Relevance of the Epigenetic Regulation Exercised by Hepatic Micrornas in the Fatty Liver Arena: from the Bedside to the Bench

Total Page:16

File Type:pdf, Size:1020Kb

Relevance of the Epigenetic Regulation Exercised by Hepatic Micrornas in the Fatty Liver Arena: from the Bedside to the Bench RELEVANCE OF THE EPIGENETIC REGULATION EXERCISED BY HEPATIC MICRORNAS IN THE FATTY LIVER ARENA: FROM THE BEDSIDE TO THE BENCH Jèssica Latorre Luque Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/671499 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes. DOCTORAL THESIS RELEVANCE OF THE EPIGENETIC REGULATION EXERCISED BY HEPATIC microRNAs IN THE FATTY LIVER ARENA: from the bedside to the bench Jèssica Latorre Luque 2019 DOCTORAL THESIS RELEVANCE OF THE EPIGENETIC REGULATION EXERCISED BY HEPATIC microRNAs IN THE FATTY LIVER ARENA: from the bedside to the bench Jèssica Latorre Luque 2019 Doctoral Programme in Molecular Biology, Biomedicine and Health Supervised by: Francisco José Ortega Delgado, Ph. D José Manuel Fernández-Real Lemos, Ph. D, M.D. Tutor: Prof. José Manuel Fernández-Real Lemos Presented to obtain the degree of PhD at the University of Girona Dr Francisco José Ortega Delgado, principal investigator of the Biomedical Research Institute of Girona (IDIBGI), Endocrinology, Diabetes and Nutrition Research Unit (UDEN). Researcher ascribed to the CIBER de la Fisiopatologiá de la Obesidad y la Nutricioń (CIBEROBN, ISCIII). Prof. José Manuel Fernández-Real Lemos, group leader of the Biomedical Research Institute of Girona (IDIBGI), Endocrinology, Diabetes and Nutrition Research Unit (UDEN), lead investigator of the CIBER de la Fisiopatologiá de la Obesidad y la Nutricioń (CIBEROBN, ISCIII), and professor of medicine at the University of Girona (UdG). WE DECLARE: That the thesis entitled “RELEVANCE OF THE EPIGENETIC REGULATION EXERCISED BY HEPATIC microRNAs IN THE FATTY LIVER ARENA: from the bedside to the bench”, presented by Jèssica Latorre Luque to obtain the doctoral degree in Molecular Biology, Biomedicine and Health by the UdG, has been completed under our supervision and fulfils all the requirements to qualify for an International Doctorate. For all intents and purposes, we hereby sign this document. Dr. Francisco José Ortega Delgado Dr. José-Manuel Fernández-Real Lemos Girona, 2019 Alça el vol, marxa lluny, I què importa si ningú ho entén? Que les mateixes pors que ens ceguen Són finestres plenes de llum. Oques Grasses (2019) ACKNOWLEDGEMENTS Bé, doncs finalment sembla que he acabat la tesi. La veritat és que abans de començar, només de pensar que hauria de doctorar-me, feia bastanta por perquè no dir-ho. I després de quasi cinc anys, puc dir que m’han passat volant i tot i que hem passat moments bons i no tan bons, tot el que m’enduc no ho canviaria per res. Al final, el trajecte no ha estat tan complicat gràcies al suport i la cooperació incondicional de totes i cadascuna de les persones que m’he trobat pel camí. En primer lloc, vull donar les gràcies al Dr. José Manuel Fernández-Real, director d’aquesta tesi, per ser el primer en parar-me la mà, per la confiança dipositada en mi i per ajudar-me a créixer com a investigadora. Paco, gràcies per tot. Podria fer una llista molt llarga de tot el que m’has ensenyat i com he arribat a aprendre al teu costat. Gràcies per fer-me veure que la ciència pot ser a vegades frustrant, però també molt gratificant. Gràcies per dir-me sempre les veritats, pels consells, per ajudar-me a calmar els nervis, per fer possible que avui acabi aquesta tesi. Gràcies per ser més que un director, un amic. José, el teu suport, els teus consells, la teva disposició a ajudar-me en tot moment i la dedicació que has posat en ensenyar-me fan que ara sigui aquí, a punt de dipositar una tesi que sense vosaltres no hagués estat possible. Quan vaig arribar a UDEN el grup era molt petit. Isa, estar contigo los primeros días cuando empecé me ayudó muchísimo. Després va tornar la Moni, m’havien dit que eres una peça clau del grup i no s’equivocaven. Pacient, enèrgica, amable, atenta, tot un suport i un exemple a seguir. Aina i Ferran, els meus germans petits. Un gran tàndem dins i fora del laboratori, per la tranquil·litat que m’ha donat saber que éreu sempre allà. Hem compartit moltíssimes coses, des dels mítics esmorzars de bikini al Trueta, colze amb colze als tres ordinadors de baix ben apretadets, infinites converses arreglant el món, hores i hores de poiata, i fins a unes bones nits de festa. De les persones amb qui més hem plorat de riure. Aina, tot i que hem passat un any separades, t’he sentit més a prop que mai. Em considero molt afortunada d’haver-vos tingut al costat tot aquest temps. Núria i Anna, les noves incorporacions de UDEN, gràcies per l’ajuda desinteressada, els somriures i les estones juntes. Anna, especial menció pels últims dies colze a colze amb les respectives tesis, pels riures que només denotaven estrés, tu a punt de llegir, i jo estirant-me els i cabells amb els últims detalls. I Núria, per ser els meus segons ulls, per cedir-me una mica del teu perfeccionisme. Gràcies a totes dues, en poc temps hem creat un vincle molt especial. I a tots els membres de UDEN, que han format part de tot això, Estefania, Òscar, Emili, María, Laia, Fer, Luz...gràcies. També agrair a tots els col·laboradors que han format part d’aquest projecte, gràcies a tots per proporcionar les eines necessàries per arrodonir aquesta tesi. Però com que a l’IdIBGi som pocs i benavinguts, em toca agrair una miqueta més. Rocío, crec que vas ser la primera persona que vaig conèixer fora de UDEN, de seguida vaig pensar, serem amigues. Molts consells, però sobretot una pila de bromes per no parar mai de riure. María! Que haría yo sin ti! Creyendo en mi más de lo que yo haré nunca. Gracias por tu apoyo incondicional, por preocuparte siempre por mi y por lo bien que lo hemos pasado juntas, y junto a Aina, las tres. Marini, l’alegria assegurada, un riure contagiós que et canvia l’estat d’ànim fins i tot quan se’t moren les cèl·lules a cultius. Gràcies per transmetre aquesta alegria sempre. I a les noietes de Pedi, Berta i Ari, tant semblants entre vosaltres i molt semblants a mi també, gràcies per la complicitat, pels moments de desconnexió durant el dia, cafès, dinars i estonetes a la tarda si és necessari. Una estona de riures i una mica de xocolata sempre fa les coses més fàcils. També vull agrair-vos Bet, la veu de l’experiència, Sara, Carme, Sílvia, Ester, Esther, Gerard, Laia...per l’agradable convivència de l’IdIBGi. Moltes gràcies a tots. Moving to Finland, I am totally grateful to Prof. Vesa Olkkonen for providing me the opportunity to work in his laboratory for three months. I really appreaciate all the scientific help and facilities. I sincerely thank also to Dr.
Recommended publications
  • Accumulation of PNPLA3 on Lipid Droplets Is the Basis of Associated Hepatic Steatosis
    Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis Soumik BasuRaya, Yang Wanga, Eriks Smagrisa, Jonathan C. Cohenb,1, and Helen H. Hobbsa,b,c,1 aDepartment of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390; bDepartment of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and cHoward Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 Contributed by Helen H. Hobbs, March 19, 2019 (sent for review February 4, 2019; reviewed by Edward A. Fisher and Rudi Zechner) Fatty liver disease (FLD) is a disorder in which accumulation of causes steatosis whereas overexpression of the wild-type (WT) triglycerides (TGs) in the liver can lead to inflammation, fibrosis, and protein does not (15). In KI mice that express PNPLA3(148M) cirrhosis. Previously, we identified a variant (I148M) in patatin-like or PNPLA3(47A), the levels of PNPLA3 on hepatic lipid drop- phospholipase domain-containing protein 3 (PNPLA3) that is strongly lets (LDs) are ∼40-fold higher than those in WT mice, despite associated with FLD, but the mechanistic basis for the association similar levels of PNPLA3 mRNA in the two lines (16). A similar remains elusive. Although PNPLA3 has TG hydrolase activity in vitro, accumulation of PNPLA3 protein was observed in transgenic inactivation or overexpression of the WT protein in mice does not mice expressing human PNPLA3(148M) compared with mice cause steatosis. In contrast, expression of two catalytically defective expressing the WT transgene (15). The massive increase in forms of PNPLA3 (I148M or S47A) in sucrose-fed mice causes accumu- PNPLA3(148M and 47A) levels appears to be due to decreased lation of both PNPLA3 and TGs on hepatic lipid droplets (LDs).
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • 2014 ADA Posters 1319-2206.Indd
    INTEGRATED PHYSIOLOGY—INSULINCATEGORY SECRETION IN VIVO 1738-P increase in tumor size and pulmonary metastasis is observed, compared Sustained Action of Ceramide on Insulin Signaling in Muscle Cells: to wild type mice. In this study, we aimed to determine the mechanisms Implication of the Double-Stranded RNA Activated Protein Kinase through which hyperinsulinemia and the canonical IR signaling pathway drive RIMA HAGE HASSAN, ISABELLE HAINAULT, AGNIESZKA BLACHNIO-ZABIELSKA, tumor growth and metastasis. 100,000 MVT-1 (c-myc/vegf overexpressing) RANA MAHFOUZ, OLIVIER BOURRON, PASCAL FERRÉ, FABIENNE FOUFELLE, ERIC cells were injected orthotopically into 8-10 week old MKR mice. MKR mice HAJDUCH, Paris, France, Białystok, Poland developed signifi cantly larger MVT-1 (353.29±44mm3) tumor volumes than Intramyocellular accumulation of fatty acid derivatives like ceramide plays control mice (183.21±47mm3), p<0.05 with more numerous pulmonary a crucial role in altering the insulin message. If short-term action of ceramide metastases. Western blot and immunofl uorescent staining of primary tumors inhibits the protein kinase B (PKB/Akt), long-term action of ceramide on insulin showed an increase in vimentin, an intermediate fi lament, typically expressed signaling is less documented. Short-term treatment of either the C2C12 cell in cells of mesenchymal origin, and c-myc, a known transcription factor. Both line or human myotubes with palmitate (ceramide precursor, 16h) or directly vimentin and c-myc are associated with cancer metastasis. To assess if insulin with ceramide (2h) induces a loss of the insulin signal through the inhibition and IR signaling directly affects the expression these markers, in vitro studies of PKB/Akt.
    [Show full text]
  • A Study of Blood Fatty Acids Profile in Hyperlipidemic and Normolipidemic
    H OH metabolites OH Article A Study of Blood Fatty Acids Profile in Hyperlipidemic and Normolipidemic Subjects in Association with Common PNPLA3 and ABCB1 Polymorphisms Thomai Mouskeftara 1,2, Antonis Goulas 3, Despoina Ioannidou 3, Charikleia Ntenti 3, Dimitris Agapakis 4, Andreana Assimopoulou 5,6 and Helen Gika 1,2,* 1 Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece 3 Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] (A.G.); [email protected] (D.I.); [email protected] (C.N.) 4 Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 5 Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece; [email protected] 6 Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece * Correspondence: [email protected] Abstract: Adiponutrin (patatin-like phospholipase domain-containing 3; PNPLA3), encoded in humans by the PNPLA3 gene, is a protein associated with lipid droplet and endoplasmic reticulum Citation: Mouskeftara, T.; Goulas, A.; membranes, where it is apparently involved in fatty acid redistribution between triglycerides and Ioannidou, D.; Ntenti, C.; Agapakis, phospholipids. A common polymorphism of PNPLA3 (I148M, rs738409), linked to increased PNPLA3 D.; Assimopoulou, A.; Gika, H. A presence on lipid droplets, is a strong genetic determinant of non-alcoholic fatty liver disease (NAFLD) Study of Blood Fatty Acids Profile in and of its progression.
    [Show full text]
  • The PNPLA3‐I148M Variant Increases Polyunsaturated Triglycerides in Human Adipose Tissue
    Received: 2 April 2020 | Revised: 23 April 2020 | Accepted: 2 May 2020 DOI: 10.1111/liv.14507 ORIGINAL ARTICLE The PNPLA3-I148M variant increases polyunsaturated triglycerides in human adipose tissue Sami Qadri1,2 | Susanna Lallukka-Brück1,2 | Panu K. Luukkonen1,2 | You Zhou2,3 | Amalia Gastaldelli4 | Marju Orho-Melander5 | Henna Sammalkorpi6 | Anne Juuti6 | Anne K. Penttilä6 | Julia Perttilä2 | Antti Hakkarainen7 | Tiina E. Lehtimäki7 | Matej Orešič8 | Tuulia Hyötyläinen8 | Leanne Hodson9,10 | Vesa M. Olkkonen2 | Hannele Yki-Järvinen1,2 1Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland 2Minerva Foundation Institute for Medical Research, Helsinki, Finland 3Systems Immunity University Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK 4Institute of Clinical Physiology, National Research Council, Pisa, Italy 5Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden 6Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland 7HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland 8Department of Chemistry, Örebro University, Örebro, Sweden 9Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK 10National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK Correspondence Sami Qadri, Biomedicum Helsinki 1, Room Abstract A417a, Haartmaninkatu 8, 00290 Helsinki, Background & Aims: The I148M variant in PNPLA3 is the major genetic risk factor for Finland. Email: [email protected] non-alcoholic fatty liver disease (NAFLD). The liver is enriched with polyunsaturated triglycerides (PUFA-TGs) in PNPLA3-I148M carriers. Gene expression data indicate Funding information Novo Nordisk Foundation; EU H2020-JTI- that PNPLA3 is liver-specific in humans, but whether it functions in adipose tissue IMI2 project 777377-2 Liver Investigation: (AT) is unknown.
    [Show full text]
  • Crosstalk Between Hedgehog Pathway and Energy Pathways In
    www.nature.com/scientificreports OPEN Crosstalk between Hedgehog pathway and energy pathways in human adipose-derived stem Received: 6 February 2018 Accepted: 14 May 2018 cells: A deep sequencing analysis of Published: xx xx xxxx polysome-associated RNA Patrícia Shigunov1, Lucas Titton Balvedi1, Marlon Dias Mariano Santos2, Roberto H. Herai3, Alessandra Melo de Aguiar1 & Bruno Dallagiovanna1 Adult stem cells are considered promising candidates for cellular therapies due to their capacity to diferentiate and self-renew. Diferentiation leads to changes in the metabolism, structure, and gene expression patterns of cells. Hedgehog is one of the pathways that is involved in the enhancement of osteogenesis and chondrogenesis in adult stem cells, but its mechanisms are poorly understood. In this study, we treated adipose tissue-derived stem cells (ADSC) with two well-characterized drugs, purmorphamine (Hedgehog pathway activator) and cyclopamine (Hedgehog pathway inhibitor), and identifed mRNAs associated with polysomes in each treatment group to determine the post transcriptional genetic networks governed by the Hedgehog pathway. Activation of the Hedgehog pathway by purmorphamine results in signifcant upregulation of mRNAs associated with cellular communication and signal transduction. Furthermore, our experiments show that cyclopamine acts late downregulating GLI1 expression in ADSCs but promotes the upregulation of mRNAs associated with energy pathways and metabolism at early times. Through in silico analysis, we identifed some miRNAs, such as miR-355, that could regulate these mRNAs association with polysomes and thereby modulate the Hedgehog pathway. Our results suggest that activation of the Hedgehog pathway by purmorphamine also results in a negative regulation of mRNAs in the protein translation machinery.
    [Show full text]
  • Meeting Abstracts from the 9Th International Conference on Cgmp: Generators, Efectors and Therapeutic Implications
    J Transl Med 2019, 17(Suppl 2):254 https://doi.org/10.1186/s12967-019-1994-0 Journal of Translational Medicine MEETING ABSTRACTS Open Access Meeting abstracts from the 9th International Conference on cGMP: Generators, Efectors and Therapeutic Implications Germany. 14–16 June 2019 Published: 15 August 2019 S 1‑01 References NO‑sGC signaling and therapeutics in sickle cell and hemolytic 1. Ataga KI, Moore CG, Jones S, Olajide O, Strayhorn D, Hinderliter A, diseases Orringer EP. Pulmonary hypertension in patients with sickle cell disease: a Mark Gladwin1,2 longitudinal study. Br J Haematol. 2006;134:109–15. 1University of Pittsburgh, Pittsburgh Heart, Lung, Blood and Vascular 2. De Castro LM, Jonassaint JC, Graham FL, Ashley‑Koch A and Telen MJ. Medicine Institut, Pittsburgh Pennsylvania, US; 2University of Pittsburgh, Pulmonary hypertension associated with sickle cell disease: clini‑ Division of Pulmonary, Allergy and Critical Care Medicine, Department cal and laboratory endpoints and disease outcomes. Am J Hematol. of Medicine, Pittsburgh Pennsylvania, US 2008;83:19–25. Correspondence: Mark Gladwin ‑ [email protected] 3. Gladwin MT, Sachdev V, Jison ML, Shizukuda Y, Plehn JF, Minter K, Brown Journal of Translational Medicine 2019, 17(2):S 1‑01 B, Coles WA, Nichols JS, Ernst I, Hunter LA, Blackwelder WC, Schechter AN, Rodgers GP, Castro O and Ognibene FP. Pulmonary hypertension as Introduction: Nitric oxide (NO) is a critical regulator of vascular home- a risk factor for death in patients with sickle cell disease. N Engl J Med. ostasis, increasing basal and fow-mediated vasodilation. Red blood 2004;350:886–95. cells can regulate NO bioavailability through an intrinsic nitrite (NO 2 ) 4.
    [Show full text]
  • PNPLA3 Gene Patatin Like Phospholipase Domain Containing 3
    PNPLA3 gene patatin like phospholipase domain containing 3 Normal Function The PNPLA3 gene provides instructions for making a protein called adiponutrin, which is found in fat cells (adipocytes) and liver cells (hepatocytes). The liver is a part of the digestive system that helps break down food, store energy, and remove waste products, including toxins. The function of the adiponutrin protein is not well understood, but it is thought to help regulate the development of adipocytes and the production and breakdown of fats (lipogenesis and lipolysis) in hepatocytes and adipocytes. Studies indicate that the activity (expression) of the PNPLA3 gene decreases during periods without food (fasting) and increases after eating, suggesting that the amount of adiponutrin protein produced is regulated as needed to help process and store fats in the diet. Health Conditions Related to Genetic Changes Non-alcoholic fatty liver disease A particular variation in the PNPLA3 gene has been associated with an increased risk of developing non-alcoholic fatty liver disease (NAFLD). NAFLD is a buildup of excessive fat in the liver that can lead to liver damage resembling the damage caused by alcohol abuse, but that occurs in people who do not drink heavily. In some cases NAFLD leads to inflammation of the liver (non-alcoholic steatohepatitis, also known as NASH) and permanent liver damage (cirrhosis). The PNPLA3 gene variation associated with NAFLD changes the protein building block ( amino acid) isoleucine to the amino acid methionine at protein position 148, written as Ile148Met or I148M. Research suggests that the altered protein leads to increased production and decreased breakdown of fats in the liver.
    [Show full text]
  • Pathway Analysis of Commonly Expressed Genes Found in Primates and in Mouse During Naïve State of Pluripotenc Keggid Kegg Names
    Pathway analysis of commonly expressed genes found in primates and in mouse during naïve state of pluripotency. keggid kegg_namesig_pw n_pw n_all n_sig p_hyper q_hyper genes hsa04110 Cell cycle 105 128 5869 2561 2.02E-19 4.64E-17 CDK2,CDK4,CDK6,CDK7,CDKN1A,CDKN1B,STAG1,CDKN2B,ANAPC10,MAD2L2,STAG2,GADD45G,DBF4,YWHAQ,CHEK1,CHEK2,CREBBP,GADD45A,E2F1,E2F3,E2F4,E2F5,EP300,ORC3,CDC26,ABL1,ANAPC13,SFN,GSK3B,ANAPC2,ANAPC4,HDAC1,HDAC2,MAD2L1,SMAD2,SMAD3,SMAD4,MCM2,MCM3,MCM4,MCM5,MCM6,MCM7,MDM2,MYC,GADD45B,ATM,ORC1,ORC2,ORC4,ORC5,FZR1,ANAPC7,ANAPC11,PLK1,ATR,PRKDC,RAD21,RB1,RBL1,CCND1,ANAPC1,SKP2,BUB1,BUB1B,TFDP1,TFDP2,TGFB1,TGFB2,TTK,WEE1,YWHAB,YWHAE,YWHAG,YWHAH,YWHAZ,ZBTB17,SMC1A,CDC7,CDC45,MAD1L1,CDC14A,CDC23,CDC16,CCNA2,CCNB1,CCND2,CCND3,CCNE1,CCNH,PKMYT1,SMC3,CCNB2,CCNE2,BUB3,PTTG1,ESPL1,CDK1,CDC6,CDC20,CDC25A,CDC25B,CDC25C,CDC27,RBX1 hsa03013 RNA transport116 152 5869 2561 1.03E-16 1.18E-14 SNUPN,EIF1,POP7,SRRM1,SAP18,EIF1B,PRMT5,TACC3,NXF1,RPP30,RPP38,PAIP1,POP4,RPP40,RNPS1,POP1,STRAP,DDX20,XPOT,CLNS1A,NUP35,RPP25L,EEF1A1,EEF1A2,EIF2S1,EIF2B1,EIF4A1,EIF4B,EIF4E,EIF4EBP1,EIF4G1,EIF4G2,EIF5,CASC3,NCBP2,ACIN1,NUP205,NUP210,NUP62,GEMIN5,UPF2,PABPC1,NXT1,NUP43,EIF3E,KPNB1,MAGOH,NCBP1,NUP88,NUP98,GEMIN4,NMD3,POP5,PHAX,NUP54,PNN,RPP25,GEMIN8,MAGOHB,ELAC1,NDC1,NUP133,NXT2,NUP107,THOC2,XPO5,RAN,RANBP2,RANGAP1,SENP2,UPF1,ELAC2,SEC13,UPF3B,SMN1,SUMO3,SUMO2,TPR,SUMO1,XPO1,NUP37,DDX39B,THOC6,GEMIN7,GEMIN6,RPP21,NUP85,THOC7,NUP214,AAAS,SEH1L,THOC3,RAE1,THOC5,EIF3A,EIF3B,EIF3C,EIF3D,EIF3F,EIF3G,EIF3H,EIF3I,EIF4G3,PABPC4,EIF2B4,EIF2B2,EIF2B5,EIF2S2,EIF4E2,NUP155,EIF5B,TGS1,NUP93,EIF4A3,NUP153,THOC1
    [Show full text]
  • Supplementary Table 1 and Supplementary Table 2
    Supplementary Table 1: The list of genes associated with platelet count retrieved from the Open Target Genetics platform (https://genetics.opentargets.org) Gene symbol Gene name GCSAML germinal center associated signaling and motility like SH2B3 SH2B adaptor protein 3 ARHGEF3 Rho guanine nucleotide exchange factor 3 HBS1L HBS1 like translational GTPase THPO thrombopoietin JAK2 Janus kinase 2 BAK1 BCL2 antagonist/killer 1 RCL1 RNA terminal phosphate cyclase like 1 TUBB1 tubulin beta 1 class VI DNM3 dynamin 3 GCKR glucokinase regulator ABCC4 ATP binding cassette subfamily C member 4 JMJD1C jumonji domain containing 1C HIC1 HIC ZBTB transcriptional repressor 1 CARMIL1 capping protein regulator and myosin 1 linker 1 LY75 lymphocyte antigen 75 CBL Cbl proto-oncogene SLFN14 schlafen family member 14 RASSF3 Ras association domain family member 3 ZFPM2 zinc finger protein, FOG family member 2 CABLES1 Cdk5 and Abl enzyme substrate 1 LY75-CD302 LY75-CD302 readthrough ACTN1 actinin alpha 1 MARK4 microtubule affinity regulating kinase 4 AK3 adenylate kinase 3 RCOR1 REST corepressor 1 CD36 CD36 molecule FABP6 fatty acid binding protein 6 GP1BA glycoprotein Ib platelet subunit alpha novel pleckstrin homology domain containing, family O member 2 (PLEKHO2) and ankyrin repeat and death domain containing 1A AC069368.1 (ANKDD1A) protein ATXN2 ataxin 2 TRABD TraB domain containing TPM4 tropomyosin 4 GFI1B growth factor independent 1B transcriptional repressor TERT telomerase reverse transcriptase EGF epidermal growth factor NREP neuronal regeneration related
    [Show full text]
  • Supplemental Figures 04 12 2017
    Jung et al. 1 SUPPLEMENTAL FIGURES 2 3 Supplemental Figure 1. Clinical relevance of natural product methyltransferases (NPMTs) in brain disorders. (A) 4 Table summarizing characteristics of 11 NPMTs using data derived from the TCGA GBM and Rembrandt datasets for 5 relative expression levels and survival. In addition, published studies of the 11 NPMTs are summarized. (B) The 1 Jung et al. 6 expression levels of 10 NPMTs in glioblastoma versus non‐tumor brain are displayed in a heatmap, ranked by 7 significance and expression levels. *, p<0.05; **, p<0.01; ***, p<0.001. 8 2 Jung et al. 9 10 Supplemental Figure 2. Anatomical distribution of methyltransferase and metabolic signatures within 11 glioblastomas. The Ivy GAP dataset was downloaded and interrogated by histological structure for NNMT, NAMPT, 12 DNMT mRNA expression and selected gene expression signatures. The results are displayed on a heatmap. The 13 sample size of each histological region as indicated on the figure. 14 3 Jung et al. 15 16 Supplemental Figure 3. Altered expression of nicotinamide and nicotinate metabolism‐related enzymes in 17 glioblastoma. (A) Heatmap (fold change of expression) of whole 25 enzymes in the KEGG nicotinate and 18 nicotinamide metabolism gene set were analyzed in indicated glioblastoma expression datasets with Oncomine. 4 Jung et al. 19 Color bar intensity indicates percentile of fold change in glioblastoma relative to normal brain. (B) Nicotinamide and 20 nicotinate and methionine salvage pathways are displayed with the relative expression levels in glioblastoma 21 specimens in the TCGA GBM dataset indicated. 22 5 Jung et al. 23 24 Supplementary Figure 4.
    [Show full text]
  • Transcriptional Regulation of the Human Alcohol
    TRANSCRIPTIONAL REGULATION OF THE HUMAN ALCOHOL DEHYDROGENASES AND ALCOHOLISM Sirisha Pochareddy Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biochemistry and Molecular Biology, Indiana University September 2010 Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Howard J. Edenberg, Ph.D., Chair Maureen A. Harrington, Ph.D. Doctoral Committee David G. Skalnik, Ph.D. Ann Roman, Ph.D. July 30, 2010 ii This work is dedicated to my parents and my brother for their unwavering support and unconditional love. iii ACKNOWLEDGEMENTS I would like to sincerely thank my mentor Dr. Howard Edenberg, for his guidance, support throughout the five years of my research in his lab. It has been an amazing learning experience working with him and I am confident this training will help all through my research career. I would like to thank members of my research committee, Dr. Maureen Harrington, Dr. David Skalnik and Dr. Ann Roman. I am grateful to them for their guidance, encouraging comments, time and effort. I greatly appreciate Dr. Harrington’s questions during the committee meeting that helped me think broadly about my area of research. I am very thankful to Dr. Skalnik for reading through my manuscript and giving his valuable comments. My special thanks to Dr. Ann Roman for staying on my committee even after her retirement. I am also thankful to Dr. Jeanette McClintick for her patience in answering my never ending list of questions about the microarray analysis.
    [Show full text]