Report 2012-2013

Total Page:16

File Type:pdf, Size:1020Kb

Report 2012-2013 All India Co-ordinated Research Project on Biological Control of Crop Pests and Weeds ANNUAL PROGRESS REPORT 2012-2013 Compiled and edited by B. Ramanujam Prashanth Mohanraj Chandish R. Ballal T. Venkatesan Sunil Joshi A.N. Shylesha R.Rangeshwaran K. Srinivasa Murthy M. Mohan K.J. David Abraham Verghese Honnur Basha All India Co-ordinated Research Project on Biological Control of Crop Pests and Weeds ANNUAL PROGRESS REPORT 2012‐2013 Compiled and edited by B. Ramanujam Prashanth Mohanraj Chandish R. Ballal T. Venkatesan Sunil Joshi A.N. Shylesha R.Rangeshwaran K. Srinivasa Murthy M. Mohan K.J. David Abraham Verghese Honnur Basha National Bureau of Agriculturally Important Insects Bangalore 560 024 Cover page (Top to bottom) Anomalococcus indicus Ayyar (Photo: J. Poorani) Reticulaphis foveolatae (Takahashi) (Photo: Sunil Joshi) Pseudococcus jackbeardsleyi Gimpel & Miller ((Photo: J. Poorani) Entomopathogenic nematode (Photo: M. Nagesh) Aphis craccivora Koch (Photo: J. Poorani) Leptomastix dactylopii Howard (Photo: J. Poorani) Pleotrichophorus chrysanthemi (Theobald) (Photo: Sunil Joshi) © National Bureau of Agriculturally Important Insects, Bangalore, 2013 No portion of this report should be used without prior permission of the Director, except in quoting for scientific references. Cover design: Sunil Joshi Sl. CONTENTS Page No. No. 1 Programme for 2012-13 2 Experimental Results 2.1 Basic Research 2.1.1 National Bureau of Agriculturally Important Insects i New taxa described 1 ii Micrograstrinae (Braconidae) 1 iii Biosystematic studies of Trichogramma 2 iv Platygastridae 2 v Biodiversity of aphids, Coccinnellids and their natural enemies 3 vi Taxonomic studies on fruit flies (Diptera: Tephritidae) of India 3 vii Diversity and predator - prey interactions with reference to predatory 4 anthocorids and mites viii Papaya mealybug, Paracoccus marginatus 4 ix Studies on Trichogramma brassicae and Cotesia vestalis (plutellae) 5 interaction with their host in cabbage x Laboratory rearing of Leucinodes orbonalis and insecticide resistance 5 monitoring studies xi Culturable microflora associated with Amrasca biguttula biguttula (Cotton 6 leafhoppers) and Nilaparvata lugens (Brown Planthopper of rice) xii Selection of superior strain of predators viz., Chrysoperla zastrowi arabica 6 (Stephens) and Cryptolaemus montrouzieri (Mulsant) from different agro- ecosystems and their molecular characterization. xiii Genetic diversity, biology and utilization of entomopathogenic nematodes 7 (EPN) against cryptic pests xiv Mapping of the cry gene diversity in hot and humid regions of India 9 xv Evaluation of fungal pathogens on Aphis craccivora in cowpea and Bemisia 10 tabaci in tomato and capsicum. xvi Management of pests with pheromone nanogels 10 xvii Non target effect of Chitosan alginate nanoparticles on the biology of 10 Chrysoperla zastrowi sillemi (Esben-Peterson) (Neuroptera: chrysopidae). 2.1.2 Indian Agricultural Research Institute, New Delhi 1 Survey and collection of Trichogramma strains from different agro-climatic 12 zone of India. 2 Evaluation of Trichogramma strains for searching efficiency, temperature 12 tolerance and fecundity. 3 Breeding for better performing strains (Laboratory studies) 15 2.1.3 Biodiversity of Biocontrol Agents from Various Agro Ecological Zones 1 Survey, Collection and diversity analysis of biocontrol agents from various 21 agro ecological zones (AAU-A, AAU-J, ANGRAU, KAU, MPKV, PAU, SKUAST, TNAU, YSPUHF, CAU, JNKVV, MPUAT, OUAT, CPCRI, CTRI and UAS-Raichur) i 2 Mapping of EPN diversity (AAU-A, PAU) 63 3 Surveillance for alien invasive pests Brontispa longissima, Aleyrodicus 68 digessi, Phenacoccus manihoti, Paracoccus marginatus, Phenacoccus madeirensis and others ( AAU-A, AAU-J, ANGRAU, KAU, MPKV, PAU, SKUAST, TNAU, YSPUHF, CAU, JNKVV, MPUAT, OUAT, CPCRI, CTRI, IIHR, UAS-Raichur) Biological control of plant diseases using antagonistic organisms 2.2 Plant Disease and Nematodes antagonists 1 Screening of selected abiotic stress tolerant (i.e. drought and salinity) isolates 71 of Trichoderma harzianum for their potential to produce hydrolytic enzymes under in vitro conditions (GBPUAT) 2 Development of oil-based formulations of selected isolates of Trichoderma 71 harzianum and study of their shelf life (GBPUAT) 3 Field evaluation of groundnut oil, talc and paraffin petroleum oil based 72 formulation of T. harzianum (Th-14) for the management of foliar and soil borne disease of tomato (Hybrid - Dev). (GBPUAT) 4 Field evaluation of invert-emulsion formulation of T. harzianum for the 72 management of foliar and soil borne diseases of chick pea crop variety (PG- 186) (GBPUAT) 5 Field evaluation of promising Trichoderma isolates under field conditions 78 (GBPUAT) 6 Large scale field demonstration of biocontrol technologies (GBPUAT) 84 7 Monitoring for emergence of newer pests and diseases of various crops in 84 districts Udham Singh and Nainital of Uttarakhand (GBPUAT). 8 Evaluation of fungal and bacterial antagonists against collar rot of groundnut 86 caused by Aspergillus spp. and Screlotium rolfsii (AAU-A) 9 Isolation, identification and characterization of indigenous strains of 86 Pseudomonas fluorescens and Bacillus strains effective against Fusarium wilt in pigeon pea (AAU-A) 10 Evaluation of fungal and bacterial antagonists for the management of foot rot 88 of citrus (kinnow) caused by Phytophthora spp. (PAU) 11 Evaluation of fungal and bacterial antagonists for the management of fusarial 89 wilt of cucurbits (PAU) 12 Demonstration on biological control of root-knot nematode, Meloidogyne 89 incognita race II in pomegranate (MPKV) 13 Demonstration of Biocontrol practices for management of root-knot 91 nematode in Pomegranate (1 ha) (ongoing experiments to be continued) (AAU-A) 2.3 Sugarcane 1 Monitoring the sugarcane woolly aphid (SWA) incidence and impact 92 assessment of natural enemies on its bio suppression (MPKV, TNAU, UAS- Raichur) 2 Field evaluation of T. chilonis produced using Eri-silk worm eggs as 95 factitious host against early shoot borer of Sugarcane (ANGRAU, TNAU, NBAII) ii 2.4 Cotton 1 Monitoring diversity and out breaks for invasive mealy bugs on cotton 98 (ANGRAU, MPKV, PAU, TNAU). 2 Monitoring the diversity and outbreaks of sap sucking pests, mirids and their 100 natural enemies in Bt cotton (MPKV, UAS-Raichur) 2.5 Tobacco 1 Survey and record of bio control agents (insects, pathogens) on Orobanche 103 spp. (CTRI) 2 Natural enemies of aphids infesting different types of tobacco cultivated in 103 different regions of the country (CTRI) 2.6 Rice 1 Seasonal abundance of predatory spiders in rice ecosystem (AAU-A, AAU-J, 104 ANGRAU, KAU, TNAU) 2 Evaluation of IPM for upland rice pest and diseases (CAU) 114 3 Field evaluation of Trichogramma chilonis (produced using Eri-silk worm 116 eggs as factitous host) against Rice stem borer (CAU). 2.7 Pulses 1 Evaluation of NBAII liquid formulations (PDBC-BT1 and NBAII-BTG4) 117 and IARI Bt against pigeon pea pod borer (Helicoverpa armigera) and legume pod borer (Maruca testulalis) (AAU-A, ANGRAU, MPKV, PAU, TNAU, JNKVV, UAS-Raichur) 2 Influence of crop habitat diversity of natural enemies in pigeonpea through 123 FLD/OFD (ANGRAU, MPUAT) 3 Effect of bio-agents and botanicals on the incidence of pod borer and leaf tier 124 in pigeon pea (MPUAT) 2.8 Oil Seeds 1 Biological suppression of safflower aphid, Uroleucon compositae 127 (ANGRAU, MPKV) 2 Biological control of Groundnut pests (OUAT) 128 3 Evaluation of entomopathogens and botanicals against soybean pests’ 130 complex (MPKV, MPUAT) 4 Screening of EPN (Entomopathogenic Nematodes) against Spodoptera litura 130 (Fab.) on soybean (JNKVV) 2.9 Coconut 1 Surveillance and need-based control of coconut leaf caterpillar, Opisina 131 arenosella in Kerala (CPCRI) 2 Scaling up and utilization of M. anisopliae through technology transfer 131 (CPCRI) 3 EPN for red palm weevil management (CPCRI) 132 iii 2.10 Tropical Fruits 1 Field evaluation of Metarhizium anisopliae against mango hoppers 133 (ANGRAU, MPKV) 2 Survey and record of incidence of papaya mealybug and its natural enemies 136 on papaya and other alternate hosts (AAU-A, KAU, MPKV, TNAU, OUAT, IIHR) 3 Extent of parasitism of Acerophagus papayae on tapioca in different agro 144 climatic zones of Kerala (KAU) 4 Biological suppression of mealybugs, Maconellicoccus hirsutus and Ferrisia 144 virgata with Scymnus coccivora on custard apple (MPKV) 5 Economic analysis of impact of release of Acerophagus papayae on papaya 146 production, seed production, papaine industry, mulberry and tapioca (TNAU) 6 Bio-efficacy of EPNs against Citrus trunk borer, Anoplophora versteegi 151 (CAU) 7 Natural enemies associated with mango pulp borer (OUAT) 153 2.11 Temperate Fruits 1 Survey for identification of suitable natural enemies of codling moth 154 (SKUAST) 2 Field evaluation of mass released Trichogramma embryophagum against 154 codling moth, Cydia pomonella on apple (SKUAST) 3 Observations on the natural enemies of seed infesting Eurytoma of apricots 156 in Laddakh (SKUAST) 4 Evaluation of entomopathogenic fungi and EPNs for the suppression of 156 Apple root borer, Dorysthenes hugelii under field conditions (YSPUHF). 5 Evaluation of predatory mite in combination with horticultural mineral oils 157 (HMO) for the management of phytophagous mites on apple (YSPUHF). 2.12 Vegetables 1 Developing bio intensive IPM package for the pests of Cole crops (AAU-J, 158 PAU, SKUAST, and YSPUHF) 2 Evaluation of microbial pesticides against diamond back moth (DBM) 162 (CAU) 3 Field evaluation
Recommended publications
  • Effects of Landscape, Intraguild Interactions, and a Neonicotinoid on Natural Enemy and Pest Interactions in Soybeans
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2016 EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS Hannah J. Penn University of Kentucky, [email protected] Author ORCID Identifier: http://orcid.org/0000-0002-3692-5991 Digital Object Identifier: https://doi.org/10.13023/ETD.2016.441 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Penn, Hannah J., "EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS" (2016). Theses and Dissertations-- Entomology. 30. https://uknowledge.uky.edu/entomology_etds/30 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Curriculum for B.Sc. Horticulture Programme
    ANNEXURE - 9(b) PONDICHERRY UNIVERSITY PUDUCHERRY – 605 014 Curriculum for B.Sc. Horticulture Programme 2016-17 onwards 2016.77.33 CURRICULAM B.Sc. (HORTICULTURE) DEGREE PROGRAMME DEPARTMENT WISE DISTRIBUTION OF COURSES ABSTRACT No.of Credit Sl. No. Department / Discipline Total Credits Courses Hours 1. Horticulture 23 31+32 63 2. Agronomy 4 4+4 8 3. Agricultural Economics 2 3+2 5 4. Agricultural Extension 2 3+2 5 5. Agricultural Entomology 4 6+4 10 6. Agricultural Microbiology 1 1+1 2 7. Agricultural Engineering 1 1+1 2 8. Genetics and Plant Breeding 3 5+3 8 9. Seed Science and Technology 1 2+1 3 10. Soil Science and Agricultural Chemistry 3 3+3 6 11. Plant Pathology 4 6+4 10 12. Nematology 1 1+1 2 13. Bio-Chemistry 1 2+1 3 14. Crop Physiology 1 1+1 2 15. Environmental Science 1 1+1 2 16. Computer Science and Statistics 2 1+2 3 17. Experiential Learning 2 0+28 28 Total Credit Courses 56 71+91 162 Non Credit Courses 18. English 2 0+2 2 19. NSS/NCC 1 0+1 1 20. PED 1 0+1 1 21. Short Tour 1 0+1 1 22. All India Tour 1 0+2 2 Total Non-Credit Courses 6 0+7 7 GRAND TOTAL 62 71+98 169 DEPARTMENT WISE DISTRIBUTION OF COURSES DEPARTMENT OF HORTICULTURE Sl. No. Course No. Course Title Cr.Hr. Semester Basic Horticulture 1. HOR 101 Fundamentals of Horticulture 2+1 I 2. HOR 102 Plant Propagation and Nursery Management 1+1 II 3.
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Aphids (Hemiptera, Aphididae)
    A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 435–474. doi: 10.3897/biorisk.4.57 Abstract Our study aimed at providing a comprehensive list of Aphididae alien to Europe. A total of 98 species originating from other continents have established so far in Europe, to which we add 4 cosmopolitan spe- cies of uncertain origin (cryptogenic). Th e 102 alien species of Aphididae established in Europe belong to 12 diff erent subfamilies, fi ve of them contributing by more than 5 species to the alien fauna. Most alien aphids originate from temperate regions of the world. Th ere was no signifi cant variation in the geographic origin of the alien aphids over time.
    [Show full text]
  • International Symposium on Biological Control of Arthropods 2005
    Agusti et al. _________________________________________________________________________ Session 12: Environmental Risk Assessment of Invertebrate Biological Control Agents ESTIMATING PARASITISM LEVELS IN OSTRINIA NUBILALIS HÜBNER (LEPIDOPTERA: CRAMBIDAE) FIELD POPULATIONS USING MOLECULAR TECHNIQUES Nuria AGUSTI1, Denis BOURGUET2, Thierry SPATARO3, and Roger ARDITI3 1Dept. de Proteccio Vegetal Institut de Recerca i Tecnologia Agroalimentaries (IRTA) 08348 Cabrils (Barcelona), Spain [email protected] 2Centre de Biologie et de Gestion des Populations (CBGP) Institut National de la Recherche Agronomique (INRA) Campus International de Baillarguet CS 30 016, 34988 Montferrier / Lez cedex, France [email protected] 3Ecologie des populations et communautés 76 Institut National Agronomique Paris-Grignon (INA P-G) 75231 Paris cedex 05, France [email protected] [email protected] Accurate detection and identification of parasitoids are critical to the success of IPM pro- grams to detect unusual variations of the density of these natural enemies, which may follow changes in agricultural practices. For such purposes specific molecular markers to detect Lydella thompsoni (Herting) and Pseudoperichaeta nigrolineata (Walker) (Diptera: Tachinidae) within the european corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) have been developed. Primers amplifying fragments of the mitochondrial cytochrome oxidase I (COI) gene were designed following alignment of comparable sequences for a range of parasitoid and host species. Each of the primer pairs proved to be species-specific to one of those ta- chinid species, amplifying DNA fragments of 191 and 91 bp in length for L. thompsoni and P. nigrolineata, respectively. This DNA-based technique allowed to perform a molecular detec- tion of parasitism in natural populations of O. nubilalis. Molecular evaluation of parasitism was compared with the traditional method of rearing ECB populations in controlled conditions before breaking off the diapause.
    [Show full text]
  • Dissecting Genome Reduction and Trait Loss in Insect Endosymbionts
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Evolutionary Biology REVIEW ARTICLE Dissecting genome reduction and trait loss in insect endosymbionts Amparo Latorre1,2 and Alejandro Manzano-Mar´ın1 1Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de Valencia, C/Catedratico´ JoseBeltr´ an,´ Paterna, Valencia, Spain. 2Area´ de Genomica´ y Salud de la Fundacion´ para el fomento de la Investigacion´ Sanitaria y Biomedicadela´ Comunitat Valenciana (FISABIO)-Salud Publica,´ Valencia,` Spain Address for correspondence: Amparo Latorre, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/Catedratico´ JoseBeltr´ an´ 2, 46071 Paterna, Valencia, Spain. [email protected] Symbiosis has played a major role in eukaryotic evolution beyond the origin of the eukaryotic cell. Thus, organisms across the tree of life are associated with diverse microbial partners, conferring to the host new adaptive traits that enable it to explore new niches. This is the case for insects thriving on unbalanced diets, which harbor mutualistic intracellular microorganisms, mostly bacteria that supply them with the required nutrients. As a consequence of the lifestyle change, from free-living to host-associated mutualist, a bacterium undergoes many structural and metabolic changes, of which genome shrinkage is the most dramatic. The trend toward genome size reduction in endosymbiotic bacteria is associated with large-scale gene loss, reflecting the lack of an effective selection mechanism to maintain genes that are rendered superfluous by the constant and rich environment provided by the host. This genome- reduction syndrome is so strong that it has generated the smallest bacterial genomes found to date, whose gene contents are so limited that their status as cellular entities is questionable.
    [Show full text]
  • Biodiversity – Economy Or Ecology? Long-Term Study of Changes in the Biodiversity of Aphids Living in Steppe-Like Grasslands in Central Europe
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 140–146, 2017 http://www.eje.cz doi: 10.14411/eje.2017.019 ORIGINAL ARTICLE Biodiversity – economy or ecology? Long-term study of changes in the biodiversity of aphids living in steppe-like grasslands in Central Europe BARBARA OSIADACZ 1, ROMAN HAŁAJ 2 and DAMIAN CHMURA3 1 Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego St. 159, PL 60-594 Poznań, Poland; e-mail: [email protected] 2 The Upper Silesian Nature Society, Huberta St. 35, PL 40-543 Katowice, Poland; e-mail: [email protected] 3 Institute of Environmental Protection and Engineering, University of Bielsko-Biała, Willowa 2, PL 43-309 Bielsko-Biała, Poland; e-mail: [email protected] Key words. Hemiptera, Aphidoidea, bio-ecological groups, community structure, protected habitats, loss of biodiversity, human impact, NMDS methods, regional hotspots Abstract. This paper examines the changes in the species composition of aphids living in dry calcareous grasslands in Central Europe over a 25-year period. To the best of our knowledge, this is the fi rst analysis of this type in the world that takes into account both previous and current data on species richness as well as groups of aphids that are distinguishable on the basis of biological and ecological criteria such as host-alternation and feeding types, life cycle, ecological niche, symbiosis with ants and their eco- logical functional groups. Over the period of more than 25 years, there has been a signifi cant decrease in aphid α-diversity, from 171 to 105 species.
    [Show full text]
  • 6 VARIATION in the OBLIGATE SYMBIONTS of APHIDS by Kevin
    Variation in the Obligate Symbionts of Aphids Item Type text; Electronic Dissertation Authors Vogel, Kevin Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 13:19:10 Link to Item http://hdl.handle.net/10150/222898 6 VARIATION IN THE OBLIGATE SYMBIONTS OF APHIDS by Kevin J. Vogel ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Kevin J. Vogel entitled VARIATION IN THE OBLIGATE SYMBIONTS OF APHIDS and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 3-9-2012 Nancy A. Moran _______________________________________________________________________ Date: 3-9-2012 Michael W. Nachman _______________________________________________________________________ Date: 3-9-2012 Jeremiah D. Hackett _______________________________________________________________________ Date: 3-9-2012 Noah K. Whiteman Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • Schinus Molle L.) to CONTROL RICE WEEVIL (Sitophilus Oryzae L.
    154RESEARCH CHILEAN J. AGRIC. RES. - VOL. 69 - Nº 2 - 2009 BIOLOGICAL ACTIVITY OF ESSENTIAL OILS FROM LEAVES AND FRUITS OF PEPPER TREE (Schinus molle L.) TO CONTROL RICE WEEVIL (Sitophilus oryzae L.) 1 1 1* Verónica Benzi , Natalia Stefanazzi , and Adriana A. Ferrero ABSTRACT Rice weevil (Sitophilus oryzae L.) is a primary insect pest of stored grain. The development of resistance resulted in the application of synthetic insecticides. In recent years many plant essential oils have provided potential alternatives to currently used insect control agents. The Brazilian pepper tree (Schinus molle L. var. areira (L.) DC.�����������������) (Anacardiaceae) has different biological properties such as insecticidal activity. In this study, repellent, fumigant activity, nutritional indices, and feeding deterrent action were evaluated on S. oryzae adults. Filter paper impregnation was used to test fumigant toxicity, whereas treated whole wheat was used to evaluate repellent activity and a flour disk bioassay was done to evaluate feeding deterrent action and nutritional index alteration. Leaf essential oils showed repellent effects at both concentrations (0.04 and 0.4% w/w), while fruit essential oils lacked repellent activity. Both plant oils altered nutritional indices. Fruit essential oils had a strong feeding deterrent action (62%) while leaves had a slight effect (40.6%). With respect to fumigant activity, neither of the essential oils was found to be toxic. Key words: Schinus molle, Sitophilus oryzae, repellency, fumigant toxicity, nutritional indices, feeding deterrence. INTRODUCTION Resistance and toxicity problems of the synthetic insecticides have resulted in the necessity of finding Harvest grains are basic human food products (Padín more effective and healthier alternatives.
    [Show full text]
  • Species Identification of Aphids (Insecta: Hemiptera: Aphididae) Through DNA Barcodes
    Molecular Ecology Resources (2008) 8, 1189–1201 doi: 10.1111/j.1755-0998.2008.02297.x DNABlackwell Publishing Ltd BARCODING Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes R. G. FOOTTIT,* H. E. L. MAW,* C. D. VON DOHLEN† and P. D. N. HEBERT‡ *National Environmental Health Program, Invertebrate Biodiversity, Agriculture and Agri-Food Canada, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, ON, Canada K1A 0C6, †Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA, ‡Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 Abstract A 658-bp fragment of mitochondrial DNA from the 5′ region of the mitochondrial cytochrome c oxidase 1 (COI) gene has been adopted as the standard DNA barcode region for animal life. In this study, we test its effectiveness in the discrimination of over 300 species of aphids from more than 130 genera. Most (96%) species were well differentiated, and sequence variation within species was low, averaging just 0.2%. Despite the complex life cycles and parthenogenetic reproduction of aphids, DNA barcodes are an effective tool for identification. Keywords: Aphididae, COI, DNA barcoding, mitochondrial DNA, parthenogenesis, species identification Received 28 December 2007; revision accepted 3 June 2008 of numerous plant diseases (Eastop 1977; Harrewijn & Introduction Minks 1987; Blackman & Eastop 2000; Harrington & van The aphids (Insecta: Hemiptera: Aphididae) and related Emden 2007). Aphids are also an important invasive risk families Adelgidae and Phylloxeridae are a group of because their winged forms are easily dispersed by wind approximately 5000 species of small, soft-bodied insects that and because feeding aphids are readily transported with feed on plant phloem using piercing/sucking mouthparts.
    [Show full text]
  • Insects of the Idaho National Laboratory: a Compilation and Review
    Insects of the Idaho National Laboratory: A Compilation and Review Nancy Hampton Abstract—Large tracts of important sagebrush (Artemisia L.) Major portions of the INL have been burned by wildfires habitat in southeastern Idaho, including thousands of acres at the over the past several years, and restoration and recovery of Idaho National Laboratory (INL), continue to be lost and degraded sagebrush habitat are current topics of investigation (Ander- through wildland fire and other disturbances. The roles of most son and Patrick 2000; Blew 2000). Most restoration projects, insects in sagebrush ecosystems are not well understood, and the including those at the INL, are focused on the reestablish- effects of habitat loss and alteration on their populations and ment of vegetation communities (Anderson and Shumar communities have not been well studied. Although a comprehen- 1989; Williams 1997). Insects also have important roles in sive survey of insects at the INL has not been performed, smaller restored communities (Williams 1997) and show promise as scale studies have been concentrated in sagebrush and associated indicators of restoration success in shrub-steppe (Karr and communities at the site. Here, I compile a taxonomic inventory of Kimberling 2003; Kimberling and others 2001) and other insects identified in these studies. The baseline inventory of more habitats (Jansen 1997; Williams 1997). than 1,240 species, representing 747 genera in 212 families, can be The purpose of this paper is to present a taxonomic list of used to build models of insect diversity in natural and restored insects identified by researchers studying cold desert com- sagebrush habitats. munities at the INL.
    [Show full text]
  • Aphids (Hemiptera, Aphididae) Armelle Coeur D’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic
    Aphids (Hemiptera, Aphididae) Armelle Coeur d’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic To cite this version: Armelle Coeur d’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic. Aphids (Hemiptera, Aphi- didae). Alien terrestrial arthropods of Europe, 4, Pensoft Publishers, 2010, BioRisk, 978-954-642-554- 6. 10.3897/biorisk.4.57. hal-02824285 HAL Id: hal-02824285 https://hal.inrae.fr/hal-02824285 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae).
    [Show full text]