Origins and Assessment of Snowball Earth Hypotheses

Total Page:16

File Type:pdf, Size:1020Kb

Origins and Assessment of Snowball Earth Hypotheses Geol. Mag. 144 (4), 2007, pp. 633–642. c 2007 Cambridge University Press 633 doi:10.1017/S0016756807003391 First published online 6 June 2007 Printed in the United Kingdom Origins and assessment of snowball Earth hypotheses W. BRIAN HARLAND† Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK Note from the Editors – Brian Harland was for many years an editor of this journal. He was also a seminal figure in the origins of the current ‘snowball Earth’ debate, having recognized in 1964 the significance of coupling emerging palaeomagnetic data on palaeolatitude with his interpretations of diamictites. Harland worked extensively in the Arctic and knew well many of the workers involved in the arguments surrounding the origin of diamictites. He thus had a unique perspective on the evidence and the disputes surrounding it. This was his last paper but he was not able to complete it before he died. However, with the help of Professor Ian Fairchild to whom we are indebted, the editors have lightly revised this work which is presented as the personal view of one of the key figures with a very broad stratigraphic appreciation of the problems of ‘snowball Earth’. Abstract – Records of Precambrian glaciation onwards from the late nineteenth century led to the concept of one or more major ice ages. This concept was becoming well advanced by the mid 1930s, particularly through the compilation of Kulling in 1934. Even so tillite stratigraphy shows that glaciation was exceptional rather than typical of Earth history. Some Proterozoic tillites, sandwiched between warm marine facies, indicate low, even equatorial palaeolatitudes as determined magnetically, and more recently led to ideas of a snow- and ice-covered ‘snowball Earth’. However, interbedded non-glacial facies as well as thick tillite successions requiring abundant snowfall both militate against the hypothesis of extreme prolonged freezing temperatures referred to here as an ‘iceball Earth’ in which all oceans and seas were sealed in continuous ice cover. On the other hand tropical environments were interrupted by glaciation several times in the Proterozoic, something that did not recur in the Phanerozoic. The term ‘snowball Earth’ is consistent with the established view of extremely widespread Proterozoic glaciation, but the ‘iceball Earth’ version of this is not compatible with the geological record. Keywords: snowball Earth, iceball Earth, glaciation, tillite. 1. Introduction were sealed by ice. The latter interpretation is here referred to as ‘iceball Earth’. However, a less extreme Thoroughly tested palaeomagnetic evidence has es- snowball hypothesis entailing low latitude (tropical) tablished that late Proterozoic glaciation extended to glaciations is now well established and may be typical equatorial palaeolatitudes (Harland & Herod, 1975; for Precambrian rather than Phanerozoic ice ages. In the Evans, 2000). This led to the hypothesis of a ‘snowball following text, the term tillite, implying a sedimentary Earth’ by Kirschvink (1992) who also inferred that rock with a recognizable glacial component, terrestrial the planetary cooling was stabilized by an ice-albedo or marine, is used here as in most of the literature feedback mechanism. Hoffman et al. (1998) developed quoted. this concept further to make a more all-embracing theory, but at the same time developed a more extreme interpretation whereby all ocean surfaces were sealed 2. Origins of the hypothesis of global glaciation by ice over a time period of 4 to 30 million years. Snow- 2.a. British Isles ball Earth has attracted wide attention as a stimulating popular science topic (Walker, 1999, 2003; Hoffman & The first Precambrian glacial evidence to be so Schrag, 2000; Fairchild, 2001) as did its precursors interpreted was at Port Askaig in Islay, Scotland, by (Harland & Rudwick, 1964; Hambrey, 1992). In recent James Thomson (1871). It is appropriate that a most literature there has been a lack of emphasis on the thorough description of any glacial sequence was of this historical development of ideas, although this has been and related tillites (Spencer, 1971). Archibald Geikie partially corrected by Hoffman & Schrag (2002). This (1880) considered a Torridonian diamictite as possibly brief paper develops the historical element further glacial. James Croll in 1864 (1875) had suggested and shows that early literature had already established a genetic relationship of such an ice age with the the essential nature of the glaciation, but also had advent of Cambrian life, an idea that has recurred precluded the interpretation that all ocean surfaces and been progressively developed over time (Hicks, 1876; Ramsey, 1880; Coleman, 1926; Mawson, 1949; † deceased 1 November 2003. Harland & Wilson, 1956; Termier & Termier, 1956; Downloaded from https:/www.cambridge.org/core. Open University Library, on 17 Jan 2017 at 19:37:05, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0016756807003391 634 W. B. HARLAND Harland & Rudwick, 1964; Kirschvink, 1992; Hoffman Norwegian horizons (Harland, Hambrey & Waddams, et al. 1998). Hicks (1880) went on to consider the 1993; Harland, 1997). relationship between glaciation and volcanism. The best-preserved examples are in the Polaris- breen Group (Eastern Terrane) in the Hecla Hoek Complex. The upper tillite, Wilsonbreen Formation, 2.b. Norway correlates with Kulling’sSveanor tillite and Mortensnes In 1891 H. Reusch described a glacial moraine at Formation, of Finnmark. It is 200+ m below early Bigganjargga in Finnmark, north Norway, and referred Cambrian fossiliferous strata. A late Neoproterozoic to an ice age (istiden), then ?Cambrian (Strachan, age is consistent with acritarchs there (Knoll, 1981) 1897), now late Neoproterozoic. This small outcrop and in the Western Terrane (Knoll, 1992). Wilson & is now thought to be a slumped unit in a sandstone– Harland (1964) emphasized the conspicuous reddish quartzite formation with soft sediment sliding marks matrix of the tillite as evidence of erosion into a and boulder impressions (i.e. not a glaciated pave- lateritic basement, but Fairchild & Hambrey (1984) ment as he suggested). Other sliding lineations were found evidence that the reddening was secondary. observed at other levels in the formation (Harland, However these authors reinforced the earlier notion 1964b). This allochthonous tillite is no less indicative that profound climatic changes were represented at the of contemporary glaciation. Following a description of upper and lower boundaries of each of two glaciations, the Finnmark region by Holtedahl (1919), Føyn (1937) by the characteristics of the bounding dolomitic and Strand (1937), Bjørlykke (1967) established two carbonate strata. Together these observations reinforce distinctive tillite horizons: the lower (Smalfjord)˚ and the concept of a major Varanger glacial period in which upper (Mortensnes) formations. The lower unit was freezing temperatures interrupted dominantly warm correlated with Reusch’s moraine. They are separated environments (Harland, 1964a, b). Moreover, attempts by the reddish siltstone Nyborg Formation, all in the at palaeoclimatic maps as by Bain (1960) as well Vestertana Group (Vidal & Bylund, 1981). This tillite as more recent late Neoproterozoic–early Cambrian sequence was correlated with Sparagmite diamictites reconstructions (e.g. Unrug, 1997; Dalziel, 1997) place of southern Norway (Moelv Formation, Holtedahl Greenland on or near the palaeoequator. It was thus (1922)). no great surprise to obtain an early palaeomagnetic result for Greenland of 8◦ N (Bidgood & Harland, 1961; Harland, 1964a, b), although now known to be 2.c. East Greenland overprints (Evans, 2000). However, it was also clear in In East Greenland Poulsen (1930) and Kulling (1930) the 1960s that continental drift reconstructions could described the Tillite Group (Koch, 1929) with the Cape not accommodate all Neoproterozoic glacials as polar. Oswald Formation. They correlated the succession with In the Central Terrane of Spitsbergen a distinct two glacial horizons with those in Finnmark. This has stromatolite unit is interbedded with the later Varanger become a classic succession for research and detailed tillite. Stromatolites were regarded as exclusively correlation with Svalbard (Hambrey & Spencer, 1987; belonging to tropical carbonates, but Fairchild et al. Fairchild & Hambrey, 1995). (1989) showed that examples in the Wilsonbreen Formation resembled those in Antarctic lakes, recalling the earlier concept (Harland & Herod, 1975) of 2.d. Svalbard carbonate precipitation in extreme cold environments. A massive boulder unit was described in southwestern The Western Terrane, with two much thicker early Spitsbergen by Garwood & Gregory (1898). Kulling and late Varanger tillite formations, was then near (1934) described the Sveanor tillite northeast of Spits- to Ellesmere Island and adjacent to Trettin’s Pearya bergen (Nordaustlandet). He correlated it with East Terrane (1987) where Troelsen had identified tillite Greenland and Finnmark glacials and surveyed current (1950) and where these overall successions are well knowledge of late Precambrian tillites worldwide, matched (Harland, 1997). which is discussed further later. Reflecting on this and on other Scandinavian occurrences Kulling (1951) 2.e. Australia proposed a major Varanger Ice Age based on the Finnmark Varangerfjord succession. In South Australia H. P. Woodward in 1884 suspected The Svalbard tillites
Recommended publications
  • The Huronian Glaciation
    Brasier, A.T., Martin, A.P., Melezhik, V.A., Prave, A.R., Condon, D.J., and Fallick, A.E. (2013) Earth's earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia. Precambrian Research, 235 . pp. 278-294. ISSN 0301-9268 Copyright © 2013 Elsevier B.V. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) When referring to this work, full bibliographic details must be given http://eprints.gla.ac.uk/84700 Deposited on: 29 August 2013 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk 1 Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the 2 Polisarka Sedimentary Formation, Kola Peninsula, Russia 3 4 A.T. Brasier1,6*, A.P. Martin2+, V.A. Melezhik3,4, A.R. Prave5, D.J. Condon2, A.E. Fallick6 and 5 FAR-DEEP Scientists 6 7 1 Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV 8 Amsterdam 9 2 NERC Isotope Geosciences Laboratory, British Geological Survey, Environmental Science 10 Centre, Keyworth, UK. NG12 5GG 11 3 Geological Survey of Norway, Postboks 6315 Slupen, NO-7491 Trondheim, Norway 12 4 Centre for Geobiology, University of Bergen, Postboks 7803, NO-5020 Bergen, Norway 13 5 Department of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 14 9AL, Scotland, UK 15 6 Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, Scotland.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • The Evolution and Distribution of Life in the Precambrian Eon-Global Perspective and the Indian Record 765
    The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record 765 The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record M SHARMA* and Y SHUKLA Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India *Corresponding author (Email, [email protected]) The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the fi eld of evolution of life. Although the Precambrian encompasses 87% of the earth’s history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains. [Sharma M and Shukla Y 2009 The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record; J. Biosci. 34 765–776] DOI 10.1007/s12038-009-0065-8 1. Introduction suggested that all the living forms can be grouped into three principal domains viz. the Bacteria, the Archaea, and The sudden appearance and radiation of both skeletal and the Eucarya (Woese 1987, 2002; Woese et al.
    [Show full text]
  • Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland
    Sedimentary Geology 294 (2013) 219–232 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Invited review Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland Zheng-Xiang Li a,b,⁎, David A.D. Evans b, Galen P. Halverson c,d a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia b Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA c Earth & Planetary Sciences/GEOTOP, McGill University, 3450 University St., Montreal, Quebec H3A0E8, Canada d Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia article info abstract Article history: This review paper presents a set of revised global palaeogeographic maps for the 825–540 Ma interval using Received 6 January 2013 the latest palaeomagnetic data, along with lithological information for Neoproterozoic sedimentary basins. Received in revised form 24 May 2013 These maps form the basis for an examination of the relationships between known glacial deposits, Accepted 28 May 2013 palaeolatitude, positions of continental rifting, relative sea-level changes, and major global tectonic events Available online 5 June 2013 such as supercontinent assembly, breakup and superplume events. This analysis reveals several fundamental ’ Editor: J. Knight palaeogeographic features that will help inform and constrain models for Earth s climatic and geodynamic evolution during the Neoproterozoic. First, glacial deposits at or near sea level appear to extend from high Keywords: latitudes into the deep tropics for all three Neoproterozoic ice ages (Sturtian, Marinoan and Gaskiers), al- Neoproterozoic though the Gaskiers interval remains very poorly constrained in both palaeomagnetic data and global Rodinia lithostratigraphic correlations.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • Geologic History of the Earth 1 the Precambrian
    Geologic History of the Earth 1 algae = very simple plants that Geologists are scientists who study the structure grow in or near the water of rocks and the history of the Earth. By looking at first = in the beginning at and examining layers of rocks and the fossils basic = main, important they contain they are able to tell us what the beginning = start Earth looked like at a certain time in history and billion = a thousand million what kind of plants and animals lived at that breathe = to take air into your lungs and push it out again time. carbon dioxide = gas that is produced when you breathe Scientists think that the Earth was probably formed at the same time as the rest out of our solar system, about 4.6 billion years ago. The solar system may have be- certain = special gun as a cloud of dust, from which the sun and the planets evolved. Small par- complex = something that has ticles crashed into each other to create bigger objects, which then turned into many different parts smaller or larger planets. Our Earth is made up of three basic layers. The cen- consist of = to be made up of tre has a core made of iron and nickel. Around it is a thick layer of rock called contain = have in them the mantle and around that is a thin layer of rock called the crust. core = the hard centre of an object Over 4 billion years ago the Earth was totally different from the planet we live create = make on today.
    [Show full text]
  • The History of Ice on Earth by Michael Marshall
    The history of ice on Earth By Michael Marshall Primitive humans, clad in animal skins, trekking across vast expanses of ice in a desperate search to find food. That’s the image that comes to mind when most of us think about an ice age. But in fact there have been many ice ages, most of them long before humans made their first appearance. And the familiar picture of an ice age is of a comparatively mild one: others were so severe that the entire Earth froze over, for tens or even hundreds of millions of years. In fact, the planet seems to have three main settings: “greenhouse”, when tropical temperatures extend to the polesand there are no ice sheets at all; “icehouse”, when there is some permanent ice, although its extent varies greatly; and “snowball”, in which the planet’s entire surface is frozen over. Why the ice periodically advances – and why it retreats again – is a mystery that glaciologists have only just started to unravel. Here’s our recap of all the back and forth they’re trying to explain. Snowball Earth 2.4 to 2.1 billion years ago The Huronian glaciation is the oldest ice age we know about. The Earth was just over 2 billion years old, and home only to unicellular life-forms. The early stages of the Huronian, from 2.4 to 2.3 billion years ago, seem to have been particularly severe, with the entire planet frozen over in the first “snowball Earth”. This may have been triggered by a 250-million-year lull in volcanic activity, which would have meant less carbon dioxide being pumped into the atmosphere, and a reduced greenhouse effect.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • The Ice Age in North Hertfordshire
    The Ice Age in North Hertfordshire What do we mean by ‘the Ice Age’? Thinking about ‘the Ice Age’ brings up images of tundra, mammoths, Neanderthals and great sheets of ice across the landscape. This simple picture is wrong in many ways. Firstly, there have been many different ‘Ice Ages’ in the history of the earth. The most dramatic happened between 2.4 and 2.1 billion years ago, known as the Huronian Glaciation. About the same time, earth’s atmosphere suddenly became rich in oxygen, and some scientists believe that the atmospheric changes reduced the temperature so much that the whole planet became covered in ice. 1: an Arctic ice sheet (© Youino Joe, USFWS, used under a Creative Commons licence) Another global cover of ice happened 650 million years ago when the first multi-celled animals were evolving. Geologists sometimes refer to this period as the ‘Snowball Earth’ and biologists know it as the Proterozoic. Temperatures were so low that the equator was as cold as present-day Antarctica. They began to rise again as concentrations of carbon dioxide in the atmosphere rose to about 13%, 350 times greater than today. Some carbon dioxide came from volcanic eruptions, but some was excreted by microbial life, which was beginning to diversify and increase in numbers. Neither of these Ice Ages is the one that dominates the popular imagination. Both happened many millions of years before life moved on to land. There were no humans, no mammals, no dinosaurs: none of the creatures familiar from The Flintstones. The period most people think about as the ‘real’ Ice Age is the geologists’ Pleistocene era, from more than two-and-a-half million years ago to the beginning of the Holocene, almost 12,000 years ago.
    [Show full text]
  • CO2, Hothouse and Snowball Earth
    CO2, Hothouse and Snowball Earth Gareth E. Roberts Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA, USA Mathematical Models MATH 303 Fall 2018 November 12 and 14, 2018 Roberts (Holy Cross) CO2, Hothouse and Snowball Earth Mathematical Models 1 / 42 Lecture Outline The Greenhouse Effect The Keeling Curve and the Earth’s climate history Consequences of Global Warming The long- and short-term carbon cycles and silicate weathering The Snowball Earth hypothesis Roberts (Holy Cross) CO2, Hothouse and Snowball Earth Mathematical Models 2 / 42 Chapter 1 Historical Overview of Climate Change Science Frequently Asked Question 1.3 What is the Greenhouse Effect? The Sun powers Earth’s climate, radiating energy at very short Earth’s natural greenhouse effect makes life as we know it pos- wavelengths, predominately in the visible or near-visible (e.g., ul- sible. However, human activities, primarily the burning of fossil traviolet) part of the spectrum. Roughly one-third of the solar fuels and clearing of forests, have greatly intensifi ed the natural energy that reaches the top of Earth’s atmosphere is refl ected di- greenhouse effect, causing global warming. rectly back to space. The remaining two-thirds is absorbed by the The two most abundant gases in the atmosphere, nitrogen surface and, to a lesser extent, by the atmosphere. To balance the (comprising 78% of the dry atmosphere) and oxygen (comprising absorbed incoming energy, the Earth must, on average, radiate the 21%), exert almost no greenhouse effect. Instead, the greenhouse same amount of energy back to space. Because the Earth is much effect comes from molecules that are more complex and much less colder than the Sun, it radiates at much longer wavelengths, pri- common.
    [Show full text]
  • Timing and Tempo of the Great Oxidation Event
    Timing and tempo of the Great Oxidation Event Ashley P. Gumsleya,1, Kevin R. Chamberlainb,c, Wouter Bleekerd, Ulf Söderlunda,e, Michiel O. de Kockf, Emilie R. Larssona, and Andrey Bekkerg,f aDepartment of Geology, Lund University, Lund 223 62, Sweden; bDepartment of Geology and Geophysics, University of Wyoming, Laramie, WY 82071; cFaculty of Geology and Geography, Tomsk State University, Tomsk 634050, Russia; dGeological Survey of Canada, Ottawa, ON K1A 0E8, Canada; eDepartment of Geosciences, Swedish Museum of Natural History, Stockholm 104 05, Sweden; fDepartment of Geology, University of Johannesburg, Auckland Park 2006, South Africa; and gDepartment of Earth Sciences, University of California, Riverside, CA 92521 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved December 27, 2016 (received for review June 11, 2016) The first significant buildup in atmospheric oxygen, the Great situ secondary ion mass spectrometry (SIMS) on microbaddeleyite Oxidation Event (GOE), began in the early Paleoproterozoic in grains coupled with precise isotope dilution thermal ionization association with global glaciations and continued until the end of mass spectrometry (ID-TIMS) and paleomagnetic studies, we re- the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact solve these uncertainties by obtaining accurate and precise ages timing of and relationships among these events are debated for the volcanic Ongeluk Formation and related intrusions in because of poor age constraints and contradictory stratigraphic South Africa. These ages lead to a more coherent global per- correlations. Here, we show that the first Paleoproterozoic global spective on the timing and tempo of the GOE and associated glaciation and the onset of the GOE occurred between ca.
    [Show full text]
  • The Arc of the Snowball: U-Pb Dates Constrain the Islay Anomaly and the Initiation of the Sturtian Glaciation
    The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation Scott MacLennan1, Yuem Park2, Nicholas Swanson-Hysell2, Adam Maloof1, Blair Schoene1, Mulubrhan Gebreslassie3, Eliel Antilla2, Tadele Tesema3, Mulugeta Alene3, and Bereket Haileab4 1Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA 2Earth and Planetary Sciences Department, University of California, Berkeley, California 94720, USA 3School of Earth Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia 4Department of Geology, Carleton College, Northfield, Minnesota 55057, USA ABSTRACT Models for the mechanisms driving Sturtian Snowball initiation In order to understand the onset of Snowball Earth events, pre- include enhanced organic production and remineralization under anaer- cise geochronology and chemostratigraphy are needed on complete obic conditions (Tziperman et al., 2011), increased CO2 sequestration sections leading into the glaciations. While deposits associated with through weathering of large volumes of mafic extrusions at equatorial lati- the Neoproterozoic Sturtian glaciation have been found on nearly tudes (Goddéris et al., 2003; Macdonald et al., 2010), and sulfate injection every continent, time-calibrated stratigraphic sections that record into the stratosphere caused by equatorial basaltic eruptions (Macdonald paleoenvironmental conditions leading into the glaciation are exceed- and Wordsworth, 2017). Regardless of the initiation mechanism, once ice ingly rare. Instead, the transition to glaciation is normally expressed sheet extent reaches ~30° of latitude, numerical models predict that ice as erosive contacts with overlying diamictites, and the best existing expansion to the equator should occur over thousands of years due to the geochronological constraints come from volcanic successions with ice albedo feedback (Baum and Crowley, 2001).
    [Show full text]