DC-produced chemokines may play critical DC. The Journal of Immunology, 2001, 167: 4791–4795. roles in DC-T cell binding. To test this hypothesis, we immobilized DC to the floor of a parallel plate flow chamber, introduced T cells under low shear by guest on September 27, 2021 cell activation by APCs such as macrophages, B cells, stress, and observed the rapid binding of T cells to DC under and dendritic cells (DC)2 is critical to the development of conditions that could distinguish durable, shear-resistant adhesion T the acquired immune response (1). Such activation occurs from transient juxtaposition. In contrast to the binding of naive T (2) through the development of an intricate assembly of adhesion cells to DC, the binding of Ag-primed T cells to DC was sensitive and signaling molecules at the interface of the APC and T cell to pertussis toxin (PTX) and mediated by CCR4. Thus, chemo- termed the “immunological synapse” (3) or supramolecular acti- kine-mediated binding demonstrated by primed T cells may rep- vation cluster (4). In order for the immunological synapse to form, resent a selective mechanism for allowing Ag-bearing APC to the T cell must transition from a migratory to a stationary state. preferentially engage activated (or memory) vs naive T cells. Adhesive interactions between the T cell and DC, in part stimu- lated by engagement of the TCR (5, 6), have been reported to be Materials and Methods mediated by several adhesion molecules and their corresponding Reagents, animals, cell lines receptors, which include LFA-1/ICAM-1,-2, -3, CD2/LFA-3, and Recombinant murine chemokines/cytokines were purchased from Pepro- DC-SIGN/ICAM-3 (7–10). Tech (Rocky Hill, NJ) unless otherwise specified. Anti-murine CCL22, T cells may potentially interact with DC at several distinct sites. CXCL13, and CCL11 Abs (all neutralizing, affinity-purified goat IgG) Naive as well as a central memory subset of T cells (11), both were purchased from R&D Systems (Minneapolis, MN). BALB/c and DO11.10 (OVA peptide 323–339-specific) TCR-trans- characterized by expression of CD62L (L-selectin) and CCR7, re- genic mice on a BALB/c background (22) (The Jackson Laboratory, Bar circulate through lymph nodes (LN) and interact with Ag-bearing Harbor, ME) were used in institutionally approved protocols. The T cell hybridoma cell line, B 9.1, is specific for the MHC II-restricted, immuno- dominant hen egg-white lysozyme (HEL) peptide 103–117 (23). BALB/c bone marrow-derived DC (BMDC) were generated as described (24) and Dermatology Branch, National Cancer Institute, Bethesda, MD 20892 cultured in complete medium with RPMI 1640, 5% FCS, IL-4 (10 ng/ml), Received for publication July 30, 2001. Accepted for publication September 4, 2001. GM-CSF (10 ng/ml), and Flt3 ligand (R&D Systems). BMDC were used The costs of publication of this article were defrayed in part by the payment of page on day 9–12 when Ͼ83% of nonadherent cells expressed CD11c, CD40, charges. This article must therefore be hereby marked advertisement in accordance CD80, CD86, and I-Ad by flow cytometry. BMDC showed a 6-fold re- with 18 U.S.C. Section 1734 solely to indicate this fact. sponse to CCL21 vs PBS in chemotaxis assays and no response to CCL5. 1 Address correspondence and reprint requests to Dr. Sam T. Hwang, Dermatology Real-time quantitative RT-PCR was performed as described (25). Branch, National Cancer Institute, Building 10, Room 12N246, 10 Center Drive, In vivo-enriched OVA-primed T cells were generated by s.c. immuniz- Bethesda, MD 20892-1908. E-mail address: [email protected] ing DO11.10-transgenic mice with OVA peptide 323–339 (200 ␮g per 2 mouse) in CFA. Five to 7 days after the immunization, cells from enlarged Abbreviations used in this paper: DC, dendritic cell; LN, lymph node; BMDC, bone ϩ ϩ marrow-derived DC; mTC, memory T cell; nTC, naive T cell; MDC, macrophage- draining LN were pooled and depleted of CD19 and CD40 cells by derived chemokine; TARC, thymus and activation-regulated chemokine; PTX, per- immunomagnetic bead depletion. Naive OVA-specific T cells were iso- tussis toxin; HEL, hen egg-white lysozyme. lated from LN and spleen of DO11.10 mice by identical depletion methods. Copyright © 2001 by The American Association of Immunologists 0022-1767/01/$02.00 ● 4792 CUTTING EDGE: CCR4-MEDIATED T CELL BINDING TO DC After selection, the resulting cells were ϳ97% CD3eϩ cells and ϳ82% CD4ϩ cells by flow cytometric analysis. In vitro flow arrest assay For immobilization of BMDC, a droplet of anti-mouse CD40 (HM40-3, 10 ␮g/ml in 100 ␮l PBS; BD PharMingen, San Diego, CA) was first centrally applied to 35-mm plastic dishes at 4°C overnight and then blocked with PBS/1% BSA for 45 min at 25°C. Day 9–12 BMDC (1 ϫ 106/ml, 100 ␮l for each dish) were then applied to the anti-CD40-coated plates for 2.5 h at 4°C. For quantitative analysis of T cell arrest, B 9.1 cells and T cells were labeled with calcein-AM (Molecular Probes, Eugene, OR) and ex- posed to different reagents as indicated: chemokines (25 ng/ml for 30 min at 37°C), anti-chemokines Abs (ant-CCL11, anti-CCL22, and anti- CXCL13 at 2.5 ␮g/ml for 5 min before flow experiments at 20°C), and PTX (100 ng/ml for2hat37°C; Calbiochem, La Jolla, CA). T cells (1 ϫ 106/ml) were resuspended into a 12-ml syringe and introduced into a par- allel plate flow chamber (Glycotech, Rockville, MD) that was affixed to the dish containing immobilized DC. Flow was adjusted to shear stresses of 0.2 (for B 9.1 cells) and 0.1 dynes/cm2 (for DO11.10-derived T cells). Four min after cells entered the chamber, a series of eight images from randomly 2 selected fields (1.18 mm /field) in different quadrants of the dish were Downloaded from video-captured using a ϫ4 objective under fluorescent illumination.
Recommended publications
  • Mechanism of Macrophage-Derived Chemokine/CCL22 Production by Hacat Keratinocytes
    C Yano, et al Ann Dermatol Vol. 27, No. 2, 2015 http://dx.doi.org/10.5021/ad.2015.27.2.152 ORIGINAL ARTICLE Mechanism of Macrophage-Derived Chemokine/CCL22 Production by HaCaT Keratinocytes Chizuko Yano, Hidehisa Saeki1, Mayumi Komine2, Shinji Kagami3, Yuichiro Tsunemi4, Mamitaro Ohtsuki2, Hidemi Nakagawa Department of Dermatology, The Jikei University School of Medicine, 1Department of Dermatology, Nippon Medical School, Tokyo, 2Department of Dermatology, Jichi Medical University, Shimotsuke, 3Department of Dermatology, Kanto Central Hospital, 4Department of Dermatology, Tokyo Women’s Medical University, Tokyo, Japan Background: CC chemokine ligand 17 (CCL17) and CCL22 27(2) 152∼156, 2015) are the functional ligands for CCR4. We previously reported that inhibitors of nuclear factor-kappa B and p38 mi- -Keywords- togen-activated protein kinase (p38 MAPK), but not of ex- Chemokine CCL22, Chemokine CCL17, Epidermal growth tracellular signal-related kinase (ERK), inhibited tumor ne- factor receptor, HaCaT keratinocytes crosis factor (TNF)-α- and interferon (IFN)-γ-induced pro- duction of CCL17 by the human keratinocyte cell line, HaCaT. Further, an inhibitor of epidermal growth factor re- INTRODUCTION ceptor (EGFR) enhanced the CCL17 production by these keratinocytes. Objective: To identify the mechanism under- The macrophage-derived chemokine (MDC)/CC chemo- lying CCL22 production by HaCaT cells. Methods: We inves- kine ligand 22 (CCL22) is one of the functional ligands for tigated the signal transduction pathways by which TNF-α CC chemokine receptor 4 (CCR4) and is a chemoattractant and IFN-γ stimulate HaCaT cells to produce CCL22 by add- for the CCR4-expressing cells such as Th2 cells. We and ing various inhibitors.
    [Show full text]
  • Differential Expression of Interferon-Γ and Chemokine Genes
    Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response Owens et al. Owens et al. Journal of Neuroinflammation 2013, 10:56 http://www.jneuroinflammation.com/content/10/1/56 Owens et al. Journal of Neuroinflammation 2013, 10:56 JOURNAL OF http://www.jneuroinflammation.com/content/10/1/56 NEUROINFLAMMATION RESEARCH Open Access Differential expression of interferon-γ and chemokine genes distinguishes Rasmussen encephalitis from cortical dysplasia and provides evidence for an early Th1 immune response Geoffrey C Owens1,7*, My N Huynh1, Julia W Chang1, David L McArthur1, Michelle J Hickey2, Harry V Vinters2,3, Gary W Mathern1,4,5,6† and Carol A Kruse1,6† Abstract Background: Rasmussen encephalitis (RE) is a rare complex inflammatory disease, primarily seen in young children, that is characterized by severe partial seizures and brain atrophy. Surgery is currently the only effective treatment option. To identify genes specifically associated with the immunopathology in RE, RNA transcripts of genes involved in inflammation and autoimmunity were measured in brain tissue from RE surgeries and compared with those in surgical specimens of cortical dysplasia (CD), a major cause of intractable pediatric epilepsy. Methods: Quantitative polymerase chain reactions measured the relative expression of 84 genes related to inflammation and autoimmunity in 12 RE specimens and in the reference group of 12 CD surgical specimens. Data were analyzed by consensus clustering using the entire dataset, and by pairwise comparison of gene expression levels between the RE and CD cohorts using the Harrell-Davis distribution-free quantile estimator method.
    [Show full text]
  • HIV-1 Tat Protein Mimicry of Chemokines
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13153–13158, October 1998 Immunology HIV-1 Tat protein mimicry of chemokines ADRIANA ALBINI*, SILVANO FERRINI*, ROBERTO BENELLI*, SABRINA SFORZINI*, DANIELA GIUNCIUGLIO*, MARIA GRAZIA ALUIGI*, AMANDA E. I. PROUDFOOT†,SAMI ALOUANI†,TIMOTHY N. C. WELLS†, GIULIANO MARIANI‡,RONALD L. RABIN§,JOSHUA M. FARBER§, AND DOUGLAS M. NOONAN*¶ *Centro di Biotecnologie Avanzate, Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; †Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development, 14 chemin des Aulx, 1228 Plan-les Ouates, Geneva, Switzerland; ‡Dipartimento di Medicina Interna, Medicina Nucleare, University of Genova, Viale Benedetto XV, 6, 16132 Genoa, Italy; and §National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N228 MSC 1888, Bethesda, MD 20892 Edited by Anthony S. Fauci, National Institute of Allergy and Infectious Diseases, Bethesda, MD, and approved August 25, 1998 (received for review June 24, 1998) ABSTRACT The HIV-1 Tat protein is a potent chemoat- ceptors for some dual tropic HIV-1 strains (10, 11). A CCR2 tractant for monocytes. We observed that Tat shows conserved polymorphism has been found to correlate with delayed amino acids corresponding to critical sequences of the che- progression to AIDS (12, 13). mokines, a family of molecules known for their potent ability We report here that the HIV-1 Tat protein and the peptide to attract monocytes. Synthetic Tat and a peptide (CysL24–51) encompassing the cysteine-rich and core regions induce per- encompassing the ‘‘chemokine-like’’ region of Tat induced a tussis toxin sensitive Ca21 fluxes in monocytes.
    [Show full text]
  • Comprehensive Identification of Genes Driven by ERV9-Ltrs Reveals TNFRSF10B As a Re-Activatable Mediator of Testicular Cancer Cell Death
    Cell Death and Differentiation (2016) 23, 64–75 & 2016 Macmillan Publishers Limited All rights reserved 1350-9047/16 www.nature.com/cdd Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death U Beyer1,2,5, SK Krönung1,5, A Leha3, L Walter4 and M Dobbelstein*,1 The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3’RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner.
    [Show full text]
  • Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells
    Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells This information is current as Hyung W. Lim, Jeeho Lee, Peter Hillsamer and Chang H. of September 28, 2021. Kim J Immunol 2008; 180:122-129; ; doi: 10.4049/jimmunol.180.1.122 http://www.jimmunol.org/content/180/1/122 Downloaded from References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/1/122.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3؉ Regulatory T Cells1 Hyung W. Lim,* Jeeho Lee,* Peter Hillsamer,† and Chang H. Kim2* It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites.
    [Show full text]
  • Cytokine Modulators As Novel Therapies for Airway Disease
    Copyright #ERS Journals Ltd 2001 Eur Respir J 2001; 18: Suppl. 34, 67s–77s European Respiratory Journal DOI: 10.1183/09031936.01.00229901 ISSN 0904-1850 Printed in UK – all rights reserved ISBN 1-904097-20-0 Cytokine modulators as novel therapies for airway disease P.J. Barnes Cytokine modulators as novel therapies for airway disease. P.J. Barnes. #ERS Correspondence: P.J. Barnes Journals Ltd 2001. Dept of Thoracic Medicine ABSTRACT: Cytokines play a critical role in orchestrating and perpetuating National Heart & Lung Institute inflammation in asthma and chronic obstructive pulmonary disease (COPD), and Imperial College Dovehouse Street several specific cytokine and chemokine inhibitors are now in development for the future London SW3 6LY therapy of these diseases. UK Anti-interleukin (IL)-5 is very effective at reducing peripheral blood and airway Fax: 0207 3515675 eosinophil numbers, but does not appear to be effective against symptomatic asthma. Inhibition of IL-4 with soluble IL-4 receptors has shown promising early results in Keywords: Chemokine receptor asthma. Inhibitory cytokines, such as IL-10, interferons and IL-12 are less promising, cytokine as systemic delivery causes side-effects. Inhibition of tumour necrosis factor-a may be interleukin-4 useful in severe asthma and for treating severe COPD with systemic features. interleukin-5 interleukin-9 Many chemokines are involved in the inflammatory response of asthma and COPD interleukin-10 and several low-molecular-weight inhibitors of chemokine receptors are in development. CCR3 antagonists (which block eosinophil chemotaxis) and CXCR2 antagonists (which Received: March 26 2001 block neutrophil and monocyte chemotaxis) are in clinical development for the Accepted April 25 2001 treatment of asthma and COPD respectively.
    [Show full text]
  • Pathway-Selective Suppression of Chemokine Receptor Signaling in B Cells by LPS Through Downregulation of PLC-B2
    Cellular & Molecular Immunology (2010) 7, 428–439 ß 2010 CSI and USTC. All rights reserved 1672-7681/10 $32.00 www.nature.com/cmi RESEARCH ARTICLE Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-b2 Aiko-Konno Shirakawa1, Fang Liao1, Hongwei H Zhang1, Michael N Hedrick1, Satya P Singh1, Dianqing Wu2 and Joshua M Farber1 Lymphocyte activation leads to changes in chemokine receptor expression. There are limited data, however, on how lymphocyte activators can alter chemokine signaling by affecting downstream pathways. We hypothesized that B cell-activating agents might alter chemokine responses by affecting downstream signal transducers, and that such effects might differ depending on the activator. We found that activating mouse B cells using either anti-IgM or lipopolysaccharide (LPS) increased the surface expression of CCR6 and CCR7 with large increases in chemotaxis to their cognate ligands. By contrast, while anti-IgM also led to enhanced calcium responses, LPS-treated cells showed only small changes in calcium signaling as compared with cells that were freshly isolated. Of particular interest, we found that LPS caused a reduction in the level of B-cell phospholipase C (PLC)-b2 mRNA and protein. Data obtained using PLC-b22/2 mice showed that the b2 isoform mediates close to one-half the chemokine-induced calcium signal in resting and anti-IgM-activated B cells, and we found that calcium signals in the LPS-treated cells were boosted by increasing the level of PLC-b2 using transfection, consistent with a functional effect of downregulating PLC-b2. Together, our results show activator-specific effects on responses through B-cell chemokine receptors that are mediated by quantitative changes in a downstream signal-transducing protein, revealing an activity for LPS as a downregulator of PLC-b2, and a novel mechanism for controlling chemokine-induced signals in lymphocytes.
    [Show full text]
  • A Phase I Study of the Anti-CC Chemokine Receptor 4 Antibody
    Published OnlineFirst August 27, 2019; DOI: 10.1158/1078-0432.CCR-19-1090 Clinical Trials: Immunotherapy Clinical Cancer Research A Phase I Study of the Anti-CC Chemokine Receptor 4 Antibody, Mogamulizumab, in Combination with Nivolumab in Patients with Advanced or Metastatic Solid Tumors Toshihiko Doi1, Kei Muro2, Hiroshi Ishii3, Terufumi Kato4, Takahiro Tsushima5, Mitsuhiro Takenoyama6, Satoshi Oizumi7, Kazuto Gemmoto8, Hideaki Suna8, Kouki Enokitani9, Tetsuyoshi Kawakami9, Hiroyoshi Nishikawa10,11, and Noboru Yamamoto12 Abstract Purpose: Regulatory T cells (Tregs) expressing CC chemo- part and 90 in the expansion part. No dose-limiting kine receptor 4 (CCR4) can suppress antitumor immune toxicities were observed in the dose-escalation part. Grade responses and are associated with poor prognoses in several 3/4 treatment-related adverse events (TRAEs) occurred in cancers. We assessed the safety and efficacy of combined 29% of patients in the expansion part (no grade 5 TRAEs). mogamulizumab (anti-CCR4 antibody) and nivolumab The most frequent TRAEs were rash (39%), rash maculopap- [anti-programmed death-1 (PD-1) antibody] in immunother- ular (20%), diarrhea (13%), stomatitis (12%), and pruritus apy-na€ve patients with advanced/metastatic solid tumors. (11%). There were four (27%) confirmed tumor responses Patients and Methods: This study (NCT02476123) com- among 15 patients with hepatocellular carcinoma, and prised dose-escalation (3þ3 design) and expansion parts. one confirmed and two unconfirmed responses among 15 Patients received nivolumab (3.0 mg/kg) every 2 weeks, with patients with pancreatic adenocarcinoma. During treatment, þ À mogamulizumab (0.3 or 1.0 mg/kg in dose escalation, populations of effector Tregs (CD4 CD45RA FoxP3high) þ 1.0 mg/kg in expansion) once weekly for 4 weeks, then every decreased and CD8 T cells in tumor-infiltrating lymphocytes 2 weeks, until progression or unacceptable toxicity.
    [Show full text]
  • Plasma Macrophage-Derived Chemokine (CCL22) and Its
    Egypt J Pediatr Allergy Immunol 2005; 3(1): 20-31. Original article Plasma macrophage-derived chemokine (CCL22) and its receptor CCR4 on peripheral blood T lymphocytes of asthmatic children Background: The macrophage-derived chemokine (MDC/CCL22) acts on Mohamed H. Ezzat, CC chemokine receptor-4 (CCR4) to direct trafficking and recruitment of T Karim Y. Shaheen*. helper-2 (TH2) cells into sites of allergic inflammation. It was previously found overexpressed in lesional samples from adult asthmatics. Objective: This study is aimed to investigate the participation of CCR4/MDC axis in the development of TH2-dominated allergen-induced From the Departments childhood asthma in relation to disease activity, attack severity, and of Pediatrics and response to therapy, and to outline its value in differentiating atopic asthma Clinical Pathology*, from infection-associated airway reactivity. Faculty of Medicine, Methods: Proportion of CCR4-expressing peripheral blood T lymphocytes Ain Shams University, + (CCR4 PBTL%) were purified and quantitated by negative selection from Cairo, Egypt. peripheral blood mononuclear cells by flow cytometry, and the concentration of MDC in plasma was measured by ELISA in 32 children with atopic asthma (during exacerbation and remission), as well as in 12 children with acute lower respiratory tract infections (ALRTI), and 20 healthy children serving as controls. Results: The mean plasma MDC level (925±471.5 pg/ml) and CCR4+PBTL% (55.3±23.6%) were significantly higher in asthmatic children during acute attacks in comparison to children with ALRTI (109±27.3 pg/ml and 27.6±7.5%) and healthy controls (99.6±25.6 pg/ml and 24.2±4.1%).
    [Show full text]
  • The Efficacy of Etanercept As Anti-Breast Cancer Treatment Is
    Shirmohammadi et al. BMC Cancer (2020) 20:836 https://doi.org/10.1186/s12885-020-07228-y RESEARCH ARTICLE Open Access The efficacy of etanercept as anti-breast cancer treatment is attenuated by residing macrophages Elnaz Shirmohammadi1, Seyed-Esmaeil Sadat Ebrahimi1, Amir Farshchi2 and Mona Salimi3* Abstract Background: Interaction between microenvironment and breast cancer cells often is not considered at the early stages of drug development leading to failure of many drugs at later clinical stages. Etanercept is a TNF-alpha inhibitor that has been investigated for potential antitumor effect in breast cancer with conflicting results. Methods: Secretome data on MDA-MB-231 cancer cell-line were from public repositories and subjected to gene enrichment analyses. Since MDA-MB-231 cells secrete high levels of Granulocyte-Monocyte Colony Stimulating Factor, which activates macrophages to promote tumor growth, the effect of macrophage co-culturing on anticancer efficacy of Etanercept in breast cancer was evaluated using the Boolean network modeling and in vitro experiments including invasion, cell cycle, Annexin PI, and tetrazolium based viability assays and NFKB activity. Results: The secretome profile of MDA-MB-231 cells was similar to the expression of genes following treatment of breast cancer cells with TNF-α. Accordingly, inhibition of TNF-α by Etanercept decreased MDA-MB-231 cell survival, induced apoptosis and cell cycle arrest in vitro and inhibited NFKB activation. The inhibitory effect of Etanercept on cell viability, cell cycle progression, invasion and induction of apoptosis decreased following co-culturing of the cancer cells with macrophages. The Boolean network modeling of the changes in the dynamics of intracellular signaling pathways revealed NFKB activation by secretome of macrophages, leading to a decreased efficacy of Etanercept, suggesting NFKB inhibition as an alternative approach to inhibit cancer cell growth in the presence of macrophage crosstalk.
    [Show full text]
  • Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration
    Published OnlineFirst October 2, 2015; DOI: 10.1158/0008-5472.CAN-14-3499 Cancer Microenvironment and Immunology Research Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration of Regulatory T Cells and Blocks Cancer Progression David Anz1,2, Moritz Rapp1, Stephan Eiber1,2, Viktor H. Koelzer1, Raffael Thaler1, Sascha Haubner1, Max Knott1, Sarah Nagel1, Michaela Golic1, Gabriela M. Wiedemann1, Franz Bauernfeind3, Cornelia Wurzenberger1, Veit Hornung3,4, Christoph Scholz5, Doris Mayr6, Simon Rothenfusser1, Stefan Endres1, and Carole Bourquin1,7 Abstract The chemokine CCL22 is abundantly expressed in many tion. Mechanistic investigations indicated that Treg blockade types of cancer and is instrumental for intratumoral recruit- was a consequence of reduced intratumoral CCL22 levels ment of regulatory T cells (Treg), an important subset of caused by type I IFN. Notably, stable expression of CCL22 immunosuppressive and tumor-promoting lymphocytes. In abrogated the antitumor effects of treatment with RLR or this study, we offer evidence for a generalized strategy to TLR ligands. Taken together, our findings argue that type I blunt Treg activity that can limit immune escape and promote IFN blocks the Treg-attracting chemokine CCL22 and thus tumor rejection. Activation of innate immunity with Toll-like helps limit the recruitment of Treg to tumors, a finding with receptor (TLR) or RIG-I–like receptor (RLR) ligands prevented implications for cancer immunotherapy. Cancer Res; 75(21); 1– accumulation of Treg in tumors by blocking their immigra- 11. Ó2015 AACR. Introduction effector T-cell function ex vivo (1). Indeed, suppression of anti- cancer immunity is mediated predominantly by intratumoral Treg The chemokine CCL22 is abundantly expressed in the tissue of that suppress CD8 T-cell responses locally at the tumor site (6).
    [Show full text]
  • HIV-1-Suppressive Factors Are Secreted by CD4 T Cells During
    HIV-1-suppressive factors are secreted by CD4؉ T cells during primary immune responses Sayed F. Abdelwahab*†, Fiorenza Cocchi*†, Kenneth C. Bagley*‡, Roberta Kamin-Lewis*†, Robert C. Gallo*†, Anthony DeVico*†, and George K. Lewis*†§ *Institute of Human Virology, University of Maryland Biotechnology Institute, and Departments of †Microbiology and Immunology and ‡Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201 Contributed by Robert C. Gallo, August 8, 2003 CD4؉ T cells are required for immunity against many viral infec- system faithfully mimics the early stages of the antigen-specific tions, including HIV-1 where a positive correlation has been ob- response of naı¨ve human CD4ϩ T cells, including clonal activa- served between strong recall responses and low HIV-1 viral loads. tion, expansion, contraction, and maintenance (unpublished Some HIV-1-specific CD4؉ T cells are preferentially infected with work and ref. 18). We used this system to study the kinetics of HIV-1, whereas others escape infection by unknown mechanisms. production of HIV-1-suppressive factors against both CXCR4 One possibility is that some CD4؉ T cells are protected from (X4) and CCR5 (R5) viruses. CD4ϩ T cells, starting as naı¨ve cells infection by the secretion of soluble HIV-suppressive factors, al- and differentiating in response to different antigens, secreted though it is not known whether these factors are produced during factors that inhibited both HIV-1IIIB (X4) and HIV-1BaL (R5). primary antigen-specific responses. Here, we show that soluble The anti-X4 factor is predominantly the CC chemokine CCL22 suppressive factors are produced against CXCR4 and CCR5 isolates (macrophage-derived chemokine), whereas the anti-R5 factors -of HIV-1 during the primary immune response of human CD4؉ T are CCL3 (macrophage inflammatory protein-1␣), CCL4 (mac cells.
    [Show full text]