Bone Grafts and Implants in Spine Surgery

Total Page:16

File Type:pdf, Size:1020Kb

Bone Grafts and Implants in Spine Surgery CHAPTER 39 BONE GRAFTS AND IMPLANTS IN SPINE SURGERY Ken Hsu James F. Zucherman Arthur H. White Recent advances in both fusion tech of scaffolds, bridges, spacers, fillers of J • niques and instrumentation have defects, and replacements of bone lost. markedly facilitated the treatment of Immobilization of multiple motion seg spinaldisorders. Yet asignificantnumber ments is frequently necessary in the spine; of patients exist who continue to have great demands arc made on bone grafts. pseudarthroses. Despite the surgical ad In the lumbosacral spine, body weight vances the essentials ofa successful spinal and muscular forcesimpart loads equal to fusion still appear to be the effective ap three or four times body weight. It is plication of sound bone grafting princi not surprising that the highest rate of ples. These principles, along with the bone graft failure is seen in the lumbo techniques, problems, and complications sacral spine. Hence, the following is a associated with bone grafting, arc re discussion of technical problems, bio- viewed in this chapter. mechanical and physiologic character The loss ofbone in the spine often pre istics of bone grafts, and implants. sents serious difficulties not seen in other areas. The most favorable replacement THE AUTOGRAFT would still be a bone graft that fills the Autograft, or bone graft transplanted defect and becomes incorporated into the from one site to another in the same indi spine. However, the availability of ap vidual, is considered to be the most bio propriate bone to replace the loss is a logically suitable. Its advantages include: significant problem. Alternatives to bone 1. Has superior osteogenic capacity grafts, including a number of implants a. Contributes cells capable ofim used to stabilize the spine, are also sur mediate bone formation veyed. b. Allows for bone induction by i Bone grafts have often played the roles recipient bed where nonosseous '-.-f Dotw Grnfts and JnipfaiUs in Spine Surgery 435 tissue is influenced to change its for example, high speed burring cellular function and become and inadequate irrigation retard osteogenic healing*'"' 2. Lack of histoconipatibility differ 6. Position the canccllous surface ences or ininiunologic problems a. On opposing cancellous surtace 3. Ease of incorporation b. On surrounding soft tissue with 4. No disease transmission ' good blood supply The disadvantages include; c. So that total mass ofgraft is not 1. Additional incision or wider ex too thick to prevent nutrient posure, prolonged operative time, diffusion from recipient bed and increased blood loss 7. Always avoid 2. Increased postoperative morbidity a. Dead space 3. Sacrifice of normal structure and b. Hematoma weakening of donor bone c. Interposition ofnccrotic tissue 4. Risks of significant complications 8. To minimize risk, be aware of 5. Limitations in size, shape, quantity, a. Anatomy and quality b. Potential complications For optimal results harvest autogenous The iliac crest is the most versatile bone canccllous bone in the following manner. graft reserve. It isrelatively subcutaneous 1. In thin strips and easy to harvest in prone, supine, lat a. Not exceeding 5 mm in thick- eral, or other positions. It is expendable, and it has a large reserve of cortical b. To provide maximal exposure and canccllous bone. In addition, it al of superficial cells lows carpentering of different shapes and c. To allow rapid vascularization 2. Graft wrapped in a gauze soaked in patient's blood Anterior Iliac Crest Grafts a. To avoid exposure to high in Anterior iliaccrest bone grafts are used tensity lights for anterior interbody fusion ofthe cervi b. Kept in temperature less than cal, thoracic, or lumbosacral spine. The 42° C^' subcutaneous anterior superior iliac spine c. Not stored in saline or antibiotic and iliac crest and easily palpable. The solution^-'"'' iliac tubercle is the widest portion where d. Without the use of chemical a large quantity ofcorticocancellous bone sterilization'"" is found. (See Fig. 39-8.) 3. Transfer the graft to the recipient A skin incision is made parallel to or in bed as soon as possible to line with the iliac crest. It is advantageous a. Avoid exposure to air for more to center the incision over the iliac tuber than 30 minutes'"'' cle. The incision is carried down to the b. Protect the viability of the sur bone of the crest, and the muscles arc face cells elevated subperiostcally to expose the 4. Place the graft wing of the ilium. a. In wcll-vascularized bone bed The tensor fascia latac, glutens medius, b. In well-decorticated bone sur and glutens minimus originate from the face (cancellous site is superior) lateralaspectof the ilium. They are inner vated by the superior gluteal nerve. The c. With healthy soft tissue cover- { age abdominal muscles are also attached to 5. Minimize surgical trauma because, the iliac crest and arc scgmentally inner- • • • -i.. • .r; • • 1 i:; 436 Spine Surgery: An AnihoIogY vatcd. The incision over the crest is there close to the anterior superior iliac spine, fore "internervous" and safe. fracture may occur. (See Fig. 39-6.) An appropriate osteotome or chisel Avulsion of the anterior superior iliac may be used to outline a cortical window spine may occur by the action of the at in the lateral iliac surface from which to tached muscles, such as the tensor fascia procure the bone graft. Longitudinal lata or sartorius. parallel cuts may be made (Fig. 39-1). Bone may be removed in the form of Strips of cancellous bone may be re block, dowel, strips, and by way ofcorti moved with a curved gauge. Care must cal window or "trap door" (Figs. 39-1 to be taken not to violate the inner table of 39-4). The iliac crest contour can be pre the iliac wing where hernia is a significant served by removing the bone deep to the potential complication. crest, or by temporarily detaching and Bone graft may be obtained from the repositioning it later (Fig. 39-5). The inner table of the iliac wing. However, anterior superior iliac spine should be left there are risks of peritoneal perforation intact to maintain normal appearance. and significant bleeding with formation The region ofthe iliac spine should not be ofhematoma in the retroperitoncal space. weakened by removing bone adjacent to It is important not to carry the incision it. Fracture and displacement of the to or anterior to the anterior superior iliac inguinal ligament may result (Fig. 39-6). spine. Injury to the lateral femoral cuta The wound should be closed properly. neous nerve or the inguinal ligament The muscles and fascia must be sutured to must be avoided. Detachment of the in their original anatomic positions and the guinal ligament may result in inguinal defects closed; an effective drain should hernia. If bicortical bone is taken too be used. / •• ' (/'((//' / \/ / l< Mcu. Fig. 39-1 Corticocanccllous bonegrnftisobtainedfromlateral iliac surface usinglongitudinal parallel cuts with an osteotome or chisel. »•.«) , •> / • 1 ' Bone Grafts and Implants in Spine Surgery 437 Fig. 39-2 Hor.scshoc-sliapcd corticocanccllous bone graft is obtained froin iliac crest using ostco- tontcs positioned parallel to each other. Fig. 39-3 Dowel-cutting instrument is used to obtain iliac graft with two tooled cancellous sur faces and cortical faces on three sides for anterior spinal intcrbody fusion. Fig. 39-4 Cortical "trap door" is used to gain access to iliac cancellous bone. '' 1 I !-•! v'Nr ^ f 438 Spine Surgery: An Anthofogy m Temporary detachment The iliac contour S r of the iliac crest Is preserved intact ^"5 ] i The defect is filled to avoid hernia (Bonecement may be used) Fig. 39-5 Large iliac graft isobtained with preservation of tlie iliac contour. t, Anterior superior iliac spineL \ Inguinal ligament Fig. 39-6 Illustration ofattachment ofinguinal ligament to anterior superior iliac spine. Detachment ofingiiinal ligament may lead to inguinal hernia. Injury to lateral femoral cuta neous nerve should also be avoided. Bofic Crafts aitd Implants in Spine Surgery 439 Posterior Iliac Crest Grafts bone that forms the notch. This can pro The posterior iliac crest provides a duce instability ofthe pelvis. It is impor largequantity of cortical cancelious bone tant to stay cephalad to the sciatic notch graft. The posterior superior iliac crest is and remove bone only from the false pel palpable under the skin dimple in the vis. For a landmark, an imaginary line superior medial aspect of the gluteal re dropped anteriorly from the posterior gion. The iliac crest curves cephalad and superior iliac spine with the patientin the laterally from the posterior superior iliac prone position can be used as the caudal spine. limit of bone removal (see Fig. 39-15, A An oblique, curved or vertical incision and B). Care must be taken not to enter may be made over the posterior iliaccrest the sacroiliacjoint, which may become a or in line with it. The cluneal nerves cross source of persistent pain and instability the iliac crest 7 to 12 cm anterolateral to when injured. the posterior superior iliac spine (see dis A sharp surgical instrument (that is, cussion under Complications) and must an osteotonie or tip of Taylor retractor) be protected (sec Fig. 39-13). may injure the sciatic nerve deep to the A midline spine incision may be ex sciatic notch. Laceration of the superior tended distally and the posterior iliac gluteal vessels is a significant danger in crest approached laterally under the skin this region. The vessels leave the pelvis and subcutaneous fat. This avoids the use via the sciatic notch. A divided vessel can of a second skin incision. easily retract into the pelvis and presentsa The incision is carried down to the very alarming complication (sec discus bone of the crest, and the muscles arc sion under Complications) (sec Fig.
Recommended publications
  • Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions
    Hindawi International Journal of Rheumatology Volume 2020, Article ID 2919625, 13 pages https://doi.org/10.1155/2020/2919625 Review Article Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions Worku Abie Liyew Biomedical Science Department, School of Medicine, Debre Markos University, Debre Markos, Ethiopia Correspondence should be addressed to Worku Abie Liyew; [email protected] Received 25 April 2020; Revised 26 June 2020; Accepted 13 July 2020; Published 29 August 2020 Academic Editor: Bruce M. Rothschild Copyright © 2020 Worku Abie Liyew. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lumbar disc degeneration is defined as the wear and tear of lumbar intervertebral disc, and it is mainly occurring at L3-L4 and L4-S1 vertebrae. Lumbar disc degeneration may lead to disc bulging, osteophytes, loss of disc space, and compression and irritation of the adjacent nerve root. Clinical presentations associated with lumbar disc degeneration and lumbosacral nerve lesion are discogenic pain, radical pain, muscular weakness, and cutaneous. Discogenic pain is usually felt in the lumbar region, or sometimes, it may feel in the buttocks, down to the upper thighs, and it is typically presented with sudden forced flexion and/or rotational moment. Radical pain, muscular weakness, and sensory defects associated with lumbosacral nerve lesions are distributed on
    [Show full text]
  • The Blood Supply of the Lumbar and Sacral Plexuses in the Human Foetus* by M
    J. Anat., Lond. (1964), 98, 1, 105-116 105 With 4 plates and 3 text-figures Printed in Great Britain The blood supply of the lumbar and sacral plexuses in the human foetus* BY M. H. DAYt Department of Anatomy, Royal Free Hospital School of Medicine INTRODUCTION The existence of a blood supply to peripheral nerve is well established. Recently, a number of authors have reviewed the literature of the field, among them Blunt (1956) and Abdullah (1958), who from their own observations have confirmed that peripheral nerves are supplied by regional vessels reinforcing longitudinally arranged channels which freely anastomose with each other. There is also evidence that posterior root ganglia are particularly well supplied with blood vessels (Abdullah, 1958), but the precise distribution and arrangement of arteries to some individual nerve trunks and plexuses is still in need of investigation. The literature reveals few references to the blood supply of the lumbar and sacral plexuses. The distribution of arteries to the roots and ganglia of the sacral nerves was noted by Haller (1756), but the most important contributions in this field were those of Bartholdy (1897) and Tonkoff (1898), whose observations on the lumbar and sacral plexuses form part of a general survey of the blood supply of peripheral nerve in man. They cited the lumbar, ilio-lumbar, median and lateral sacral arteries as well as the gluteal and pudendal vessels as sources of supply, but gave no indication of the frequency of these contributions. Subsequent authors including Hovelacque (1927), dealt briefly with the distribution of the lateral sacral, median sacral, gluteal and pudendal arteries to the sacral plexus, but treated more fully the blood supply of the sciatic nerve.
    [Show full text]
  • Study of Anatomical Pattern of Lumbar Plexus in Human (Cadaveric Study)
    54 Az. J. Pharm Sci. Vol. 54, September, 2016. STUDY OF ANATOMICAL PATTERN OF LUMBAR PLEXUS IN HUMAN (CADAVERIC STUDY) BY Prof. Gamal S Desouki, prof. Maged S Alansary,dr Ahmed K Elbana and Mohammad H Mandor FROM Professor Anatomy and Embryology Faculty of Medicine - Al-Azhar University professor of anesthesia Faculty of Medicine - Al-Azhar University Anatomy and Embryology Faculty of Medicine - Al-Azhar University Department of Anatomy and Embryology Faculty of Medicine of Al-Azhar University, Cairo Abstract The lumbar plexus is situated within the substance of the posterior part of psoas major muscle. It is formed by the ventral rami of the frist three nerves and greater part of the fourth lumbar nerve with or without a contribution from the ventral ramus of last thoracic nerve. The pattern of formation of lumbar plexus is altered if the plexus is prefixed (if the third lumbar is the lowest nerve which enters the lumbar plexus) or postfixed (if there is contribution from the 5th lumbar nerve). The branches of the lumbar plexus may be injured during lumbar plexus block and certain surgical procedures, particularly in the lower abdominal region (appendectomy, inguinal hernia repair, iliac crest bone graft harvesting and gynecologic procedures through transverse incisions). Thus, a better knowledge of the regional anatomy and its variations is essential for preventing the lesions of the branches of the lumbar plexus. Key Words: Anatomical variations, Lumbar plexus. Introduction The lumbar plexus formed by the ventral rami of the upper three nerves and most of the fourth lumbar nerve with or without a contribution from the ventral ramous of last thoracic nerve.
    [Show full text]
  • The Neuroanatomy of Female Pelvic Pain
    Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis.
    [Show full text]
  • Spinal Cord, Spinal Nerves, and the Autonomic Nervous System
    ighapmLre21pg211_216 5/12/04 2:24 PM Page 211 impos03 302:bjighapmL:ighapmLrevshts:layouts: NAME ___________________________________ LAB TIME/DATE _______________________ REVIEW SHEET Spinal Cord, Spinal Nerves, exercise and the Autonomic Nervous System 21 Anatomy of the Spinal Cord 1. Match the descriptions given below to the proper anatomical term: Key: a. cauda equina b. conus medullaris c. filum terminale d. foramen magnum d 1. most superior boundary of the spinal cord c 2. meningeal extension beyond the spinal cord terminus b 3. spinal cord terminus a 4. collection of spinal nerves traveling in the vertebral canal below the terminus of the spinal cord 2. Match the key letters on the diagram with the following terms. m 1. anterior (ventral) hornn 6. dorsal root of spinal nervec 11. posterior (dorsal) horn k 2. arachnoid materj 7. dura materf 12. spinal nerve a 3. central canalo 8. gray commissure i 13. ventral ramus of spinal nerve h 4. dorsal ramus of spinald 9. lateral horne 14. ventral root of spinal nerve nerve g l 5. dorsal root ganglion 10. pia materb 15. white matter o a b n c m d e l f g k h j i Review Sheet 21 211 ighapmLre21pg211_216 5/12/04 2:24 PM Page 212 impos03 302:bjighapmL:ighapmLrevshts:layouts: 3. Choose the proper answer from the following key to respond to the descriptions relating to spinal cord anatomy. Key: a. afferent b. efferent c. both afferent and efferent d. association d 1. neuron type found in posterior hornb 4. fiber type in ventral root b 2.
    [Show full text]
  • The Lumbosacral Plexus: Anatomic Considerations for Minimally Invasive Retroperitoneal Transpsoas Approach
    Surg Radiol Anat (2012) 34:151–157 DOI 10.1007/s00276-011-0881-z ORIGINAL ARTICLE The lumbosacral plexus: anatomic considerations for minimally invasive retroperitoneal transpsoas approach Patrick Gue´rin • Ibrahim Obeid • Anouar Bourghli • Thibault Masquefa • Ste´phane Luc • Olivier Gille • Vincent Pointillart • Jean-Marc Vital Received: 2 May 2011 / Accepted: 21 September 2011 / Published online: 5 October 2011 Ó Springer-Verlag 2011 Abstract plexus was performed. All nerve branches and sympathetic Purpose The minimally invasive transpsoas approach can chain were identified. Intervertebral disc space from L1L2 be employed to treat various spinal disorders, such as disc to L4L5 was divided into four zones. Zone 1 being the degeneration, deformity, and lateral disc herniation. With anterior quarter of the disc, zone 2 being the middle this technique, visualization is limited in comparison with anterior quarter, zone 3 the posterior middle quarter and the open procedure and the proximity of the lumbar plexus zone 4 the posterior quarter. Crossing of each nervous to the surgical pathway is one limitation of this technique. branch with the disc was reported and a safe working zone Precise knowledge of the regional anatomy of the lumbar was determined for L1L2 to L4L5 disc levels. A safe plexus is required for safe passage through the psoas working zone was defined by the absence of crossing of a muscle. The primary objective of this study was to deter- lumbar plexus branch. mine the anatomic position of the lumbar plexus branches Results No anatomical variation was found during blunt and sympathetic chain in relation to the intervertebral disc dissection.
    [Show full text]
  • Overview of Spinal Nerves
    Spinal Nerves Boundless Overview of Spinal Nerves Spinal nerves, a part of the PNS, generally refers to mixed nerves, with motor, sensory, and autonomic signals between the CNS and the body. 1. fig. 1 shows a spinal nerve Spinal nerves arise from a combination of nerve fibers: the dorsal and ventral roots of the spinal cord. Afferent sensory axons, bringing sensory information from the body to the spinal cord and brain, travel through the dorsal roots of the spinal cord, and efferent motor axons, bringing motor information from the brain to the body, travel through the ventral roots of the spinal cord. All spinal nerves except the first pair emerge from the spinal column through an opening between vertebrae, called an intervertebral foramen. The spinal nerves are typically labeled by their location in the body: thoracic, lumbar, or sacral. Dorsal Root: Also known as the posterior root, the afferent sensory root of a spinal nerve. Autonomic: Acting or occurring involuntarily, without conscious control. Intervertebral Foramen: The foramen allows for the passage of the spinal nerve root, dorsal root ganglion, the spinal artery of the segmental artery, communicating veins between the internal and external plexuses, recurrent meningeal (sinu- vertebral) nerves, and transforaminal ligaments. 2. Source URL: https://www.boundless.com/physiology/peripheral-nervous-system-pns/spinal-nerves/ Saylor URL: http://www.saylor.org/courses/psych402/ Attributed to: [Boundless] www.saylor.org Page 1 of 12 fig. 2 shows intervertebral foramina Intervertebral foramina are indicated by arrows. Spinal Nerves The term spinal nerve generally refers to a mixed spinal nerve, which carries motor, sensory, and autonomic signals between the spinal cord and the body.
    [Show full text]
  • The Spinal Cord and Spinal Nerves
    14 The Nervous System: The Spinal Cord and Spinal Nerves PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The Central Nervous System (CNS) consists of: • The spinal cord • Integrates and processes information • Can function with the brain • Can function independently of the brain • The brain • Integrates and processes information • Can function with the spinal cord • Can function independently of the spinal cord © 2012 Pearson Education, Inc. Gross Anatomy of the Spinal Cord • Features of the Spinal Cord • 45 cm in length • Passes through the foramen magnum • Extends from the brain to L1 • Consists of: • Cervical region • Thoracic region • Lumbar region • Sacral region • Coccygeal region © 2012 Pearson Education, Inc. Gross Anatomy of the Spinal Cord • Features of the Spinal Cord • Consists of (continued): • Cervical enlargement • Lumbosacral enlargement • Conus medullaris • Cauda equina • Filum terminale: becomes a component of the coccygeal ligament • Posterior and anterior median sulci © 2012 Pearson Education, Inc. Figure 14.1a Gross Anatomy of the Spinal Cord C1 C2 Cervical spinal C3 nerves C4 C5 C 6 Cervical C 7 enlargement C8 T1 T2 T3 T4 T5 T6 T7 Thoracic T8 spinal Posterior nerves T9 median sulcus T10 Lumbosacral T11 enlargement T12 L Conus 1 medullaris L2 Lumbar L3 Inferior spinal tip of nerves spinal cord L4 Cauda equina L5 S1 Sacral spinal S nerves 2 S3 S4 S5 Coccygeal Filum terminale nerve (Co1) (in coccygeal ligament) Superficial anatomy and orientation of the adult spinal cord. The numbers to the left identify the spinal nerves and indicate where the nerve roots leave the vertebral canal.
    [Show full text]
  • Posterior Abdominal Wall- I (Muscles & Nerves)
    Posterior Abdominal wall- I (Muscles & nerves) Dr Garima Sehgal Associate Professor Department of Anatomy King George’s Medical University DISCLAIMER: • The presentation includes images which are either hand drawn or have been taken from google images or books. • They are being used in the presentation only for educational purpose. • The author of the presentation claims no personal ownership over images taken from books or google images. • However, the hand drawn images are the creation of the author of the presentation Learning Objectives By the end of this teaching session you should be able to- • Describe the muscles of posterior abdominal wall (origin, insertion, actions, nerve supply) • Enumerate the nerves of the posterior abdominal wall • Describe the lumbar plexus (location , formation , branches) Understanding the anatomical reconstruction Muscles of posterior abdominal wall Skeletal Background Ligamentous background Musculofascial Background 1. T 12 vertebra th 1. Iliolumbar ligament 2. 12 rib 2. Anterior longitudnal 3. L 1 – L5 vertebrae ligament 1. Psoas major muscle 4. Iliac crest and iliac 3. Ventral sacroiliac fossa and fascia ligament 2. Quadratus lumborum 3. Iliacus and fascia iliaca 4. Psoas minor Psoas major Occupies 3 regions- abdomen, false pelvis & upper thigh Origin – 14 fleshy strips Continous attachment from T12(lower border) to L5 (upper border) 1. discs above 5 lumbar vertebrae 2. adjoining parts of vertebral bodies 3. 4 fibrous arches across the sides of upper 4 lumbar vertebrae Actions – i. Chief flexor of
    [Show full text]
  • The Anatomy of the Pelvis: Structures Important to the Pelvic Surgeon Workshop 45
    The Anatomy of the Pelvis: Structures Important to the Pelvic Surgeon Workshop 45 Tuesday 24 August 2010, 14:00 – 18:00 Time Time Topic Speaker 14.00 14.15 Welcome and Introduction Sylvia Botros 14.15 14.45 Overview ‐ pelvic anatomy John Delancey 14.45 15.20 Common injuries Lynsey Hayward 15.20 15.50 Break 15.50 18.00 Anatomy lab – 25 min rotations through 5 stations. Station 1 &2 – SS ligament fixation Dennis Miller/Roger Goldberg Station 3 – Uterosacral ligament fixation Lynsey Hayward Station 4 – ASC and Space of Retzius Sylvia Botros Station 5‐ TVT Injury To be determined Aims of course/workshop The aims of the workshop are to familiarise participants with pelvic anatomy in relation to urogynecological procedures in order to minimise injuries. This is a hands on cadaver course to allow for visualisation of anatomic and spatial relationships. Educational Objectives 1. Identify key anatomic landmarks important in each urogynecologic surgery listed. 2. Identify anatomical relationships that can lead to injury during urogynecologic surgery and how to potentially avoid injury. Anatomy Workshop ICS/IUGA 2010 – The anatomy of the pelvis: Structures important to the pelvic surgeon. We will Start with one hour of Lectures presented by Dr. John Delancy and Dr. Lynsey Hayward. The second portion of the workshop will be in the anatomy lab rotating between 5 stations as presented below. Station 1 & 2 (SS ligament fixation) Hemi pelvis – Dennis Miller/ Roger Goldberg A 3rd hemipelvis will be available for DR. Delancey to illustrate key anatomical structures in this region. 1. pudendal vessels and nerve 2.
    [Show full text]
  • Radiculopathy
    An introduction to Radiculopathy This booklet provides general information on radiculopathy. It is not meant to replace any personal conversations that you might wish to have with your physician or other member of your healthcare team. Not all the information here will apply to your individual treatment or its outcome. About the spine The human spine is made up of 24 Cervical bones or vertebrae in the cervical (neck) spine, the thoracic (chest) spine, and the lumbar (lower back) spine, plus the sacral bones. Thoracic Vertebrae are connected by several joints, which allow you to bend, twist, and carry loads. The main joint between two vertebrae is called an intervertebral disc. The disc is made of two parts, a tough and Lumbar fibrous outer layer (annulus fibrosis) and a soft, gelatinous center (nucleus pulposus). These two parts work in conjunction to allow the spine to move, and also provide Sacrum shock absorption. Intervertebral disc Nucleus Annulus pulposus fibrosis Spinal nerves 1 About the spinal cord and cauda equina Each vertebra has an opening (vertebral foramen) through which a tubular nervous structure travels. Beginning Spinal at the base of the brain to cord the upper-lumbar spine, this structure is called the spinal cord. Below the spinal cord, in the lumbar spine, the nerve roots that exit the spinal cord continue to travel through the vertebral Cauda equina foramen as a bundle known as the cauda equina. Spinal cord Vertebral foramen 2 About spinal nerves At each level of the spine, spinal nerves exit the spinal cord and cauda equina to both the left and right sides then extend throughout the body.
    [Show full text]
  • Lower-Extremity Peripheral Nerve Blockade: Essentials of Our Current Understanding
    Original Articles Lower-Extremity Peripheral Nerve Blockade: Essentials of Our Current Understanding F. Kayser Enneking, M.D., Vincent Chan, M.D., Jenny Greger, M.D., Admir Hadz˘ic´, M.D., Ph.D., Scott A. Lang, B.Sc., M.D., F.R.C.P.C., and Terese T. Horlocker, M.D. he American Society of Regional Anesthesia a discussion of techniques and applications. In ad- Tand Pain Medicine introduced an intensive dition, we will review neural localization tech- workshop focused on lower-extremity peripheral niques and potential complications. nerve blockade in 2002. This review is the compi- lation of that work. Details concerning the tech- Lower-Extremity Peripheral Nerve niques described in this text are available at the web Anatomy site ASRA.com, including video demonstrations of Lower-extremity PNB requires a thorough un- the blocks. Lower-extremity peripheral nerve derstanding of the neuroanatomy of the lumbosa- blocks (PNBs) have never been as widely taught or cral plexus. Anatomically, the lumbosacral plexus used as other forms of regional anesthesia. Unlike consists of 2 distinct entities: the lumbar plexus and the upper extremity, the entire lower extremity the sacral plexus. There is some communication cannot be anesthetized with a single injection, and between these plexi via the lumbosacral trunk, but injections are generally deeper than those required for functional purposes these are distinct entities.1 for upper extremity block. In addition, neuraxial Details of the motor and sensory branches of the techniques are widely taught and use alternative lumbosacral plexus are summarized in Tables 1 and methods for providing reliable lower-extremity an- 2 and Figures 1 and 2.
    [Show full text]