Human Papillomavirus Oncoprotein E7 Dysregulates Immune

Total Page:16

File Type:pdf, Size:1020Kb

Human Papillomavirus Oncoprotein E7 Dysregulates Immune HUMAN PAPILLOMAVIRUS ONCOPROTEIN E7 DYSREGULATES IMMUNE RESPONSES THROUGH EPIGENETIC MANIPULATION by LOUIS J CICCHINI B.S., University of Arizona, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Molecular Biology 2016 This thesis for the Doctor of Philosophy degree by Louis J Cicchini has been approved for the Molecular Biology Program by Rytis Prekeris, Chair Dohun Pyeon, Advisor James Hagman Thomas E. Morrison Xiao-Jing Wang Date: August 18, 2016 ii Cicchini, Louis J. (PhD, Molecular Biology) Human Papillomavirus Oncoprotein E7 Dysregulates Immune Responses through Epigenetic Manipulation Thesis directed by Associate Professor Dohun Pyeon ABSTRACT High-risk human papillomaviruses (HPVs) are causally associated with multiple human cancers. Previous studies have shown that the HPV oncoprotein E7 induces immune suppression; however, the underlying mechanisms remain unknown. We report that, while expression of many proinflammatory chemokines increases throughout HPV-positive cancer progression, CXCL14 is dramatically downregulated by promoter hypermethylation in an E7- dependent manner. Our in vivo mouse models revealed that restoration of Cxcl14 expression in HPV-positive mouse oropharyngeal carcinoma cells clears tumors in immunocompetent syngeneic mice, but not in Rag1-deficient mice. Further, restoration of Cxcl14 expression significantly increases natural killer (NK), CD4+ T, and CD8+ T cell infiltration into the tumor-draining lymph nodes in vivo. In vitro transwell migration assays show that restoration of Cxcl14 expression induces chemotaxis of NK, CD4+ T, and CD8+ T cells. These findings suggest that high-risk HPV E7 is likely to dysregulate host gene expression in order to persist by modulating host DNA methylation. To investigate the extent of gene expression dysregulated by HPV E7-induced DNA methylation, we performed parallel global gene expression and methylome analyses with HPV-positive and -negative normal immortalized keratinocyte lines, NIKS, NIKS-16, NIKS-18, and NIKS-16∆E7. We show that expression of the MHC class-I genes HLA-A, -B, -C, -E, and -G is downregulated in HPV-positive keratinocytes in an E7-dependent manner. Additional methylome analysis revealed hypermethylation at a distal CpG island (CGI) near the HLA-E gene in HPV16- positive keratinocytes (NIKS-16) cells compared with NIKS and NIKS-16∆E7 cells. The HLA- E CGI functions as a promoter exhibiting transcription factor binding sites and DNase iii hypersensitivity. Promoter activity of the HLA-E CGI is considerably decreased by DNA methylation. HLA-E protein expression also is downregulated by high-risk HPV16 and HPV18 E7 expression, but not by low-risk HPV6 and HPV11 E7 expression. Conversely, demethylation in the HLA-E CGI by treatment with 5-aza-β’-deoxycytidine restores HLA-E protein expression in HPV-positive keratinocytes. Because HLA-E plays an important role in antiviral immunity, epigenetic downregulation of HLA-E by high-risk HPV E7 may contribute to HPV-induced immune suppression during HPV persistence. Our findings provide a new mechanistic understanding of virus-induced immune evasion that contributes to cancer progression. The form and content of this abstract are approved. I recommend its publication. Approved: Dohun Pyeon iv TABLE OF CONTENTS CHAPTER I. INTRODUCTION……………………..……………..……………………………………….1 Human Papillomavirus: Disease and Global Implications .......................................... 1 The Molecular Biology of Papillomavirus .................................................................. 3 Papillomavirus Oncogenes and Mechanisms of Transformation ............................... 7 E5 and Dysregulation of Immune Signaling ................................................... 8 E6 Abrogation of p53 and Evasion of Apoptosis ............................................ 9 Transformation by E7 through Dysregulation of Host Gene Expression .......10 Papillomavirus-Induced Neoplastic Transformation ......................................15 Viral Persistence and Cancer Progression ...............................................................17 Evaluating General Risk Factors for HPV-Associated Cancer Progression ..................................................................................................17 HPV Persistence and Host Epigenetic Consequences .................................18 Virus Evasion of Immune Detection .........................................................................21 Evasion of Resident Antigen Presenting Cells ..............................................22 Dysregulation of Antigen Presentation .........................................................25 Chemokines and Inflammation.................................................................................27 Inflammation and HPV-Associated Cancer Progression ...............................27 CXCL14 is a Potential Tumor Suppressor ....................................................28 Dissertation Goals and Objectives ...........................................................................29 II. MATERIALS AND METHODS .................................................................................32 Cell and Tissue Culture ...........................................................................................32 Conventional PCR and Quantitative Reverse Transcription-PCR (RT-qPCR) ..........33 Bisulfite Modification and Assessment of Methylated DNA ......................................34 Vectors and Plasmids ..............................................................................................35 Luciferase Reporter Vectors .........................................................................35 v Lentiviral Vectors ..........................................................................................36 Enzyme-Linked Immunosorbent Assay (ELISA) ......................................................36 Cell Migration Assays ..............................................................................................37 Scratch Assay ..............................................................................................37 Transwell Migration ......................................................................................37 Mice and Treatment .................................................................................................38 Flow Cytometry ........................................................................................................39 Antibodies ....................................................................................................39 Sample Preparation and Flow Analysis ........................................................39 Array Preparation and Analysis ................................................................................40 Genome-wide Expression and DNA Methylation Arrays ...............................40 Data Processing and Statistical Analysis ......................................................40 Bioinformatics ..............................................................................................41 Immunoblotting ........................................................................................................42 Statistical Analysis ...................................................................................................42 Generation of HPV16 Reporter Virions ....................................................................43 Reagent Acknowledgements ...................................................................................43 III. SUPPRESSION OF ANTITUMOR IMMUNE RESPONSES BY HUMAN PAPILLOMAVIRUS THROUGH EPIGENETIC DOWNREGULATION OF CXCL14 ...................................................................................................................44 Importance ..............................................................................................................44 Introduction ..............................................................................................................44 Results ....................................................................................................................46 Proinflammatory Chemokines are Upregulated During CxCa Progression ..................................................................................................46 CXCL14 Expression is Downregulated in HPV-Associated Cancer Progression ..................................................................................................47 CXCL14 Downregulation in HPV-Positive Keratinocytes is Associated with Promoter Hypermethylation ..................................................................50 vi CXCL14 Expression Hinders Cell Migration in vitro ......................................53 Restoration of Cxcl14 Expression Clears HPV-Positive Tumors in Immunocompetent Mice, but not in Rag1-Deficient Mice ..............................55 Restored Expression of Cxcl14 Increases Natural Killer (NK), CD4+ T, and CD8+ T Cells in Tumor-Draining Lymph Nodes in vivo...........................57 Expression of Cxcl14 Induces Chemotaxis of NK, CD4+ T, and CD8+ T Cells in vitro .................................................................................................59 Discussion ...............................................................................................................62 IV. HIGH-RISK HUMAN PAPILLOMAVIRUS E7 ALTERS HOST DNA METHYLOME AND REPRESSES
Recommended publications
  • Histone Isoform H2A1H Promotes Attainment of Distinct Physiological
    Bhattacharya et al. Epigenetics & Chromatin (2017) 10:48 DOI 10.1186/s13072-017-0155-z Epigenetics & Chromatin RESEARCH Open Access Histone isoform H2A1H promotes attainment of distinct physiological states by altering chromatin dynamics Saikat Bhattacharya1,4,6, Divya Reddy1,4, Vinod Jani5†, Nikhil Gadewal3†, Sanket Shah1,4, Raja Reddy2,4, Kakoli Bose2,4, Uddhavesh Sonavane5, Rajendra Joshi5 and Sanjay Gupta1,4* Abstract Background: The distinct functional efects of the replication-dependent histone H2A isoforms have been dem- onstrated; however, the mechanistic basis of the non-redundancy remains unclear. Here, we have investigated the specifc functional contribution of the histone H2A isoform H2A1H, which difers from another isoform H2A2A3 in the identity of only three amino acids. Results: H2A1H exhibits varied expression levels in diferent normal tissues and human cancer cell lines (H2A1C in humans). It also promotes cell proliferation in a context-dependent manner when exogenously overexpressed. To uncover the molecular basis of the non-redundancy, equilibrium unfolding of recombinant H2A1H-H2B dimer was performed. We found that the M51L alteration at the H2A–H2B dimer interface decreases the temperature of melting of H2A1H-H2B by ~ 3 °C as compared to the H2A2A3-H2B dimer. This diference in the dimer stability is also refected in the chromatin dynamics as H2A1H-containing nucleosomes are more stable owing to M51L and K99R substitu- tions. Molecular dynamic simulations suggest that these substitutions increase the number of hydrogen bonds and hydrophobic interactions of H2A1H, enabling it to form more stable nucleosomes. Conclusion: We show that the M51L and K99R substitutions, besides altering the stability of histone–histone and histone–DNA complexes, have the most prominent efect on cell proliferation, suggesting that the nucleosome sta- bility is intimately linked with the physiological efects observed.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • HIST1H2AC Human Shrna Plasmid Kit (Locus ID 8334) Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TL312444 HIST1H2AC Human shRNA Plasmid Kit (Locus ID 8334) Product data: Product Type: shRNA Plasmids Product Name: HIST1H2AC Human shRNA Plasmid Kit (Locus ID 8334) Locus ID: 8334 Synonyms: dJ221C16.4; H2A/l; H2AFL; HIST1H2AC Vector: pGFP-C-shLenti (TR30023) Format: Lentiviral plasmids Components: HIST1H2AC - Human, 4 unique 29mer shRNA constructs in lentiviral GFP vector(Gene ID = 8334). 5µg purified plasmid DNA per construct Non-effective 29-mer scrambled shRNA cassette in pGFP-C-shLenti Vector, TR30021, included for free. RefSeq: NM_003512, NM_003512.1, NM_003512.2, NM_003512.3, BC085010, BC017379, BC050602, NM_003512.4 Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6. [provided by RefSeq, Aug 2015] shRNA Design: These shRNA constructs were designed against multiple splice variants at this gene locus.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Hepatitis C Virus As a Unique Human Model Disease to Define
    viruses Review Hepatitis C Virus as a Unique Human Model Disease to Define Differences in the Transcriptional Landscape of T Cells in Acute versus Chronic Infection David Wolski and Georg M. Lauer * Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA * Correspondence: [email protected]; Tel.: +1-617-724-7515 Received: 27 June 2019; Accepted: 23 July 2019; Published: 26 July 2019 Abstract: The hepatitis C virus is unique among chronic viral infections in that an acute outcome with complete viral elimination is observed in a minority of infected patients. This unique feature allows direct comparison of successful immune responses with those that fail in the setting of the same human infection. Here we review how this scenario can be used to achieve better understanding of transcriptional regulation of T-cell differentiation. Specifically, we discuss results from a study comparing transcriptional profiles of hepatitis C virus (HCV)-specific CD8 T-cells during early HCV infection between patients that do and do not control and eliminate HCV. Identification of early gene expression differences in key T-cell differentiation molecules as well as clearly distinct transcriptional networks related to cell metabolism and nucleosomal regulation reveal novel insights into the development of exhausted and memory T-cells. With additional transcriptional studies of HCV-specific CD4 and CD8 T-cells in different stages of infection currently underway, we expect HCV infection to become a valuable model disease to study human immunity to viruses. Keywords: viral hepatitis; hepatitis C virus; T cells; transcriptional regulation; transcription factors; metabolism; nucleosome 1.
    [Show full text]
  • Expression Analysis of Progesterone‑Regulated Mirnas in Cells Derived from Human Glioblastoma
    MOLECULAR MEDICINE REPORTS 23: 475, 2021 Expression analysis of progesterone‑regulated miRNAs in cells derived from human glioblastoma DIANA ELISA VELÁZQUEZ‑VÁZQUEZ1, AYLIN DEL MORAL‑MORALES1, JENIE MARIAN CRUZ‑BURGOS2, EDUARDO MARTÍNEZ‑MARTÍNEZ3, MAURICIO RODRÍGUEZ‑DORANTES2 and IGNACIO CAMACHO‑ARROYO1 1Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología‑Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510; 2Oncogenomics Laboratory, The National Institute of Genomic Medicine; 3Laboratory of Cell Communication and Extracellular Vesicles, The National Institute of Genomic Medicine, Mexico City 14610, Mexico Received August 16, 2020; Accepted February 2, 2021 DOI: 10.3892/mmr.2021.12114 Abstract. Glioblastomas (GBMs) are the most frequent and is characterized by being highly infiltrative, angiogenic and malignant type of brain tumor. It has been reported that resistant to chemotherapy and radiotherapy. The medical progesterone (P4) regulates the progression of GBMs by modi‑ history of patients with GBM is short as few of them survive fying the expression of genes that promote cell proliferation, more than one year (1‑3). GBM is mainly diagnosed in adults migration and invasion; however, it is not fully understood >50 years old, but it can occur at any age and the incidence is how these processes are regulated. It is possible that P4 medi‑ higher in men than in women (3:2) (4). ates some of these effects through changes in the microRNA Studies have focused on the identification of new biomarkers (miRNA) expression profile in GBM cells. The present study and therapeutic agents in GBM. Of particular interest are the investigated the effects of P4 on miRNAs expression profile microRNAs (miRNAs), which are single‑stranded, short, in U‑251MG cells derived from a human GBM.
    [Show full text]
  • Mutational Landscape of Uterine and Ovarian Carcinosarcomas Implicates Histone Genes in Epithelial–Mesenchymal Transition
    Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition Siming Zhaoa,b, Stefania Bellonec, Salvatore Lopezc, Durga Thakrala,b, Carlton Schwabc, Diana P. Englishc, Jonathan Blackc, Emiliano Coccoc, Jungmin Choia,b, Luca Zammataroc, Federica Predolinic, Elena Bonazzolic, Mark Bia,b, Natalia Buzad, Pei Huid, Serena Wongd, Maysa Abu-Khalafe, Antonella Ravaggif, Eliana Bignottif, Elisabetta Bandieraf, Chiara Romanif, Paola Todeschinif, Renata Tassif, Laura Zanottif, Franco Odicinof, Sergio Pecorellif, Carla Donzellig, Laura Ardighierig, Fabio Facchettig, Marcella Falchettig, Dan-Arin Silasic, Elena Ratnerc, Masoud Azodic, Peter E. Schwartzc, Shrikant Manea,b, Roberto Angiolih, Corrado Terranovah, Charles Matthew Quicki, Babak Edrakij, Kaya Bilgüvara,b, Moses Leek, Murim Choik, Amy L. Stieglerl, Titus J. Boggonl, Joseph Schlessingerl, Richard P. Liftona,b,m,1, and Alessandro D. Santinc aDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06510; bHoward Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; cDepartment of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; dDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06510; eInternal Medicine & Oncology, Yale University School of Medicine, New Haven, CT 06510; f“Angelo Nocivelli” Institute of Molecular Medicine, Department of Obstetrics & Gynecology, University of Brescia, 25100 Brescia, Italy;
    [Show full text]
  • Histone-Related Genes Are Hypermethylated in Lung Cancer
    Published OnlineFirst October 1, 2019; DOI: 10.1158/0008-5472.CAN-19-1019 Cancer Genome and Epigenome Research Histone-Related Genes Are Hypermethylated in Lung Cancer and Hypermethylated HIST1H4F Could Serve as a Pan-Cancer Biomarker Shihua Dong1,Wei Li1, Lin Wang2, Jie Hu3,Yuanlin Song3, Baolong Zhang1, Xiaoguang Ren1, Shimeng Ji3, Jin Li1, Peng Xu1, Ying Liang1, Gang Chen4, Jia-Tao Lou2, and Wenqiang Yu1 Abstract Lung cancer is the leading cause of cancer-related deaths lated in all 17 tumor types from TCGA datasets (n ¼ 7,344), worldwide. Cytologic examination is the current "gold stan- which was further validated in nine different types of cancer dard" for lung cancer diagnosis, however, this has low sensi- (n ¼ 243). These results demonstrate that HIST1H4F can tivity. Here, we identified a typical methylation signature of function as a universal-cancer-only methylation (UCOM) histone genes in lung cancer by whole-genome DNA methyl- marker, which may aid in understanding general tumorigen- ation analysis, which was validated by The Cancer Genome esis and improve screening for early cancer diagnosis. Atlas (TCGA) lung cancer cohort (n ¼ 907) and was further confirmed in 265 bronchoalveolar lavage fluid samples with Significance: These findings identify a new biomarker for specificity and sensitivity of 96.7% and 87.0%, respectively. cancer detection and show that hypermethylation of histone- More importantly, HIST1H4F was universally hypermethy- related genes seems to persist across cancers. Introduction to its low specificity, LDCT is far from satisfactory as a screening tool for clinical application, similar to other currently used cancer Lung cancer is one of the most common malignant tumors and biomarkers, such as carcinoembryonic antigen (CEA), neuron- the leading cause of cancer-related deaths worldwide (1, 2).
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • Genomic and Functional Profiling of Duplicated Chromosome
    Human Molecular Genetics, 2006, Vol. 15, No. 6 853–869 doi:10.1093/hmg/ddl004 Advance Access published on January 30, 2006 Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin–proteasome pathway processes Colin A. Baron1, Clifford G. Tepper2, Stephenie Y. Liu1, Ryan R. Davis1, Nicholas J. Wang3, N. Carolyn Schanen4 and Jeffrey P. Gregg1,* 1Department of Pathology and 2Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA, 3Department of Human Genetics, University of 4 California–Los Angeles, Los Angeles, CA, USA and Center for Pediatric Research, Nemours Biomedical Research, Downloaded from Alfred I. duPont Hospital for Children, Wilmington, DE, USA Received November 21, 2005; Revised and Accepted January 25, 2006 Autism is a complex neurodevelopmental disorder having both genetic and epigenetic etiological elements. hmg.oxfordjournals.org Isodicentric chromosome 15 (Idic15), characterized by duplications of the multi-disorder critical region of 15q11–q14, is a relatively common cytogenetic event. When the duplication involves maternally derived con- tent, this abnormality is strongly correlated with autism disorder. However, the mechanistic links between Idic15 and autism are ill-defined. To gain insight into the potential role of these duplications, we performed a comprehensive, genomics-based characterization of an in vitro model system consisting of lymphoblast cell lines derived from individuals with both autism and Idic15. Array-based comparative genomic hybridiz- ation using commercial single nucleotide polymorphism arrays was conducted and found to be capable of by guest on December 17, 2010 sub-classifying Idic15 samples by virtue of the lengths of the duplicated chromosomal region.
    [Show full text]
  • A Mutation in Histone H2B Represents a New Class of Oncogenic Driver
    Author Manuscript Published OnlineFirst on July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. A Mutation in Histone H2B Represents A New Class Of Oncogenic Driver Richard L. Bennett1, Aditya Bele1, Eliza C. Small2, Christine M. Will2, Behnam Nabet3, Jon A. Oyer2, Xiaoxiao Huang1,9, Rajarshi P. Ghosh4, Adrian T. Grzybowski5, Tao Yu6, Qiao Zhang7, Alberto Riva8, Tanmay P. Lele7, George C. Schatz9, Neil L. Kelleher9 Alexander J. Ruthenburg5, Jan Liphardt4 and Jonathan D. Licht1 * 1 Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, FL 2 Division of Hematology/Oncology, Northwestern University 3 Department of Cancer Biology, Dana Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School 4 Department of Bioengineering, Stanford University 5 Department of Molecular Genetics and Cell Biology, The University of Chicago 6 Department of Chemistry, Tennessee Technological University 7 Department of Chemical Engineering, University of Florida 8 Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida 9 Department of Chemistry, Northwestern University, Evanston IL 60208 Running title: Histone mutations in cancer *Corresponding Author: Jonathan D. Licht, MD The University of Florida Health Cancer Center Cancer and Genetics Research Complex, Suite 145 2033 Mowry Road Gainesville, FL 32610 352-273-8143 [email protected] Disclosures: The authors have no conflicts of interest to declare Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Investigation of Differentially Expressed Genes in Nasopharyngeal Carcinoma by Integrated Bioinformatics Analysis
    916 ONCOLOGY LETTERS 18: 916-926, 2019 Investigation of differentially expressed genes in nasopharyngeal carcinoma by integrated bioinformatics analysis ZhENNING ZOU1*, SIYUAN GAN1*, ShUGUANG LIU2, RUjIA LI1 and jIAN hUANG1 1Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023; 2Department of Pathology, The Eighth Affiliated hospital of Sun Yat‑sen University, Shenzhen, Guangdong 518033, P.R. China Received October 9, 2018; Accepted April 10, 2019 DOI: 10.3892/ol.2019.10382 Abstract. Nasopharyngeal carcinoma (NPC) is a common topoisomerase 2α and TPX2 microtubule nucleation factor), malignancy of the head and neck. The aim of the present study 8 modules, and 14 TFs were identified. Modules analysis was to conduct an integrated bioinformatics analysis of differ- revealed that cyclin-dependent kinase 1 and exportin 1 were entially expressed genes (DEGs) and to explore the molecular involved in the pathway of Epstein‑Barr virus infection. In mechanisms of NPC. Two profiling datasets, GSE12452 and summary, the hub genes, key modules and TFs identified in GSE34573, were downloaded from the Gene Expression this study may promote our understanding of the pathogenesis Omnibus database and included 44 NPC specimens and of NPC and require further in-depth investigation. 13 normal nasopharyngeal tissues. R software was used to identify the DEGs between NPC and normal nasopharyngeal Introduction tissues. Distributions of DEGs in chromosomes were explored based on the annotation file and the CYTOBAND database Nasopharyngeal carcinoma (NPC) is a common malignancy of DAVID. Gene ontology (GO) and Kyoto Encyclopedia of occurring in the head and neck. It is prevalent in the eastern Genes and Genomes (KEGG) pathway enrichment analysis and southeastern parts of Asia, especially in southern China, were applied.
    [Show full text]