Development of a Novel Universal Proxy to Assess the Environmental Fate and Impact of Complex (Bio)Pesticides by Mass Spectrometry-Based Metabolomics Hikmat Ghosson

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Novel Universal Proxy to Assess the Environmental Fate and Impact of Complex (Bio)Pesticides by Mass Spectrometry-Based Metabolomics Hikmat Ghosson Development of a novel universal proxy to assess the environmental fate and impact of complex (bio)pesticides by Mass Spectrometry-based Metabolomics Hikmat Ghosson To cite this version: Hikmat Ghosson. Development of a novel universal proxy to assess the environmental fate and im- pact of complex (bio)pesticides by Mass Spectrometry-based Metabolomics. Analytical chemistry. Université de Perpignan, 2020. English. NNT : 2020PERP0029. tel-03155733 HAL Id: tel-03155733 https://tel.archives-ouvertes.fr/tel-03155733 Submitted on 2 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l’école doctorale ED 305 Energie et Environnement Et de l’unité de recherche USR 3278 – CRIOBE – EPHE-CNRS-UPVD Spécialité : Chimie Analytique Présentée par Hikmat GHOSSON TITRE DE LA THESE Développement d’un nouveau proxy universel pour évaluer le devenir et l’impact environnemental de (bio)pesticides complexes par Métabolomique basée sur la Spectrométrie de Masse Soutenue le 04/12/2020 devant le jury composé de Mme. Carole CALAS-BLANCHARD, Professeur des Universités Président Université de Perpignan Via Domitia Mme. Emmanuelle VULLIET, Directeur de recherche, H.D.R. Rapporteur Centre National de la Recherche Scientifique M. Laurent DEBRAUWER, Ingénieur de recherche, H.D.R. Rapporteur Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement M. Julien BOCCARD, Collaborateur scientifique Examinateur Université de Genève M. Yann GUITTON, Ingénieur de recherche Examinateur École Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes-Atlantique M. Cédric BERTRAND, Professeur des Universités Directeur de thèse Université de Perpignan Via Domitia Mme. Marie-Virginie SALVIA, Maître de conférences, H.D.R. Co-directeur Université de Perpignan Via Domitia A Thesis submitted for the degree of Doctor of Philosophy Delivered by UNIVERSITE DE PERPIGNAN VIA DOMITIA Prepared at the doctoral school ED 305 Energie et Environnement And the research unit USR 3278 – CRIOBE – EPHE-CNRS-UPVD Major Analytical Chemistry By Hikmat GHOSSON THESIS TITLE Development of a novel universal proxy to assess the environmental fate and impact of complex (bio)pesticides by Mass Spectrometry-based Metabolomics Defended on December 04, 2020 before the jury composed of Mme. Carole CALAS-BLANCHARD, Professeur des Universités President Université de Perpignan Via Domitia Mme. Emmanuelle VULLIET, Directeur de recherche, H.D.R. Rapporteur Centre National de la Recherche Scientifique M. Laurent DEBRAUWER, Ingénieur de recherche, H.D.R. Rapporteur Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement M. Julien BOCCARD, Collaborateur scientifique Examiner Université de Genève M. Yann GUITTON, Ingénieur de recherche Examiner École Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes-Atlantique M. Cédric BERTRAND, Professeur des Universités Thesis Director Université de Perpignan Via Domitia Mme. Marie-Virginie SALVIA, Maître de conférences, H.D.R. Co-director Université de Perpignan Via Domitia Dedication To those who sacrificed their lives when struggling for the foundation of the Lebanese National University… “Aut viam inveniam aut faciam” “We will either find a way, or make one” Hannibal Barca, the Canaanite Commander of Carthage Acknowledgments I would like to thank every person who contributed, supported, or helped realizing the present work and fulfilling the missions required for achieving the present dissertation, and I apologize in advance to any single person who I may forget to mention… You were many, colleagues and friends, to participate in this experience and I am very grateful to you and to your appreciated efforts and support. First, I would like to acknowledge the members of the Jury Dr. Emmanuelle VULLIET and Dr. Laurent DEBRAUWER, to have given me the honor of being the Rapporteurs of this dissertation, and to have given their precious time to read and assess of the present manuscript. I also acknowledge Pr. Carole CALAS-BLANCHARD, Dr. Yann GUITTON and Dr. Julien BOCCARD for their acceptance to examine the present work and to participate in the Jury of my thesis. This is a great honor for me. I would like to express my gratitude for the two persons who gave me the opportunity to access this distinct experience, and supervised my work during those three years. They let me take the initiative, helped me focusing the targets, and were always open to discuss new ideas and propositions… And despite all the difficulties and the critical moments, they always supported my work by transferring their knowledge and experience to me, which improved my scientific, technical and personal skills and maturity. They gave me their trust, and finally guided me towards the accomplishment of this dissertation with a lot of satisfaction from my part, so I am very grateful for them, and I had the pleasure to work under their guidance, and still… Thus, I express my deepest thanks to my supervisors Pr. Cédric BERTRAND and Dr. Marie-Virginie SALVIA. I would like express my deepest recognition to Dr. Frédérique COURANT, Dr. Anne-Emmanuelle HAY-DE BETTIGNIES, Pr. Thierry NOGUER, and once again, Dr. Yann GUITTON for their acceptance to guide and participate in my “Comité de Suivi Individuel” (CSI), and for their appreciated support, guidance and advices that helped me achieving my targets and orientating my future perspectives. I acknowledge the Doctoral School “ED 305”, represented by Pr. Nicolas INGUIMBERT, the Doctoral School Director, and the Doctoral School Council represented by all its members, for granting me the doctoral fellowship, and for supporting the pursuit of my learning cursus and training activities. I also acknowledge the “Réseau Francophone de Métabolomique et Fluxomique” (RFMF), and the “Société Française de Spectrométrie de Masse” (SFSM) for the grants that they afforded to me during the three years of the doctoral work, and for allowing me to participate and communicate in the workshops, the schools and the congresses that they organized. These participations helped me improving my knowledge, my skills and my network that were necessary for the accomplishing of the present thesis, and for my aimed future career in scientific research as well. I would like to express my acknowledgments to all the collaborators who were involved in all or parts of the present thesis. They will be mentioned in the subsequent chapters of the present manuscript. I express all my sincere gladness to have worked with the CRIOBE team, so I thank all the former and actual “Criobian” colleagues, without any exception, for being a graceful part from this experience. I express my special amical gratitude for my colleagues Chandra, Mathieu, Amani, Slimane, Mélina, Mélanie, Laurine, Christian, and Christelle, for the great time that we spent together when trying to “joyfully” struggle with our theses and research topics. Also, my special thanks to Delphine, Jennifer and Peter who were always here to help and afford their great support. Otherwise, I would like to express my heartfelt thanks to my former supervisors and teachers Dr. Nicolas LE YONDRE, Dr. Adrián SCHWARZENBERG and Dr. Wafaa NOUN for teaching me and for encouraging my will to take this distinct challenge, and for their permanent and precious support before and during those three years. They always afforded a great help for me, especially when I faced many difficult moments and obstacles, and they have never stopped dedicating their time, their support and their knowledge whenever I asked. I also warmly thank my friend-colleague Dr. Rim JABER, for affording her great help and precious time when I was preparing for the doctoral entrance exam and for all the professional and personal advices that she gave me along those three years. I am very grateful and should acknowledge my teachers Mr. Imad DIB, Mr. Rami ABOU SAMRA, Mr. Joseph HLEIHEL, Mr. Naji MAKHOUL, Mrs. Maria KAZZI and Mrs. Rola ATALLAH for baptizing my early passion in Science. I also acknowledge their essential role in teaching me how to assume my responsibilities and how to respect my professional, social and personal duties. I was and will be always honored for being one of your students… My deepest acknowledgments to my friends-colleagues Dr. Ihsan EL MASRI, Dr. Mohamad EL MAOUCH, Dr. May TAHA, Dr. Ali EL ZEIN, Dr. Racha ZGHEIB and Dr. Jamal EL HACHEM for their encouragement and permanent support before and during those three years. My warmest thanks to the dearest Mira, my classmate-partner, my colleague, and my great friend who was always here to encourage me, and for being the person who understood the most my difficulties, as well as my gladness, my perspectives and my ambitions. My distinct thanks to Sara, for always being here, especially during those last and most difficult moments. You were a great unforgettable support. I owe you one so when you will make your decision and take your way towards your own adventure, be sure, I will be there… And last but not least, all my profound, warm, and grateful thanks to my small family… Maha, Ibrahim, Samar and Ward.. No words can express my gratitude to you… Your ultimate confidence and infinite support were and will be always the reason why I can overcome difficulties, achieve success, and aim beyond… Résumé Malgré la prise de conscience écologique et sanitaire, la consommation mondiale des pesticides est en augmentation. Étant donné que ces produits chimiques présentent de nombreux effets néfastes sur la santé humaine et l'environnement, des mesures doivent être prises afin de limiter leurs effets.
Recommended publications
  • Manuka Oil As a Potential Natural Herbicide
    Manuka Oil as a Potential Natural Herbicide Franck E. Dayan and Daniel K. Owens USDA-ARS Natural Products Utilization Research Unit P.O. Box 8048, University, MS 38677 [email protected] In 1977, Gray observed that bottlebrush plant (Callistemon citrinus) repressed the growth of plants in its surroundings. Crude extracts from this plant caused the bleaching of grass weeds. He identified the active component as leptospermone, a natural triketone structure with no known biological activity that had been reported in a number of Australasian shrubs. Leptospermone was moderately active in greenhouse tests, controlling mostly small-seeded grass weeds. This natural product and a small number of synthetic structural analogs were patented as herbicides in 1980. A few years later, a separate group at the Western Research Center was generating analogs of the cyclohexanedione herbicide sethoxydim, an inhibitor or acetyl- coenzyme-A carboxylase. Some of the second generation herbicidal derivatives with a dimedone backbone caused bleaching symptoms similar to leptospermone. Combination of the syncarpic acid of leptospermone to this chemistry ultimately served as the basis for the development of the triketone synthetic herbicides (Fig. 1). Fig. 1. Struct ure s of the n a tural trik et o n e leptosperm one a nd t w o s y nthetic analogues that are sold as commer ci a l he r bic ides. Natural β-triketones are common in many Australasian woody plants (e.g., Leptospermum, Eucalyptus, Melaceuca, etc...). Steam distilled manuka oil account for 0.3% of the dried weight of L. scoparium. However, the amount of β-triketone present in these oils varies wildly across New Zealand.
    [Show full text]
  • Jamesdanieljonesiiithesis.Doc-After Defense
    The Evaluation of HPPD-Inhibitors for Full-Season Control of Morningglory (Ipomoea) Species in Corn (Zea mays L.) by James Daniel Jones III A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 15, 2018 Keywords: Ipomoea, corn, HPPD, postemergence Approved by Dr. Dennis Delaney, Chair, Extension Specialist, Crop, Soil, and Environmental Sciences Dr. Andrew Price, Affiliate Associate Professor, Crop, Soil, and Environmental Sciences Dr. Audrey Gamble, Assistant Professor and Extension Specialist, Crop, Soil, and Environmental Sciences i Abstract Due to late-season morningglory harvest interference concerns in corn, field studies were conducted in 2017 and 2018 at the Prattville Agricultural Research Unit in Prattville, Alabama and at the Sand Mountain Research and Extension Center in Crossville, Alabama to evaluate late season control of morningglory species using HPPD- inhibitors postemergence (POST) applied alone, following atrazine preemergence (PRE), or in combination with atrazine. Additionally, Amaranthus spp. and Senna spp. were evaluated for control. An incomplete randomized design with a split-plot treatment arrangement with four replications was utilized. The trial was divided into two sections: one with a PRE application of atrazine and a second without a preemergence application of atrazine. Eleven herbicides were applied POST without atrazine including: tembotrione; mesotrione; topramezone+dimethenamid; mesotrione+S- metolachlor+glyphosate; tembotrione+thiencarbazone; topramezone; mesotrione+S- metolachlor+atrazine; mesotrione+S-metolachlor+atrazine+bicyclopyrone; mesotrione+nicosulfuron; isoxaflutole; isoxaflutole+thiencarbazone-methyl; non-treated with atrazine applied PRE, and a true non-treated check. The same herbicides, excluding the two treatments that contain atrazine in the premixture, were also applied with atrazine.
    [Show full text]
  • Use of Mesotrione for Annual Bluegrass (Poa Annua L.) at Cool
    USE OF MESOTRIONE FOR ANNUAL BLUEGRASS (POA ANNUA L.) AT COOL- SEASON TURFGRASS ESTABLISHMENT by KATELYN A. VENNER A Thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Plant Biology written under the direction of Stephen E. Hart Ph.D. and approved by ________________________ ________________________ ________________________ New Brunswick, New Jersey October, 2011 ABSTRACT OF THE THESIS USE OF MESOTRIONE AT COOL-SEASON TURFGRASS ESTABLISMENT By Katelyn Anne Venner Thesis director: Stephen E. Hart Annual bluegrass is a problematic weed in highly maintained turfgrass environments, and is difficult to control due to its adaptability to highly maintained turfgrass environments and lack of highly effective chemical control options. Mesotrione is a relatively new herbicide which has been found to show some level of control of annual bluegrass, and is safe to use at cool season turfgrass establishment. Thus, mesotrione has potential to be utilized for weed control in cultivated sod production. The objectives of this research were to evaluate mesotrione to determine: 1) tolerance of selected tall fescue cultivars, an important turfgrass species cultivated for sod, to applications of mesotrione; 2) the length of residual of mesotrione versus prodiamine, bensulide and dithiopyr for control of annual bluegrass; and 3) potential of mesotrione to control winter annual broadleaf weeds at Kentucky bluegrass establishment. Tall fescue cultivars were found to be tolerant to mesotrione applications made preemergence and preemergence plus 4 weeks after emergence at higher rates than required for weed control.
    [Show full text]
  • Discovery & Development of Natural Products for Controlling Weeds
    Governor’s Environmental and 2008 Cleantech Innovator Award Economic Leadership Award 2008 Investors’ Circle Top 20 Discovery & Development of Natural Products for Controlling Weeds Pam Marrone, CEO & Founder Fewer New Chemicals – # of Chemicals Higher Cost ,150 Screened to Find # of New Chemical One Product 140 Leads vs. Product ,100 (‘000) 120 Launches 100 ,50 80 60 ,0 40 1990 1995 2000 2009 20 Cost to Discover 0 & Develop a 256 1995 1997 1999 2001 2003 2005 2007 Synthetic 185 Launches New Leads Chemical ($Mil) 105 Source: Ag Chem New Compound Review (Vol 25) 2007 45 85 20 Increasing resistance to 1.2 4.1 glyphosate; few new herbicidal 1956 1964 1969 1977 1984 1998 2000 2003 2007 2010 modes of action since RR crops (Source: CropLife) Herbicides from Microorganisms Basta ‐ Glufosinate ammonium • Phosphinothricin (a breakdown product of bialaphos) discovered from Streptomyces viridochromogenes and S. hygroscopicus • Inhibits the activity of the glutamine synthetase enzyme, which causes ammonia build‐up in the cell. 0 0 H3C -P -CH2-CH2 -C -C - NH4 0 OH NH2 H Herbicides from Microorganisms Methoxyhygromycin • Produced by Streptomyces sp. 8E‐12 (Korea) • Bleaches and kills plants • Has some selectivity to cucumber, rice, wheat and soybean Herbicides from Plants Leptospermone • From the bottlebrush tree Callistemon citrinus • Developed into Callisto® herbicide (mesotrione) by Syngenta • Mesotrione inhibits an essential plant enzyme, HPPD (p‐hydroxyphenyl pyruvate dioxygenase) that is found primarily in the cytoplasm of the chloroplasts What We Do We discover, develop, and market effective and environmentally responsible natural products (biopesticides) that fill unmet needs for weed, pest & plant disease management.
    [Show full text]
  • Copyrighted Material
    413 Index NOTE: Weeds are listed under their latin names, crops under their common names. Individual herbicides are listed under ‘herbicide’ and biocontrol agents under ‘weed biocontrol agents’. For a full list of weed control methods mentioned see under ‘weed control methods’. a Alliaria petiolata 284 herbicide resistance 183, Abutilon theophrasti 77 Allium spp. 390 184, 209 in horticultural crops 362 Alopecurus spp. 7 in horticultual crops 362 in Italy & Spain 71, 362 Alopecurus aequalis 76 in maize 71 seed germination 89 Alopecurus japonicus 76 Amaranthus albus 358 in Switzerland 297 Alopecurus myosuroides 5, Amaranthus blitoides 358 Acacia dealbata 220, 295 75, 121 Amaranthus deflexus 358 Acacia longifolia 228 ACCase resistance 63, 65 Amaranthus hybridus 77 Adonis annua 19 biology 16 in horticultural crops 362 Aethusa cynapium 360 in cereals 11, 67, 68 seed germination 89 agri‐chemical industry 17 climate change 52–5 in tomato 358 Agricultural Development competitive interactions 15, Amaranthus lividus 358 Advisory Service 52–5 Amaranthus palmeri 65, (ADAS) 15, 16, 17 eradication 20 77, 191 agri‐environmental herbicide effects 7, 156, Amaranthus retroflexus 77, 364 schemes 23, 135, 137 157, 166 biocontrol 223–4 Agrostemma githago 1, 3, 123 herbicide resistance 8, 52, in European cereals 69 Agrostis gigantea 15 184, 185, 191, 193, 196–7, in horticultural crops 367 Agrostis stolonifera 19, 393 198, 205–9 in maize 71 Ailanthus altissima 220, 295 in herbicide‐tolerant in tomato crops 358 Aizoaceae 296 crops 10 Amaranthus rudis 65 Albania
    [Show full text]
  • ABSTRACTS of the III International Weed Science Congress
    ABSTRACTS of the III International Weed Science Congress Foz do Iguassu, Brazil 6 ±11 June 2000 Published by the International Weed Science Society 107 Crop Science Building, Oregon State University Corvallis, Oregon, 97331-3002, U.S.A. ISBN 1-891276-16-6 The production of this program has been sponsored by Novartis. International Weed Science Society Ricardo Labrada President Jonathan Gressel Past President Stephen Duke Vice-President Carol Mallory-Smith Secretary-Treasurer Brazilian Weed Science Society Robinson A. Pitelli President Joao Baptista da Silva Vice-President Dionisio Gazziero Secretary Benedito N. Rodrigues Treasurer III International Weed Science Congress Organizing Committee JoaÄo Baptista da Silva Chairman Ricardo Labrada IWSS President Robinson A. Pitelli SBCPD President Jonathan Gressel International Scienti®c Committee Chairman James D. Riggleman International Finance Committee Chairman Geraldo N. Vilela Host Finance Committee Chairman Maria H. T. Mascarenhas Secretary Steve Duke USA Liaison D. L. P. Gazziero Social Programs Carol Mallory-Smith IWSS Secretary-Treasurer Anne LeÂgeÁre Abstract Editor Daniel Cloutier CD-ROM Producer E. Velini, L.L. Foloni, Jens Streibig Members III International Weed Science Congress SPONSORS* ACP American Cyanamid Aventis BASF Corporation Burch CNPq Dow AgroSciences DuPont Agricultural Products European Weed Research Society FAO FINEP FMC Grif®n Ihara Hokko Kumiai Milenia Monsanto Novartis SEPRO United Agri Products USDA-APHIS USDA-ARS Zeneca * List current as of 28 April 2000 III International Weed Science Congress FOREWORD The abstracts herein are those that were reviewed and accepted by April 5, 2000. It is likely that a few poster contributions were submitted after this date, and thus are not included in this book.
    [Show full text]
  • Postemergence Control of Annual Bluegrass with Mesotrione in Kentucky Bluegrass
    POSTEMERGENCE CONTROL OF ANNUAL BLUEGRASS WITH MESOTRIONE IN KENTUCKY BLUEGRASS BY JOSHUA JAMES SKELTON THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Crop Sciences in the Graduate College of the University of Illinois Urbana-Champaign, 2012 Urbana, Illinois Advisor: Professor Bruce E. Branham ii ABSTRACT Annual bluegrass (Poa annua L. var Hausskn Timm) is a common grass weed species in turf. A lack of environmental stress tolerance, combined with prolific seed production and a highly competitive growth habit makes annual bluegrass difficult to maintain, but also difficult to get rid of from an established area by a turf manager. Cultural control options rely on increasing the competiveness and health of the desired turf species, such as Kentucky bluegrass, but the management demands for turf areas such as golf course fairways, tees, and greens, favor annual bluegrass. Under these conditions chemical control of the weed is currently the only viable option. The postemergence control of annual bluegrass with an herbicide is difficult. The number of herbicides available for use in cool-season turf is limited, and the ones that are available, selectively control annual bluegrass in a few turfgrass species and lack adequate selectivity. Mesotrione is an herbicide with postemergence control of many broadleaf and grass weed species. An HPPD-inhibiting herbicide, mesotrione causes the destruction of plant tissues by increasing free radicals and reactive oxygen species through the inhibition of carotenoids and other radical scavenging compounds. Herbicide sensitivity is based upon rates of metabolism. Annual bluegrass shows sensitivity to mesotrione and may be able to be controlled by postemergence applications.
    [Show full text]
  • Impact of Leptospermone, a Natural -Triketone Herbicide, on the Fungal
    Impact of Leptospermone, a Natural β-Triketone Herbicide, on the Fungal Composition and Diversity of Two Arable Soils Clarisse Mallet, Sana Romdhane, Camille Loiseau, Jérémie Béguet, Fabrice Martin-Laurent, Christophe Calvayrac, Lise Barthelmebs To cite this version: Clarisse Mallet, Sana Romdhane, Camille Loiseau, Jérémie Béguet, Fabrice Martin-Laurent, et al.. Impact of Leptospermone, a Natural β-Triketone Herbicide, on the Fungal Composition and Diversity of Two Arable Soils. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.01024. hal-02143873 HAL Id: hal-02143873 https://hal.sorbonne-universite.fr/hal-02143873 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fmicb-10-01024 May 9, 2019 Time: 14:44 # 1 ORIGINAL RESEARCH published: 10 May 2019 doi: 10.3389/fmicb.2019.01024 Impact of Leptospermone, a Natural b-Triketone Herbicide, on the Fungal Composition and Diversity of Two Arable Soils Clarisse Mallet1*, Sana Romdhane2,3,
    [Show full text]
  • Postemergence Control of Annual Bluegrass with Mesotrione In
    HORTSCIENCE 47(4):522–526. 2012. mesotrione (Anonymous, 2009). Mesotrione has been shown to provide postemergence control of ABG under agricultural settings, so Postemergence Control of Annual there is potential to use mesotrione in turf to control ABG (Armel et al., 2009). Previous Bluegrass with Mesotrione in research in turf has shown that mesotrione can control ABG with pre-emergence appli- Kentucky Bluegrass cations, but control with postemergence ap- plications occurs only in the fall (Hoiberg and Joshua J. Skelton1, William Sharp2, and Bruce E. Branham3,4 Minner, 2010; Reicher et al., 2011). Further- University of Illinois Urbana–Champaign, Department of Crop Sciences, more, Reicher et al. (2011) described post- Landscape Horticulture Research Center, 2308 South Lincoln Avenue, emergence control of ABG as inconsistent. The objective of this study was to determine Urbana, IL 61801 the rate and application interval of meso- Additional index words. Poa annua, Poa pratensis, HPPD-inhibitior, herbicide rate, trione that will yield the greatest postemer- application interval gence control of ABG. Finding a rate and application interval that can be used through- Abstract. Six field trials were conducted in 2009 and 2010 to study postemergence control out the year could allow mesotrione to be an of annual bluegrass (Poa annua L. var. Hausskn Timm) in kentucky bluegrass (Poa effective option for postemergence ABG con- pratensis L.) with mesotrione. Mesotrione was applied at 11 different rate and application trol in cool-season turf. intervals to an area of kentucky bluegrass that was naturally infested with annual –1 bluegrass. Mesotrione rates of 56 gÁha applied two or three times per week for a total Materials and Methods of 10 applications or 84 gÁha–1 applied two times per week for a total of seven applications provided consistent control of annual bluegrass but required significant application labor Plant culture.
    [Show full text]
  • Research Review No. CP 182 / 1807258 Weed Control Options And
    April 2019 Research Review No. CP 182 / 1807258 Weed control options and future opportunities for UK crops Authors: Sarah K. Cook, Laura R. Davies, Frances Pickering, Lynn V. Tatnell, Angela Huckle, Sonia Newman, Chloe Whiteside, Charlotte White, David Talbot, Helen Holmes (ADAS), Patricia E. Turnbull (Independent agronomist), Denis C. Buckley (Independent agronomist), Jim Scrimshaw (PGRO) and Pamela Chambers (UPL) Editors: James H Clarke, Steve Ellis and Sarah Clarke (ADAS Boxworth, Boxworth, Cambs CB23 4NN) This review was produced as the final report of a four month project (CP 182 / 1807258) that started in September 2018. The work was funded under a contract of £26,000 from AHDB and £10,000 from BBRO, with additional funding from BASF, Bayer CropScience, Belchim, Corteva Agriscience, FMC Agro Ltd, Syngenta and UPL Europe Ltd. Additional in-kind funders and contributors: Frontier, Garford Farm Machinery, Hutchinsons, Maize Growers Association, PGRO, Procam and Rootwave. While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other alternative, but unnamed, products.
    [Show full text]
  • Ecotoxicological Impact of the Bioherbicide Leptospermone on The
    Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils Sana Romdhane, Marion Devers-Lamrani, Lise Barthelmebs, Christophe Calvayrac, Cédric Bertrand, Jean-François Cooper, Franck E. Dayan, Fabrice Martin-Laurent To cite this version: Sana Romdhane, Marion Devers-Lamrani, Lise Barthelmebs, Christophe Calvayrac, Cédric Bertrand, et al.. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils. Frontiers in Microbiology, Frontiers Media, 2016, 7, pp.775. 10.3389/fmicb.2016.00775. hal-01340479 HAL Id: hal-01340479 https://hal-univ-perp.archives-ouvertes.fr/hal-01340479 Submitted on 1 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 24 May 2016 doi: 10.3389/fmicb.2016.00775 Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils Sana Romdhane 1, 2, 3, Marion Devers-Lamrani 3, Lise Barthelmebs 1*,
    [Show full text]
  • Alternative Strategies for Weed Control in Creeping Bentgrass
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2014 Alternative Strategies for Weed Control in Creeping Bentgrass Matthew Thomas Elmore University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Weed Science Commons Recommended Citation Elmore, Matthew Thomas, "Alternative Strategies for Weed Control in Creeping Bentgrass. " PhD diss., University of Tennessee, 2014. https://trace.tennessee.edu/utk_graddiss/2820 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Matthew Thomas Elmore entitled "Alternative Strategies for Weed Control in Creeping Bentgrass." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Plants, Soils, and Insects. James T. Brosnan, Major Professor We have read this dissertation and recommend its acceptance: John C. Sorochan, Dean A. Kopsell, Thomas C. Mueller, Michael D. Best Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Alternative Strategies for Weed Control in Creeping Bentgrass A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Matthew Thomas Elmore August 2014 Copyright © 2014 by Matthew Elmore All rights reserved ii ACKNOWLEDGEMENTS For their support and guidance throughout my time at the University of Tennessee, I thank my committee members: Dr.
    [Show full text]