Water Flow Through Temperate Glaciers

Total Page:16

File Type:pdf, Size:1020Kb

Water Flow Through Temperate Glaciers Portland State University PDXScholar Geography Faculty Publications and Presentations Geography 8-1-1998 Water Flow through Temperate Glaciers Andrew G. Fountain Portland State University Joseph S. Walder Follow this and additional works at: https://pdxscholar.library.pdx.edu/geog_fac Part of the Environmental Sciences Commons Let us know how access to this document benefits ou.y Citation Details Fountain, Andrew G., and Joseph S. Walder. "Water flow through temperate glaciers." Reviews of Geophysics 36.3 (1998): 299-328. This Article is brought to you for free and open access. It has been accepted for inclusion in Geography Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. WATER FLOW THROUGH TEMPERATE GLACIERS Andrew G. Fountain1 Joseph S. Walder Department of Geology U.S. Geological Survey Portland State University Cascades Volcano Observatory Portland, Oregon Vancouver, Washington Abstract. Understanding water movement through a are usually full of water and flow is pressurized. In glacier is fundamental to several critical issues in glaci- contrast, water flow in englacial conduits supplied from ology, including glacier dynamics, glacier-induced the ablation area is pressurized only near times of peak floods, and the prediction of runoff from glacierized daily flow or during rainstorms; flow is otherwise in an drainage basins. To this end we have synthesized a open-channel configuration. The subglacial drainage conceptual model of water movement through a temper- system typically consists of several elements that are ate glacier from the surface to the outlet stream. Pro- distinct both morphologically and hydrologically. An up- cesses that regulate the rate and distribution of water glacier branching, arborescent network of channels in- input at the glacier surface and that regulate water cised into the basal ice conveys water rapidly. Much of movement from the surface to the bed play important the water flux to the bed probably enters directly into the but commonly neglected roles in glacier hydrology. arborescent channel network, which covers only a small Where a glacier is covered by a layer of porous, perme- fraction of the glacier bed. More extensive spatially is a able firn (the accumulation zone), the flux of water to nonarborescent network, which commonly includes cav- the glacier interior varies slowly because the firn tempo- ities (gaps between the glacier sole and bed), channels rarily stores water and thereby smooths out variations in incised into the bed, and a layer of permeable sediment. the supply rate. In the firn-free ablation zone, in con- The nonarborescent network conveys water slowly and is trast, the flux of water into the glacier depends directly usually poorly connected to the arborescent system. The on the rate of surface melt or rainfall and therefore arborescent channel network largely collapses during varies greatly in time. Water moves from the surface to winter but reforms in the spring as the first flush of the bed through an upward branching arborescent net- meltwater to the bed destabilizes the cavities within the work consisting of both steeply inclined conduits, nonarborescent network. The volume of water stored by formed by the enlargement of intergranular veins, and a glacier varies diurnally and seasonally. Small, temper- gently inclined conduits, spawned by water flow along ate alpine glaciers seem to attain a maximum seasonal the bottoms of near-surface fractures (crevasses). Engla- water storage of ;200 mm of water averaged over the cial drainage conduits deliver water to the glacier bed at area of the glacier bed, with daily fluctuations of as much a limited number of points, probably a long distance as 20–30 mm. The likely storage capacity of subglacial downglacier of where water enters the glacier. Englacial cavities is insufficient to account for estimated stored conduits supplied from the accumulation zone are quasi water volumes, so most water storage may actually occur steady state features that convey the slowly varying water englacially. Stored water may also be released abruptly flux delivered via the firn. Their size adjusts so that they and catastrophically in the form of outburst floods. 1. INTRODUCTION dently due to temporal changes in subglacial hydrology [Kamb et al., 1985]. Glacial outburst floods, a common The movement of water through glaciers is important hazard in mountainous regions, result from the rapid for scientific understanding and for immediate practical release of large volumes of water stored either within a applications. Water in glaciers profoundly affects glacier glacier or in a glacier-dammed lake [Bjo¨rnsson, 1992; movement by influencing the stress distribution at the Haeberli, 1983; Walder and Costa, 1996]. Water from glacier bed and thereby the rate at which the ice slides glaciers is becoming increasingly important for hydro- over the bed. This process is important for both alpine electric power generation [Benson et al., 1986; Lang and glaciers [e.g., Iken and Bindschadler, 1986] and polar ice Dyer, 1985]. Some hydropower projects in France [Hantz streams [e.g., Alley et al., 1987; Echelmeyer and Harrison, and Lliboutry, 1983], Norway [Hooke et al., 1984], and 1990; Kamb, 1991]. The episodic surging (orders-of- Be´zinge magnitude increase in speed) of some glaciers is evi- Switzerland [ , 1981] have involved tapping water from directly beneath a glacier. The purpose of this paper is to present a conceptual 1Formerly at U.S. Geological Survey, Denver, Colorado. model of water flow through a glacier based on a syn- Copyright 1998 by the American Geophysical Union. Reviews of Geophysics, 36, 3 / August 1998 pages 299–328 8755-1209/98/97RG-03579$15.00 Paper number 97RG03579 c 299 c 300 c Fountain and Walder: WATER FLOW THROUGH GLACIERS 36, 3 / REVIEWS OF GEOPHYSICS Figure 1. Idealized longitudinal cross section of a temperate alpine glacier showing the important hydro- logical components. In the accumulation zone, water percolates downward through snow and firn to form a perched water layer on top of the nearly impermeable ice, and then flows from the perched water layer in crevasses (open fractures). In the ablation zone, once the seasonal snow has melted, water flows directly across the glacier surface into crevasses and moulins (nearly vertical shafts). Based on Figure 10.11 of Ro¨thlisberger and Lang [1987]; copyright John Wiley and Sons Ltd.; reproduced with permission. thesis of our current understanding. We have extended partially water saturated. The rate of water movement the scope of previous reviews [Ro¨thlisberger and Lang, through unsaturated firn depends on the firn’s perme- 1987; Lawson, 1993] by focusing on ways in which the ability and the degree of saturation [Ambach et al., various components of the drainage system interact. As 1981], similar to percolation through unsaturated snow part of the conclusions, we outline subjects that need [Colbeck and Anderson, 1982] and soil [e.g., Domenico further investigation. This paper emphasizes temperate and Schwartz, 1990]. The near-impermeable glacier ice alpine glaciers (glaciers at their melting point), but re- beneath promotes the formation of a saturated water sults from and implications for ice sheets are included layer at the base of the firn. Such water layers are where appropriate. We do not discuss the hydrological common in temperate glaciers [Schneider, 1994]. The role of the seasonal snowpack, as there is a comparative depth to water generally increases with distance upgla- wealth of literature on the subject [e.g., Male and Gray, cier [Ambach et al., 1978; Fountain, 1989], as can be 1981; Bales and Harrington, 1995] and because the effect expected from the general increase in snow accumula- of snow on glacier hydrology has recently been reviewed tion with elevation. High in the accumulation zone, the [Fountain, 1996]. water table may be as much as 40 m below the glacier surface [Lang et al., 1977; Schommer, 1977; Fountain, 1989]. 2. HYDROLOGY OF THE FIRN The hydrological characteristics of firn are fairly uni- AND NEAR-SURFACE ICE form between glaciers. Field tests of the hydraulic con- ductivity (permeability with respect to water) of the firn At the end of the melt season the surface of a glacier at five different glaciers [Schommer, 1978; Behrens et al., consists of ice at lower elevations in the ablation zone, 1979; Oerter and Moser, 1982; Fountain, 1989; Schneider, 2 where yearly mass loss exceeds mass gain, and snow and 1994] indicate a surprisingly narrow range of 1–5 3 10 5 firn at upper elevations in the accumulation zone, where m/s. This may reflect a uniform firn structure resulting yearly mass gain exceeds mass loss (Figure 1). Firn is a from a common rate of metamorphism of firn to ice. transitional material in the metamorphosis of seasonal Firn samples from South Cascade Glacier, Washington snow to glacier ice. As we will discuss in section 2.1, the State, had a porosity of 0.08–0.25 with an average of presence or absence of firn has important implications 0.15 [Fountain, 1989]. This average value is equal to the for subglacial water flow and for variations in glacial value that Oerter and Moser [1982] found to be most runoff. appropriate for their calculations of water flow through the firn. Within the water layer, ;40% of the void space 2.1. Accumulation Zone is occupied by entrapped air [Fountain, 1989]. The accumulation zone typically covers ;50–80% of The depth to the water layer depends on the rate of an alpine glacier in equilibrium with the local climate water input, the hydrological characteristics of the firn, [Meier and Post, 1962]. The near surface of the firn is and the distance between crevasses, which drain the 36, 3 / REVIEWS OF GEOPHYSICS Fountain and Walder: WATER FLOW THROUGH GLACIERS c 301 Figure 2. Photomicrograph showing the veins in glacier ice formed at junctions where three grains of ice are in contact.
Recommended publications
  • Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
    Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin.
    [Show full text]
  • Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2019 Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone Rosemary C. Leone University of Montana, Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Leone, Rosemary C., "Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone" (2019). Graduate Student Theses, Dissertations, & Professional Papers. 11474. https://scholarworks.umt.edu/etd/11474 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ICE FLOW IMPACTS THE FIRN STRUCTURE OF GREENLAND’S PERCOLATION ZONE By ROSEMARY CLAIRE LEONE Bachelor of Science, Colorado School of Mines, Golden, CO, 2015 Thesis presented in partial fulfillMent of the requireMents for the degree of Master of Science in Geosciences The University of Montana Missoula, MT DeceMber 2019 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Dr. Joel T. Harper, Chair DepartMent of Geosciences Dr. Toby W. Meierbachtol DepartMent of Geosciences Dr. Jesse V. Johnson DepartMent of Computer Science i Leone, RoseMary, M.S, Fall 2019 Geosciences Ice Flow Impacts the Firn Structure of Greenland’s Percolation Zone Chairperson: Dr. Joel T. Harper One diMensional siMulations of firn evolution neglect horizontal transport as the firn column Moves down slope during burial.
    [Show full text]
  • Comparison of Remote Sensing Extraction Methods for Glacier Firn Line- Considering Urumqi Glacier No.1 As the Experimental Area
    E3S Web of Conferences 218, 04024 (2020) https://doi.org/10.1051/e3sconf/202021804024 ISEESE 2020 Comparison of remote sensing extraction methods for glacier firn line- considering Urumqi Glacier No.1 as the experimental area YANJUN ZHAO1, JUN ZHAO1, XIAOYING YUE2and YANQIANG WANG1 1College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China 2State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources/Tien Shan Glaciological Station, Chinese Academy of Sciences, Lanzhou, China Abstract. In mid-latitude glaciers, the altitude of the snowline at the end of the ablating season can be used to indicate the equilibrium line, which can be used as an approximation for it. In this paper, Urumqi Glacier No.1 was selected as the experimental area while Landsat TM/ETM+/OLI images were used to analyze and compare the accuracy as well as applicability of the visual interpretation, Normalized Difference Snow Index, single-band threshold and albedo remote sensing inversion methods for the extraction of the firn lines. The results show that the visual interpretation and the albedo remote sensing inversion methods have strong adaptability, alonger with the high accuracy of the extracted firn line while it is followed by the Normalized Difference Snow Index and the single-band threshold methods. In the year with extremely negative mass balance, the altitude deviation of the firn line extracted by different methods is increased. Except for the years with extremely negative mass balance, the altitude of the firn line at the end of the ablating season has a good indication for the altitude of the balance line.
    [Show full text]
  • Glacier (And Ice Sheet) Mass Balance
    Glacier (and ice sheet) Mass Balance The long-term average position of the highest (late summer) firn line ! is termed the Equilibrium Line Altitude (ELA) Firn is old snow How an ice sheet works (roughly): Accumulation zone ablation zone ice land ocean • Net accumulation creates surface slope Why is the NH insolation important for global ice• sheetSurface advance slope causes (Milankovitch ice to flow towards theory)? edges • Accumulation (and mass flow) is balanced by ablation and/or calving Why focus on summertime? Ice sheets are very sensitive to Normal summertime temperatures! • Ice sheet has parabolic shape. • line represents melt zone • small warming increases melt zone (horizontal area) a lot because of shape! Slightly warmer Influence of shape Warmer climate freezing line Normal freezing line ground Furthermore temperature has a powerful influence on melting rate Temperature and Ice Mass Balance Summer Temperature main factor determining ice growth e.g., a warming will Expand ablation area, lengthen melt season, increase the melt rate, and increase proportion of precip falling as rain It may also bring more precip to the region Since ablation rate increases rapidly with increasing temperature – Summer melting controls ice sheet fate* – Orbital timescales - Summer insolation must control ice sheet growth *Not true for Antarctica in near term though, where it ʼs too cold to melt much at surface Temperature and Ice Mass Balance Rule of thumb is that 1C warming causes an additional 1m of melt (see slope of ablation curve at right)
    [Show full text]
  • Dear Editor and Reviewers
    Dear Editor and Reviewers, We are grateful for your constructive review of our manuscript. We made our best to address all the suggestions and provide an improved and fully revised manuscript. A response to each of the reviewers’ comments is given below but we would like to highlight the most important updates of manuscript: - We now present a research article with improved visuals and more in-depth discussion. - We compare our FAC dataset and maps to three regional climate models. - The construction of empirical functions is slightly updated, simplified and presented in the main text. We thank the reviewers for improving significantly the study. Sincerely, Baptiste Vandecrux on behalf of the co-authors Review #1 by Sergey Marchenko Reviewer’s comment Authors’ response General comments Physical geography. Authors use the mean annual air temperature and net surface accumulation as arguments in functions describing the spatial distribution of FAC10. The functions are fitted to minimize the misfit with empirical estimates of FAC10 from cores. One important thing that is missing in the text is a detailed description of the physical (or may be practical) motivation for the choice of the above mentioned arguments. Both characteristics (net annual surface accumulation and mean annual air temperature) integrate the effects of processes occurring during the cold and warm parts of a year. Net annual surface accumulation is the result of mass accumulation in winter and surface melt in In our study 풃̅̇ is defined as “net snow summer. While the first one can be expected to be positively linked with FAC (more accumulation in accumulation” (snowfall + deposition – sublimation) and is not “Net annual surface winter -> more pores), the second one can be expected to be negatively linked with FAC (more melt accumulation”.
    [Show full text]
  • ISS Massbalance2018 2Hr for Website.Key
    Glacier summer school 2018, McCarthy, Alaska What is mass balance ? Regine Hock Claridenfirn, Switzerland, 1916 1914 • Terminology, Definitions, Units • Conventional and reference surface mass balance • Firn line, snow line, ELA • Glacier runoff • Global mass changes PART I Terminology Claridenfirn, Switzerland, 1916 1914 Background General reference for mass-balance terminology has been Anonymous,1969, J. Glaciology 8(52). in practice diverging and inconsistent and confusing use of terminology new methods, e.g. remote sensing, require update Working group (2008-2012) by GLOSSARY International Association of OF GLACIER Cryospheric Sciences (IACS) MASS BALANCE aims to update and revise Anonymous (1969) AND and to provide a consistent terminology for all RELATED glaciers (i.e. mountain glaciers, ice caps and ice sheets) TERMS Cogley, J.G., R. Hock, L.A. Rasmussen, A.A. Arendt, A. Bauder, R.J. Braithwaite, P. Jansson, G. Kaser, M. Möller, L. Nicholson and M. Zemp, 2011, Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris. Can be downloaded from: http://www.cryosphericsciences.org/mass_balance_glossary/ massbalanceglossary Glacier mass balance Mass balance is the change in the mass of a glacier, or part of the glacier, over a stated span of time: =mass budget t . • SPACE: study volume needs to be ‘mass imbalance’ ΔM = ∫ Mdt defined t1 • mass balance is often quoted for volumes other than that of the whole glacier, for example a column of unit cross section • important to report the domain ! •TIME: the time period (esp important € for comparison with model results) • mass change can be studied over any period Net gain of mass • often done over a year or winter/summer seasons --> Annual mass balance (formerly ‘Net’) Firn line Long-term ELA Accumulation area: acc > abl Net loss of mass Ablation area: acc < abl Equilibrium line: acc = abl t .
    [Show full text]
  • Ocean-Driven Thinning Enhances Iceberg Calving and Retreat of Antarctic Ice Shelves
    Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves Yan Liua,b, John C. Moorea,b,c,d,1, Xiao Chenga,b,1, Rupert M. Gladstonee,f, Jeremy N. Bassisg, Hongxing Liuh, Jiahong Weni, and Fengming Huia,b aState Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; bJoint Center for Global Change Studies, Beijing 100875, China; cArctic Centre, University of Lapland, 96100 Rovaniemi, Finland; dDepartment of Earth Sciences, Uppsala University, Uppsala 75236, Sweden; eAntarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia; fVersuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland; gDepartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143; hDepartment of Geography, McMicken College of Arts & Sciences, University of Cincinnati, OH 45221-0131; and iDepartment of Geography, Shanghai Normal University, Shanghai 200234, China Edited by Anny Cazenave, Centre National d’Etudes Spatiales, Toulouse, France, and approved February 10, 2015 (received for review August 7, 2014) Iceberg calving from all Antarctic ice shelves has never been defined as the calving flux necessary to maintain a steady-state directly measured, despite playing a crucial role in ice sheet mass calving front for a given set of ice thicknesses and velocities along balance. Rapid changes to iceberg calving naturally arise from the the ice front gate (2, 3). Estimating the mass balance of ice sporadic detachment of large tabular bergs but can also be shelves out of steady state, however, requires additional in- triggered by climate forcing.
    [Show full text]
  • A Strategy for Monitoring Glaciers
    COVER PHOTOGRAPH: Glaciers near Mount Shuksan and Nooksack Cirque, Washington. Photograph 86R1-054, taken on September 5, 1986, by the U.S. Geological Survey. A Strategy for Monitoring Glaciers By Andrew G. Fountain, Robert M. Krimme I, and Dennis C. Trabant U.S. GEOLOGICAL SURVEY CIRCULAR 1132 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government U.S. GOVERNMENT PRINTING OFFICE : 1997 Free on application to the U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 Library of Congress Cataloging-in-Publications Data Fountain, Andrew G. A strategy for monitoring glaciers / by Andrew G. Fountain, Robert M. Krimmel, and Dennis C. Trabant. P. cm. -- (U.S. Geological Survey circular ; 1132) Includes bibliographical references (p. - ). Supt. of Docs. no.: I 19.4/2: 1132 1. Glaciers--United States. I. Krimmel, Robert M. II. Trabant, Dennis. III. Title. IV. Series. GB2415.F68 1997 551.31’2 --dc21 96-51837 CIP ISBN 0-607-86638-l CONTENTS Abstract . ...*..... 1 Introduction . ...* . 1 Goals ...................................................................................................................................................................................... 3 Previous Efforts of the U.S. Geological Survey ...................................................................................................................
    [Show full text]
  • Changes in Glacier Facies Zonation on Devon Ice Cap, Nunavut, Detected
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-250 Manuscript under review for journal The Cryosphere Discussion started: 26 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Changes in glacier facies zonation on Devon Ice Cap, Nunavut, detected from SAR imagery 2 and field observations 3 4 Tyler de Jong1, Luke Copland1, David Burgess2 5 1 Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario 6 K1N 6N5, Canada 7 2 Natural Resources Canada, 601 Booth St., Ottawa, Ontario K1A 0E8, Canada 8 9 Abstract 10 Envisat ASAR WS images, verified against mass balance, ice core, ground-penetrating radar and 11 air temperature measurements, are used to map changes in the distribution of glacier facies zones 12 across Devon Ice Cap between 2004 and 2011. Glacier ice, saturation/percolation and pseudo dry 13 snow zones are readily distinguishable in the satellite imagery, and the superimposed ice zone can 14 be mapped after comparison with ground measurements. Over the study period there has been a 15 clear upglacier migration of glacier facies, resulting in regions close to the firn line switching from 16 being part of the accumulation area with high backscatter to being part of the ablation area with 17 relatively low backscatter. This has coincided with a rapid increase in positive degree days near 18 the ice cap summit, and an increase in the glacier ice zone from 71% of the ice cap in 2005 to 92% 19 of the ice cap in 2011. This has significant implications for the area of the ice cap subject to 20 meltwater runoff.
    [Show full text]
  • 02 How Do Glaciers Form.Pdf
    Changing Landscapes: Glaciated Landscapes How do glaciers form? What you need to know The glacial system including inputs, outputs, stores and transfers of energy and materials Change in the inputs to and outputs from a glacier over short and long-time scales The glacial budget including glacier mass balance and equilibrium Positive and negative feedback in the glacier system Seasonal changes and their impact on the glacier budget GLACIER ICE FORMATION Glacier ice is derived mainly through compacted snow This can only happen if snow survives all year round – snow that survives summer melting is called firn or névé A key factor is the number of positive degree-days – fewer leads to less melting so snow, then ice can accumulate As snow is compacted trapped air is expelled, density increases and ice forms at the bottom (the process is called diagenesis) Some summer melting creates meltwater and this fills the gaps between the grains of ice helping to increase the density still further GLACIER ICE FORMATION Density comparisons (pure water = 1gcm-3): • snow = 0.06gcm-3 • firn/névé = 0.4gcm-3 • glacier ice = 0.83 to 0.91gcm-3 (pure ice = 0.92gcm-3) As ice is compacted it becomes granular Despite the cold, there’s usually a thin intergranular film around each grain of ice (caused by a solution of salts that lowers the freezing point of water) This is a lubricant that aids ice movement GLACIER ICE Air pockets in névé give it a white-ish colour... ...whilst glacier ice is a blue or glassy-green GLACIER ICE FORMATION In areas of high snowfall and temperatures that fluctuate about 0°C (e.g.
    [Show full text]
  • Laser Altimetry Reveals Complex Pattern of Greenland Ice Sheet Dynamics
    Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics Beata M. Csathoa,1, Anton F. Schenka, Cornelis J. van der Veenb, Gregory Babonisa, Kyle Duncana, Soroush Rezvanbehbahanic, Michiel R. van den Broeked, Sebastian B. Simonsene, Sudhagar Nagarajanf, and Jan H. van Angelend aDepartment of Geology, University at Buffalo, Buffalo, NY 14260; Departments of bGeography and cGeology, University of Kansas, Lawrence, KS 66045; dInstitute for Marine and Atmospheric Research, Utrecht University, 3584 CC Utrecht, The Netherlands; eDivision of Geodynamics, DTU Space, National Space institute, DK-2800 Kgs. Lyngby, Denmark; and fDepartment of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL 33431 Edited* by Ellen S. Mosley-Thompson, The Ohio State University, Columbus, OH, and approved November 17, 2014 (received for review June 23, 2014) We present a new record of ice thickness change, reconstructed at response is scaled up to all Greenland outlet glaciers (9–11). nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser There are two concerns with this approach. First, understanding altimetry measurements spanning the period 1993–2012, parti- the dynamic response of marine-terminating outlet glaciers to tioned into changes due to surface mass balance (SMB) and ice a warming climate—a prerequisite for deriving reliable mass dynamics. We estimate a mean annual GrIS mass loss of 243 ± balance projections—remains a major challenge (12–14). Sec- 18 Gt·y−1, equivalent to 0.68 mm·y−1 sea level rise (SLR) for 2003– ond, considering the complexity of recent behavior of outlet 2009. Dynamic thinning contributed 48%, with the largest rates glaciers (15, 16), it is far from clear how four well-studied glaciers occurring in 2004–2006, followed by a gradual decrease balanced represent all of Greenland’s outlet glaciers and whether their by accelerating SMB loss.
    [Show full text]
  • Module 5 the Land
    UNIVERSITY OF THE ARCTIC Module 5 The Land Developed by Alec E. Aitken, Associate Professor, Department of Geography, University of Saskatchewan Key Terms and Concepts • endogenic processes • exogenic processes Glaciers and Glaciology • alpine (valley) glaciers • cirque glaciers • continental glaciers • firn • glacier ice • glacier mass balance – accumulation and accumulation zone – ablation and ablation zone – equilibrium line • glacier motion – internal deformation and Glen’s Flow Law – basal sliding – soft sediment deformation – extending flow – compressive flow • glacial erosion – abrasion – plucking – hydrolysis – carbonation – oxidation Bachelor of Circumpolar Studies 311 1 UNIVERSITY OF THE ARCTIC • glacial transport – traction – regelation – supraglacial – englacial – subglacial • glacial deposition – ablation (melt out) – lodgement Alpine Landforms • erosional landforms – striations – roches moutonnées – cirques – glacial troughs – fiords • depositional landforms – lateral moraines – end moraines – hummocky moraine – ground moraine • glaciofluvial sediments and landforms – eskers – braided stream channels and sandbars Permafrost and Periglacial Landscapes • permafrost – permafrost table – active layer – level of zero amplitude – talik – continuous permafrost – discontinuous permafrost 2 Land and Environment I UNIVERSITY OF THE ARCTIC – sporadic permafrost Periglacial Processes and Landforms • frost shattering – block fields – felsenmeer – grus • ground ice – patterned ground – segregated ice - frost heave - cryoturbation - non-sorted
    [Show full text]