Novel Taxa of Thermally Dimorphic Systemic Pathogens in the Ajellomycetaceae (Onygenales)

Total Page:16

File Type:pdf, Size:1020Kb

Novel Taxa of Thermally Dimorphic Systemic Pathogens in the Ajellomycetaceae (Onygenales) Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales) 1,2 1,2,3 1,4 5 Mean K2P distance of each window Proportion of zero non−conspecific1,6 K2P distances 1,6 1,6 1,2 Mean K2P distance of each window Proportion of zero non−conspecific K2P distances Mean K2P distance of each window Proportion of zero non−conspecific K2P distances Karolina Dukik , Yanping Jiang , Peiying Feng , Lynne Sigler , J. Benjamin0.13 Stielow , Joanna Freeke , Azadeh Jamalian , Sybren de Hoog Mean K2P distance of each window Proportion of zero non−conspecific K2P distances 1.0 0.45 Mean K2P distance of each window Proportion of zero non−conspecific K2P distances 0.6 0.12 0.20 0.8 0.25 1.0 0.04 0.20 0.35 0.11 0.4 0.15 0.6 0.20 0.8 Distance 0.15 Proportion 0.10 Mean K2P distance of each window Proportion of zero non−conspecific K2P distances Mean K2P distance of each window Proportion of zeroDistance non−conspecific K2P distances 0.10 0.16 Distance 0.2 0.4 Proportion Proportion 0.25 0.15 0.6 Mean K2P distance of each window0.02 Proportion of zero non−conspecific K2P distances 0.10 0.09 Mean K2P distance of each window Proportion of zero non−conspecific K2PMean distances K2P distance of each window ProportionMean of K2P zero distance non−conspecific of each window K2P distances Proportion of zero non−conspecific K2P distances Distance 1.0 0.2 Distance 0.05 Proportion 0.10 Mean K2P distance of each window Proportion of zero non−conspecific K2P distances 0.4 0.45 Mean K2P distance of each window Proportion Proportion of zero non−conspecific K2P distances 0.0 0.12 0.15 0.05 1.0 0.13 1.0 1 2 0.20 3 0.0 0.8 0.2 0.05 0.00 0.00 0 50 100 150 200 250 0 50 100 150 200 250 0.15 0.45 0.13 1.0 0.6 Mean K2P distance of each window Proportion of zero non−conspecific K2P distances0.35 0 100 200 300 400 500 0 100 200 300 400 500 0.12 0 100 200 300 400 0 100 200 300 400 0.8 0.8 0.0 Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University0.00 of Amsterdam, Amsterdam, the Netherlands; Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, 0.6 0.08 Window position 0.15 Window position 0.00 0.20 Mean K2P distance of each window Proportion of zero non−conspecific K2P 0.6 distances 0.04 0.04 0.12 0.8 0.10 0 200 400 600 800 1000 Window0 position200 400 600 800 1000 Window position 0.15 0 100 200 300 400 500 0 Window100 position200 300 400 500 Window position 0.35 0.6 0.11 0.6 0.25 0.4 Distance 0.4 0.20 Proportion 0.15 0.10 Distance Proportion 0.25 0.25 0.6 0.11 Window position Window position 0.4 Distance Window position Window position 0.20 Proportion Distance 0.20 0.4 Distance 0.10 0.05 0.10 0.4 Proportion Proportion Distance 0.2 0.02 Proportion 0.02 0.2 0.10 0.20 0.05 Distance 4 5 Distance 6 0.4 Proportion 0.25 0.10 Proportion 0.16 0.15 0.2 0.2 0.09 0.15 0.2 0.16 0.0 0.15 0.05 0.00 China; Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; University of Alberta Microfungus Collection and Herbarium0.05 and Biological Sciences, Edmonton, Alberta, Canada; Thermo Fisher Scientific, Landsmeer, The Netherlands 0.00 0.2 0.09 Distance 0.0 Proportion 0.10 Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0.0 Distance 0.0 0.15 0 100 200 300 400 500 0.00 0 100 200 300 400 500 Proportion 0.12 0.10 0.00 0 100 200 300 400 0.0 0 100 200 300 400 Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0 50 100 150 200 Proportion250 of0.0 zero cells in K2P distance0 50 matrix100 150 200 250 Congruence of NJ trees 0.00 0.00 0.12 0.05 0 100 200 300 400Window500 position 0 100100 200200 300300 400400Window500500 position 0 100 200 300 400 500 Proportion of zero cells in K2P distance matrix Congruence of NJ trees0 50 100 150 0.05 200Window 250position 0 50 100 150 200Window position250 0 100 200 300 400 0 100 200 300 0 Proportion400 100 of200 zero cells300 in K2P400 distance500 matrix 0 100Congruence200 of 300NJ trees400 500 0.9 Window position Window position 0.00 1.0 Window position Window position 0.08 Window position Window position 0.00 0.08 Window position Window position 0.08 0 200 400 600 800 1000 Window0 position200 400 600 800 1000 Window position Window position Window position 0.6 0.8 0.8 0.8 0.08 0 200 400 600 800 1000 0 200 400 600 800 1000 0.10 0.8 Window position Window position 0.8 0.9 0.06 Window position Window position 0.7 0.6 0.4 0.6 0.08 0.06 0.6 0.6 Proportion Proportion 0.8 0.04 0.6 0.4 Proportion Proportion Proportion Proportion 0.4 0.06 0.4 Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0.4 0.2 Proportion Proportion Proportion of zero cells in K2P distanceProportion matrix Congruence of NJProportion trees 0.04 Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0.5 0.7 0.2 0.02 Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0.04 Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0.2 0.2 Proportion of zero cells in K2P distance matrix Proportion of zero cells in K2PCongruence distance matrixof NJ treesProportion0.2 of zero cells in CongruenceK2P distance ofmatrix NJ trees Congruence of NJ trees 1.0 0.02 0.0 Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0.0 0.6 RPB2 TUB2 TEF3 ITS LSU 0.9 0.02 0.8 0 50 100 150 200 250 0 50 100 150 200 250 0.8 Introduction and purpose Proportion of zero cells in K2P distance matrix Congruence of NJ trees 0.0 Methods 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 500 0 100 200 300 400 500 0.6 0.8 1.0 0.08 0.08 0.9 0.8 0 200 400 600 800 1000 0 200 400 600 800 1000 0 100 200 300 400 500 100 200 300 400 500 0.6 Window position Window position 0.8 0.8 0.8 0.8 0.6 Window position Window position 0.6 Window position Window position 0.08 0.10 0.6 0.8 Window position 0.08 Window position Window position Window position 0.8 0.9 0.06 0.06 0.4 0.10 0.6 0.7 0.9 0.6 0.6 Ajellomycetaceae Blastomyces, Emmonsia, Histoplasma 0.4 Strain selection 0.6 Until recently the thermally dimorphic fungi of the onygenalean family have been classified in and 0.4 0.4 0.08 Proportion Proportion 0.4 0.6 0.06 Proportion Proportion 0.7 Proportion Proportion 0.08 0.8 Proportion Proportion 0.06 0.04 0.6 0.4 0.04 0.8 0.4 Proportion Proportion 0.4 0.2 0.06 Proportion Proportion 0.2 0.4 0.2 0.4 0.2 Proportion Proportion Proportion Proportion Proportion Proportion 0.04 0.2 0.6 0.06 0.7 0.5 Proportion Proportion 0.02 0.2 Paracoccidioides 0.04 . These fungi are environmental pathogens, i.e. have a dual life cycle, residing as a mold in the environment and switch into a specialized0.04 pathogenic A In total 109 reference strains were taken for phylogenetic analysis. Representative strains from all old and newly 0.2 0.7 0.2 0.2 0.02 0.0 0.0 0.2 0.04 Sum of diagnostic nucleotides Proportion of species that are monophyletic 0.0 0.5 Sum of diagnostic nucleotides 0.02 Proportion of species that are monophyletic Sum of diagnostic nucleotides Proportion of species that are monophyletic 0.6 Sum of diagnostic nucleotides Proportion of species that are monophyletic 0.02 Sum of diagnostic nucleotides Proportion of species that are monophyletic 0 100 200 300 400 500 0.0 100 200 300 400 500 0 100 200 300 400 0 100 200 3000.0 400 0.6 0.02 0.0 0 50 100 150 200 250 0 50 100 150 200 0 250100 200 300 400 500 0 100 200 300 400 500 0.02 25 0 200 400 600 800 1000 0 200 400 600 800 1000 0 100 200 300 400 500 0 100 0.8 200 100 300 200400Window300500 position 400 500 0 100 200 300 Window400 position500 Blastomyces, Histoplasma Paracoccidioides Emmonsia 25 Window position Window position form in the host: yeast-like cells in and , and large, non-replicating adiaspores in . Recent discoveries of novel 0.9 established genera and species were further analyzed for their morphology and physiology.
Recommended publications
  • 10-ELS-OXF Kurtzman1610423 CH002 7..20
    Part II Importance of Yeasts Kurtzman 978-0-444-52149-1 00002 Kurtzman 978-0-444-52149-1 00002 Chapter 2 c0002 Yeasts Pathogenic to Humans Chester R. Cooper, Jr. regularly encounter the organisms described below. In fact, many s0010 1. INTRODUCTION TO THE MEDICALLY medical mycologists spend entire careers without direct clinical expo- IMPORTANT YEASTS sure to many of these fungi. Rather, the purpose of this review is to enlighten the non-medical mycologist as to the diversity of yeast and p0010 Prior to global emergence of the human immunodeficiency virus mold species regularly associated with human and animal disease (HIV), which is the causative agent of acquired immunodeficiency that also, at least in part, present a unicellular mode of growth in vivo. syndrome (AIDS), approximately 200 fungal pathogens were recog- The following descriptions present a concise overview of the key p0025 nized from among the more than 100,000 then-known fungal spe- biological and clinical features of these fungi. Where appropriate, refer- cies (Kwon-Chung and Bennett 1992, Rippon 1988). About 50 of ences to recent reviews of particular disease agents and their patholo- these species were regularly associated with fungal disease (myco- gies are provided. For a global perspective of fungal diseases, including sis). Since then, there has been a concurrent dramatic increase in in-depth clinical discussions of specific pathologies, diagnoses, and both the number of known fungal species and the incidence of treatments, the reader is referred to several outstanding and recently mycoses that they cause. Moreover, the spectrum of pathogenic fungi published texts (Anaissie et al.
    [Show full text]
  • Turning on Virulence: Mechanisms That Underpin the Morphologic Transition and Pathogenicity of Blastomyces
    Virulence ISSN: 2150-5594 (Print) 2150-5608 (Online) Journal homepage: http://www.tandfonline.com/loi/kvir20 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein To cite this article: Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein (2018): Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces, Virulence, DOI: 10.1080/21505594.2018.1449506 To link to this article: https://doi.org/10.1080/21505594.2018.1449506 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group© Joseph A. McBride, Gregory M. Gauthier and Bruce S. Klein Accepted author version posted online: 13 Mar 2018. Submit your article to this journal Article views: 15 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kvir20 Publisher: Taylor & Francis Journal: Virulence DOI: https://doi.org/10.1080/21505594.2018.1449506 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, MDa,b,d, Gregory M. Gauthier, MDa,d, and Bruce S. Klein, MDa,b,c a Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA; b Division of Infectious Disease, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1675 Highland Avenue, Madison, WI 53792, USA; c Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, WI 53706, USA.
    [Show full text]
  • 1 Recurrent Loss of Abaa, a Master Regulator of Asexual Development in Filamentous Fungi
    bioRxiv preprint doi: https://doi.org/10.1101/829465; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Recurrent loss of abaA, a master regulator of asexual development in filamentous fungi, 2 correlates with changes in genomic and morphological traits 3 4 Matthew E. Meada,*, Alexander T. Borowskya,b,*, Bastian Joehnkc, Jacob L. Steenwyka, Xing- 5 Xing Shena, Anita Silc, and Antonis Rokasa,# 6 7 aDepartment of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA 8 bCurrent Address: Department of Botany and Plant Sciences, University of California Riverside, 9 Riverside, California, USA 10 cDepartment of Microbiology and Immunology, University of California San Francisco, San 11 Francisco, California, USA 12 13 Short Title: Recurrent loss of abaA across Eurotiomycetes 14 #Address correspondence to Antonis Rokas, [email protected] 15 16 *These authors contributed equally to this work 17 18 19 Keywords: Fungal asexual development, abaA, evolution, developmental evolution, 20 morphology, binding site, Histoplasma capsulatum, regulatory rewiring, gene regulatory 21 network, evo-devo 22 1 bioRxiv preprint doi: https://doi.org/10.1101/829465; this version posted November 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 23 Abstract 24 Gene regulatory networks (GRNs) drive developmental and cellular differentiation, and variation 25 in their architectures gives rise to morphological diversity.
    [Show full text]
  • Severe Chromoblastomycosis-Like Cutaneous Infection Caused by Chrysosporium Keratinophilum
    fmicb-08-00083 January 25, 2017 Time: 11:0 # 1 CASE REPORT published: 25 January 2017 doi: 10.3389/fmicb.2017.00083 Severe Chromoblastomycosis-Like Cutaneous Infection Caused by Chrysosporium keratinophilum Juhaer Mijiti1†, Bo Pan2,3†, Sybren de Hoog4, Yoshikazu Horie5, Tetsuhiro Matsuzawa6, Yilixiati Yilifan1, Yong Liu1, Parida Abliz7, Weihua Pan2,3, Danqi Deng8, Yun Guo8, Peiliang Zhang8, Wanqing Liao2,3* and Shuwen Deng2,3,7* 1 Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China, 2 Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China, 3 Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China, 4 CBS-KNAW Fungal Biodiversity Centre, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands, 5 Medical Mycology Research Center, Chiba University, Chiba, Japan, 6 Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan, 7 Department of Dermatology, First Hospital of Xinjiang Medical University, Urumqi, China, 8 Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China Chrysosporium species are saprophytic filamentous fungi commonly found in the Edited by: soil, dung, and animal fur. Subcutaneous infection caused by this organism is Leonard Peruski, rare in humans. We report a case of subcutaneous fungal infection caused by US Centers for Disease Control and Prevention, USA Chrysosporium keratinophilum in a 38-year-old woman. The patient presented with Reviewed by: severe chromoblastomycosis-like lesions on the left side of the jaw and neck for 6 years. Nasib Singh, She also got tinea corporis on her trunk since she was 10 years old.
    [Show full text]
  • Novel Taxa of Thermally Dimorphic Systemic Pathogens in the Ajellomycetaceae (Onygenales)
    This item is the archived peer-reviewed author-version of: Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales) Reference: Dukik Karolina, Munoz Jose F., Jiang Yanping, Feng Peiying, Sigler Lynne, Stielow J. Benjamin, Freeke Joanna, Jamalian Azadeh, van den Ende Bert Gerrits, McEw en Juan G., ....- Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales) Mycoses: diagnosis, therapy and prophylaxis of fungal diseases - ISSN 0933-7407 - 60:5(2017), p. 296-309 Full text (Publisher's DOI): https://doi.org/10.1111/MYC.12601 To cite this reference: https://hdl.handle.net/10067/1436700151162165141 Institutional repository IRUA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Mycoses Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 January 20. Published in final edited form as: Mycoses. 2017 May ; 60(5): 296–309. doi:10.1111/myc.12601. Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales) Karolina Dukik1,2,#, Jose F. Muñoz3,4,5,#, Yanping Jiang1,6,*, Peiying Feng1,7, Lynne Sigler8, J. Benjamin Stielow1,9, Joanna Freeke1,9, Azadeh Jamalian1,9, Bert Gerrits van den Ende1, Juan G. McEwen4,10, Oliver K. Clay4,11, Ilan S. Schwartz12,13, Nelesh P. Govender14,15, Tsidiso G. Maphanga15, Christina A. Cuomo3, Leandro Moreno1,2,16, Chris Kenyon14,17, Andrew M. Borman18, and Sybren de Hoog1,2,* 1CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands 2Institute for Biodiversity and Ecosystem
    [Show full text]
  • 25 Chrysosporium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM 25 Chrysosporium Dongyou Liu and R.R.M. Paterson contents 25.1 Introduction ..................................................................................................................................................................... 197 25.1.1 Classification and Morphology ............................................................................................................................ 197 25.1.2 Clinical Features .................................................................................................................................................. 198 25.1.3 Diagnosis ............................................................................................................................................................. 199 25.2 Methods ........................................................................................................................................................................... 199 25.2.1 Sample Preparation .............................................................................................................................................. 199 25.2.2 Detection Procedures ........................................................................................................................................... 199 25.3 Conclusion .......................................................................................................................................................................200
    [Show full text]
  • Culture Inventory
    For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1
    [Show full text]
  • Chrysosporium Keratinophilum IFM 55160 (AB361656)Biorxiv Preprint 99 Aphanoascus Terreus CBS 504.63 (AJ439443) Doi
    bioRxiv preprint doi: https://doi.org/10.1101/591503; this version posted April 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of novel Chrysosporium morrisgordonii sp. nov., from bat white-nose syndrome (WNS) affected mines, northeastern United States Tao Zhang1, 2, Ping Ren1, 3, XiaoJiang Li1, Sudha Chaturvedi1, 4*, and Vishnu Chaturvedi1, 4* 1Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA 2 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China 3Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA 4Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA *Corresponding authors: Sudha Chaturvedi, [email protected]; Vishnu Chaturvedi, [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/591503; this version posted April 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Psychrotolerant hyphomycetes including unrecognized taxon are commonly found in bat hibernation sites in Upstate New York. During a mycobiome survey, a new fungal species, Chrysosporium morrisgordonii sp. nov., was isolated from bat White-nose syndrome (WNS) afflicted Graphite mine in Warren County, New York. This taxon was distinguished by its ability to grow at low temperature spectra from 6°C to 25°C. Conidia were tuberculate and thick-walled, globose to subglobose, unicellular, 3.5-4.6 µm ×3.5-4.6 µm, sessile or borne on narrow stalks.
    [Show full text]
  • Vesicular Transport in Histoplasma Capsulatum: an Effective Mechanism for Trans-Cell Wall Transfer of Proteins and Lipids in Ascomycetes
    Cellular Microbiology (2008) 10(8), 1695–1710 doi:10.1111/j.1462-5822.2008.01160.x First published online 5 May 2008 Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes Priscila Costa Albuquerque,1,2,3 by additional ascomycetes. The vesicles from H. cap- Ernesto S. Nakayasu,4 Marcio L. Rodrigues,5 sulatum react with immune serum from patients Susana Frases,2 Arturo Casadevall,2,3 with histoplasmosis, providing an association of the Rosely M. Zancope-Oliveira,1 Igor C. Almeida4 and vesicular products with pathogenesis. The findings Joshua D. Nosanchuk2,3* support the proposal that vesicular secretion is a 1Instituto de Pesquisa Clinica Evandro Chagas, general mechanism in fungi for the transport of Fundação Oswaldo Cruz, RJ Brazil. macromolecules related to virulence and that this 2Department of Microbiology and Immunology, Division process could be a target for novel therapeutics. of Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA. Introduction 3Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA. Histoplasma capsulatum, a dimorphic fungus of the 4Department of Biological Sciences, The Border phylum Ascomycota, is a major human pathogen with Biomedical Research Center, University of Texas at El a worldwide distribution (Kauffman, 2007). The fungus Paso, El Paso, TX, USA. usually causes a mild, often asymptomatic, respiratory 5Instituto de Microbiologia Professor Paulo de Góes, illness, but infection may progress to life-threatening sys- Universidade Federal do Rio de Janeiro, RJ Brazil. temic disease, particularly in immunocompromised indi- viduals, infants or the elderly.
    [Show full text]
  • 2 the Numbers Behind Mushroom Biodiversity
    15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 ­Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al.
    [Show full text]
  • New Histoplasma Diagnostic Assays Designed Via Whole Genome Comparisons
    Journal of Fungi Article New Histoplasma Diagnostic Assays Designed via Whole Genome Comparisons Juan E. Gallo 1,2,3, Isaura Torres 1,3 , Oscar M. Gómez 1,3 , Lavanya Rishishwar 4,5,6, Fredrik Vannberg 4, I. King Jordan 4,5,6 , Juan G. McEwen 1,7 and Oliver K. Clay 1,8,* 1 Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas (CIB), Medellín 05534, Colombia; [email protected] (J.E.G.); [email protected] (I.T.); [email protected] (O.M.G.); [email protected] (J.G.M.) 2 Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá 111221, Colombia 3 GenomaCES, Universidad CES, Medellin 050021, Colombia 4 School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; [email protected] (L.R.); [email protected] (F.V.); [email protected] (I.K.J.) 5 Applied Bioinformatics Laboratory, Atlanta, GA 30332, USA 6 PanAmerican Bioinformatics Institute, Cali, Valle del Cauca 760043, Colombia 7 School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia 8 Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia * Correspondence: [email protected] Abstract: Histoplasmosis is a systemic fungal disease caused by the pathogen Histoplasma spp. that results in significant morbidity and mortality in persons with HIV/AIDS and can also affect immuno- competent individuals. Although some PCR and antigen-detection assays have been developed, Citation: Gallo, J.E.; Torres, I.; conventional diagnosis has largely relied on culture, which can take weeks. Our aim was to provide Gómez, O.M.; Rishishwar, L.; a proof of principle for rationally designing and standardizing PCR assays based on Histoplasma- Vannberg, F.; Jordan, I.K.; McEwen, specific genomic sequences.
    [Show full text]
  • October 2006 Newsletter of the Mycological Society of America
    Supplement to Mycologia Vol. 57(5) October 2006 Newsletter of the Mycological Society of America — In This Issue — RCN: A Phylogeny for Kingdom Fungi (Deep Hypha)1 RCN: A Phylogeny for Kingdom Fungi By Meredith Blackwell, (Deep Hypha) . 1 Joey Spatafora, and John Taylor MSA Business . 4 “Fungi have a profound impact on global ecosystems. They modify our habitats and are essential for many ecosystem func- Mycological News . 18 tions. For example they are among the biological agents that form soil, recycle nutrients, decay wood, enhance plant growth, Mycologist’s Bookshelf . 31 and cull plants from their environment. They feed us, poison us, Mycological Classifieds . 36 parasitize us until death, and cure us. Still other fungi destroy our crops, homes, libraries, and even data CDs. For practical Mycology On-Line . 37 and intellectual reasons it is important to provide a phylogeny of fungi upon which a classification can be firmly based. A Calender of Events . 37 phylogeny is the framework for retrieving information on 1.5 million species and gives a best estimation of the manner in Sustaining Members . 39 which fungal evolution proceeded in relation to other organ- isms. A stable classification is needed both by mycologists and other user groups. The planning of a broad-scale phylogeny is — Important Dates — justified on the basis of the importance of fungi as a group, the poor current state of their knowledge, and the willingness of October 15 Deadline: united, competent researchers to attack the problem. Inoculum 57(6) “If only 80,000 of an estimated 1.5 million fungi are August 4-9, 2007: known, we must continue to discover missing diversity not only MSA Meeting at lower taxonomic levels but higher levels as well.
    [Show full text]